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Variations on a Theme of Curry

Lloyd Humberstone

Abstract After an introduction to set the stage (§1), we consider some varia-
tions on the reasoning behind Curry’s Paradox arising against the background of
classical propositional logic (§2) and of BCI logic and one of its extensions (§3),
in the latter case treating the “paradoxicality” as a matter of nonconservative ex-
tension rather than outright inconsistency. A question about the relation of this
extension and a differently described (though possibly identical) logic interme-
diate between BCI and BCK is raised in a final section (§4), which closes with a
handful of questions left unanswered by our discussion.

1 Introduction

We present some familiar considerations in this section in order to fix notation
and terminology. The Naïve Comprehension axiom—(NCA) below—is the axiom
schema providing for every formula ψ(x), with at most the variable x free, a term
{x |ψ(x)} with, for any term t ,

t ∈ {x |ψ(x)} ↔ ψ(t), (NCA)

where ψ(t) is the result of replacing any free occurrences of x in ψ(x) with the term
t . (Naïve Comprehension together with a Principle of Extensionality are taken to
provide a basis for Naïve Set Theory; we do not consider Extensionality here.)

For this section and the next, we envisage for any given background logic (whose
language is assumed to have—as primitive or defined—the binary connective ↔
employed here, so that (NCA) is well formed) a set theory with the instances of the
schema (NCA) as nonlogical axioms, and theorems derivable from them in accor-
dance with the given background logic.1 In Sections 3 and 4 we turn our attention
to purely implicational logics, for which case (NCA) should be taken to be the pair

Received December 7, 2004; accepted July 12, 2005; printed March 22, 2006
2000 Mathematics Subject Classification: Primary, 03B47; Secondary, 03B05
Keywords: Curry’s Paradox, truth-functions, fixed points, conservative extension, sub-

structural logics, BCI logic
c©2006 University of Notre Dame

101

http://www.nd.edu/~ndjfl
http://www.nd.edu


102 Lloyd Humberstone

of schemata

t ∈ {x |ψ(x)} → ψ(t) and ψ(t)→ t ∈ {x |ψ(x)}.

Although it is natural given the content of (NCA) to use a quantified logic in this
capacity, for our purposes it is the propositional aspects of the logic that will be
central.

Let E = E(p, q1, . . . , qn) be a formula constructed from exactly the propositional
variables (assumed distinct) p, q1, . . . , qn . Then for any n formulas ϕ1, . . . , ϕn , we
have a formula FE(ϕ1, . . . , ϕn) for which an instance of the schema (NCA) can be
represented in the following form,

FE(ϕ1, . . . , ϕn)↔ E(FE(ϕ1, . . . , ϕn), ϕ1, . . . , ϕn)), (1)

where, on the right, E(FE(ϕ1, . . . , ϕn), ϕ1, . . . , ϕn)) is the result of substituting
FE(ϕ1, . . . , ϕn) for p and ϕi for qi (i = 1, . . . , n) in E(p, q1, . . . , qn). To obtain
(1) from (NCA), for a given sequence ϕ1, . . . , ϕn of formulas, let ‘a’ abbreviate the
term

{x |E(x ∈ x, ϕ1, . . . , ϕn)}

and observe that (2) is then an instance of (NCA):

a ∈ a ↔ E(a ∈ a, ϕ1, . . . , ϕn). (2)

Thus the left-hand side of (2), in which recall that the term a tacitly depends on
ϕ1, . . . , ϕn (as well as on the way E is constructed), may be taken as the promised
FE(ϕ1, . . . , ϕn). This is all well known,2 as also is the fact that the same result
follows from some principles of “naïve semantics” in place of (NCA).3 For our
purposes here it doesn’t matter where the various cases of (1) come from (set theory,
semantics, or elsewhere) so much as what they lead to, and we may as well think
of FE (for any given E) itself as simply an n-ary sentential connective given to us as
governed by (1) as an axiom-schema, whose consequences can be investigated at the
level of propositional logic. (The increase in clarity from taking this point of view is
analogous to that afforded by modal provability logic—cf. Boolos [7]—in which the
main outlines of various metamathematical arguments become easily visible, where
before they were buried in a mound of notation for Gödel numbering, provability
predicates, and so on.) To emphasize this perspective, we rewrite (1), dropping the
parentheses and commas of the general functional notation which suggests that its
left-hand side is just some formula whose identity is fixed by those of ϕ1, . . . , ϕn , in
the following more familiarly “connectival” style:4

FEϕ1 . . . ϕn ↔ E(FEϕ1 . . . ϕn, ϕ1, . . . , ϕn). (1)

When n = 0, so E is a formula E(p), FE becomes a nullary connective (a sentential
constant) and (1) becomes FE ↔ E(FE), so that FE can be regarded as a fixed point
of the function represented by E—which it literally would be if we were attending
not to the formulas themselves but to the elements of the corresponding Lindenbaum
algebra in the case of any underlying logic conferring appropriate properties on the
connective ↔.5 The best known subcase of this n = 0 case arises when E(p) is
the formula ¬p, so the fixed point equivalence is FE ↔ ¬FE, making for incon-
sistency in the theory (in case FE is regarded as an abbreviation) or the logic (if, as
just suggested, we think of the underlying logic supplemented by (1) for each—or
even for just this—E as itself a propositional logic), given certain suppositions as to
how↔ and ¬ behave according to what we have been calling the underlying logic.
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(Inconsistency here may be taken as a matter of providing for the provability of some
formula and its negation, or alternatively of every formula in the language. In what
follows we generally have the latter interpretation in mind.) This fixed point arises
from the set-theoretical background sketched above—or any of several variants, in-
cluding the untyped λ-calculus, cf. van Benthem [55], p. 51—as Russell’s Paradox,
and in the semantical case as the Liar Paradox. In the general case of (1), one could
say that what we have is a fixed point equivalence “with parameters,” though we will
not explicitly be including this qualification. Our notation is intended mnemonically
thus: the ‘F’ (or more explicitly, ‘FE’) is a fixed point operator, while the ‘E’ is in-
tended to suggest that the right-hand side provides an “elaboration” of its left-hand
side.6

Let us now recall a particularly dramatic instance of (1), capable of wreaking
havoc over a wide variety of background logics and requiring only the presence of
an implication connective → with a few relatively uncontroversial properties. As
mentioned above apropos of (NCA) for such a restricted language, (1) should be
thought of as abbreviating the pair of schemata consisting of its left-to-right impli-
cation and its right-to-left implication. We have in mind Curry’s Paradox, for which
n = 1 and E(p, q1), or as we might as well say, E(p, q), is the formula p → q. (1)
then becomes (3), in which, since no confusion will arise, we omit the subscript “E”
on the fixed point operator:

Fϕ ↔ (Fϕ→ ϕ). (3)

For an arbitrary formula taken as ϕ, this threatens to render ϕ derivable, since if→
“contracts” according to the underlying logic from the left-to-right direction of (3)
we derive the implication Fϕ→ ϕ in which case if a modus ponens rule holds in that
logic for→ we may infer Fϕ from that implication and the right-to-left implication
of (3), whence we obtain ϕ by a second modus ponens from that same implication
and the newly inferred Fϕ. Thus one popular response7 —from those wishing to save
some version of naïve set theory or semantics—to Curry’s Paradox (and the label has
been used for the trouble we have just seen with (3), from either of these sources)
has been to remove the principle of contraction (and any of its close relatives).8 We
are concerned with assessing the sources and extent of the problem here, not with
suggesting or comparing solutions. In particular, to keep the discussion close to that
supplied by Curry’s example, we mainly concentrate on the case in which the n in (1)
is 1 (except for briefly returning to the n = 0 case at one point in the following sec-
tion, with results from Proposition 2.2 on there addressing the “arbitrary n” case.). In
Section 2 we look at the possibility of “trouble” arising from sources other than that
of E(p, q) = p → q , driving Curry’s Paradox itself, while keeping the background
logic as classical propositional logic. “Trouble” here can be interpreted as inconsis-
tency or any kind of nonconservative extension, where this means the provability of
some FE-free formula on the basis of (1), since the Post completeness of that logic
means that these two coincide. (We assume that all logics are closed under Uniform
Substitution. More than this is needed for the reference to Post completeness to make
sense: we also need closure under a consequence relation, for which purposes that
isolated in note 12 below will do—or equivalently closure under modus ponens. For
further details see notes 9 and 10 of Humberstone [19] and the text to which they are
appended.) In Section 3 we will weaken the logic greatly and be on the lookout for
any signs of nonconservative extension coming from (1), whether or not they amount
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to inconsistency/triviality. (Section 4 pursues an issue raised by a logic figuring in
Section 3.)

2 Classical Propositional Logic

The great advantage of classical propositional logic is that we can investigate its n-
variable formulas by just studying the n-ary truth-functions, and thus in particular
we can survey the effects of the n = 1 case of (1) in the previous section by look-
ing at the possible truth-functional interpretations available for E(p, q). Since there
are 16 binary truth-functions, there are 16 candidates to survey, for which purpose
we employ the following notation: ∧,∨,→, and ↔ for the Boolean connectives
commonly so written, with + for exclusive disjunction,← for the converse of→,
with the composite labels ¬∧,∧¬, for E(p, q) as ¬p ∧ q and p ∧¬q , respectively,
and ∧′,∨′ for negated conjunction (nand) and disjunction (nor). Of the binary truth-
functions that leaves the six which are “not essentially” binary, which we notate by
means of> and⊥ for the constant true and constant false functions, 1© and 2© for the
first and second projections, and 1©

′ and 2©
′—for their respective negations. How-

ever, in writing formulas as opposed to labels for truth-functions, we will use only
∧,∨,→, and↔, supplemented by the 1-ary ¬ (negation), translating the remaining
notations into these for that purpose. (Exception: we use the above labels for the not
essentially binary connectives in the first column of entries (4.11) – (4.16) below, in
the interests of perspicuity.)

In Table 1 we give a list of the fixed point equivalences for each choice of E(p, q).
In (4.1) we have the case of p ∧ q , for example, indicated by writing FE (from (1))
as ‘F∧’. By truth-functional reasoning this can be seen to be equivalent to the entry
in the second column, headed “simplified,” which exhibits the formula as a truth-
functional compound of FEϕ and ϕ—though we omit the subscript on the ‘F’ to re-
duce clutter (since it can be recovered from the first column). In the third—“derived
truth-function”—column we indicate the mode of truth-functional composition (of
those arguments taken in that order) by bracketing our label for that function. The
idea is that if we start with the truth-function represented in the subscript on the
‘F’—that used to construct E(p, q) from p and q—we end up with a particular (de-
rived) truth-function which, applied to arbitrary arguments FEϕ and ϕ, in that order,
yields as value the fixed point equivalence FEϕ ↔ E(FEϕ, ϕ). The significance of
the asterisks on the numbers of some of the entries will be explained below.

The case of Curry’s Paradox proper, with E(p, q) = p → q , appears as (4.3).
We see that the derived truth-function is conjunction and recall a remark from [55],
p. 50, in which ‘A’, ‘B’ are used as schematic letters for formulas: “ . . . the sober-
minded reader must have realized already that (A ↔ (A → B)) ↔ (A ∧ B) is a
propositional tautology.” The reference to sober-mindedness is van Benthem’s reac-
tion to descriptions in the literature (cited by van Benthem) of the arguments in the
style of Curry and Löb as apparently “magical.” Similarly (4.1) could be put in van
Benthem’s terms by saying that (A ↔ (A ∧ B)) ↔ (A → B) “is a propositional
tautology,” by which he presumably means a truth-functional tautology (a classical
propositional tautology, or substitution instance thereof). Two points deserve notice
concerning this way of speaking. First, while it is perfectly correct in the context
of a gloss on our table, which addresses specifically classical logic, it is somewhat
misleading to associate Curry’s Paradox with that logic—for example, the two bicon-
ditionals just cited are equally provable in, for example, intuitionistic propositional
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f.p. equivalence simplified derived truth-function

F∧ϕ ↔ (F∧ϕ ∧ ϕ) Fϕ→ ϕ [→] (4.1)
F∨ϕ ↔ (F∨ϕ ∨ ϕ) ϕ→ Fϕ [←] (4.2)
F→ϕ ↔ (F→ϕ→ ϕ) Fϕ ∧ ϕ [∧] (4.3)∗
F←ϕ ↔ (ϕ→ F←ϕ) Fϕ ∨ ϕ [∨] (4.4)
F↔ϕ ↔ (F↔ϕ ↔ ϕ) ϕ [ 2©] (4.5)∗
F¬∧ϕ ↔ (¬F¬∧ϕ ∧ ϕ) ¬(Fϕ ∨ ϕ) [∨

′
] (4.6)∗

F∧¬ϕ ↔ (F∧¬ϕ ∧ ¬ϕ) ¬(Fϕ ∧ ϕ) [∧
′
] (4.7)

F∨′ϕ ↔ ¬(F∨′ϕ ∨ ϕ) ¬Fϕ ∧ ϕ [¬∧] (4.8)∗
F∧′ϕ ↔ ¬(F∧′ϕ ∧ ϕ) Fϕ ∧ ¬ϕ [∧¬] (4.9)∗
F+ϕ ↔ (F+ϕ ↔ ¬ϕ) ¬ϕ [ 2©

′
] (4.10)∗

F 1©ϕ ↔ (F 1©ϕ 1©ϕ) Fϕ ↔ Fϕ [>] (4.11)
F 2©ϕ ↔ (F 2©ϕ 2©ϕ) Fϕ ↔ ϕ [↔] (4.12)
F 1©′ϕ ↔ (F 1©′ϕ 1©

′ϕ) Fϕ ↔ ¬Fϕ [⊥] (4.13)∗
F 2©′ϕ ↔ (F 2©′ϕ 2©

′ϕ) Fϕ ↔ ¬ϕ [+] (4.14)
F>ϕ ↔ (F>ϕ>ϕ) Fϕ [ 1©] (4.15)
F⊥ϕ ↔ (F⊥ϕ⊥ϕ) ¬Fϕ [ 1©

′
] (4.16)

Table 1

logic.9 (Similarly, although one could draw attention to Peirce’s Law in obtaining
Curry’s Paradox, saying that from the ← direction of (3) in Section 1 and an in-
stance of Peirce’s Law, we derive Fϕ by modus ponens, whence, proceeding as in
the original discussion after (3), we obtain ϕ; this would give the misleading im-
pression that deriving ϕ required an appeal to Peirce—whereas the original, entirely
standard, derivation showed that only Contraction and not the intuitionistically unac-
ceptable Peirce’s Law was needed.)10 Secondly, in the two tautologies just cited, we
note that the connectives ‘→’ and ‘∧’ have simply changed places. In terms of our
table, if we start with (4.1), we find that the derived connective when we start with
conjunction is implication, whereas when we start with implication (4.3), we derive
conjunction. This situation is entirely representative, the derivative of the derivative
being the original.

Proposition 2.1 Where e is the equivalential truth-function (that is, e(x, y) = T
if and only if x = y) and f, g are arbitrary binary truth-functions, we have, for all
x, y ∈ {T,F},

If e(x, f (x, y)) = g(x, y) then e(x, g(x, y)) = f (x, y).

Proof Suppose (i) e(x, f (x, y)) = g(x, y). Then, “e-multiplying” both sides by
x , we get (ii): e(x, e(x, f (x, y))) = e(x, g(x, y)), and simplifying the left-hand
side of (ii), since for any z, e(x, e(x, z)) = z, we get f (x, y) = e(x, g(x, y)) as
required. �

It would accordingly not be out of place to describe truth-functions f and g related
as in the above proposition as dual: given either as starting point, the other emerges
as the derived function (so we are dealing with an involution of period 2). Below,
we will speak of this as Curry duality. Note that this point in no way depends on
the fact that, in the interests of sticking within the prototype provided by Curry, we
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restrict attention to binary f and g here. Proposition 2.1 holds more generally, the
same proof establishing the implication (and thus also its converse) for n-ary f, g:

e(x, f (x, y1, . . . , yn−1)) = g(x, y1, . . . , yn−1)

⇒ e(x, g(x, y1, . . . , yn−1)) = f (x, y1, . . . , yn−1).

Indeed, the point holds more generally still, in the form

e(z, f (x, y1, . . . , yn−1)) = g(x, y1, . . . , yn−1)

⇔ e(z, g(x, y1, . . . , yn−1)) = f (x, y1, . . . , yn−1).

Returning to the binary case, we can put Proposition 2.1 in more linguistic dress by
saying that for any definable binary connectives # and C, the formulas

(p↔ (p#q))↔ (pCq) and (p↔ (pCq))↔ (p#q)

are logically equivalent (in the sense that the biconditional linking them is a tautol-
ogy); as in the observation just made the left-most occurrences of ‘p’ in these two
formulas could be replaced by occurrences of some other variable without jeopar-
dizing the claim of equivalence. In this incarnation the fact appealed to in the proof
above to the effect that e(x, e(x, z)) = z, for any choice of x, z, emerges as the log-
ical equivalence between ϕ ↔ (ϕ ↔ ψ) and ψ (in the present case, going from the
left formula to the right formula, ϕ is taken as ψ as p#q)—an equivalence which no-
toriously fails in intuitionistic logic, revealing the availability of both (4.1) and (4.3)
for that logic, noted above, to be something of a lucky accident.11 (Indeed of course
the “simplification” steps leading to column two in our table, while they hold in the
two cases just mentioned, in general fail intutionistically, as in (4.4) and (4.5), the lat-
ter involving precisely the intuitionistically invalid equivalence just remarked on—to
say nothing of the fact that since there are infinitely many nonequivalent formulas
constructed out of p, q in intuitionistic logic, we couldn’t even given a corresponding
finite table in that case.)

As to the lines to which asterisks have been appended, these represent the cases
in which the fixed point equivalence on that line leads to trouble, in the sense of
having a consequence (according to the consequence relation of classical logic)12

which does not contain the fixed point operator (the F of that line) and is not tautolo-
gous (not a consequence of the empty set according to the consequence relation just
mentioned). (4.1) and (4.2) obviously cause no such trouble, since the fixed point op-
erator in them can be interpreted as expressing, respectively, the constant false or the
constant true 1-ary truth-function. (The identity truth-function would also serve here,
in both cases.) A constant-true interpretation (of F) similarly suffices for the tautol-
ogousness of the fixed point equivalence in (4.4) and (4.15), while the constant-false
interpretation serves in the case of (4.7) and (4.16). (For (4.4) we could also inter-
pret F as negation.) The remaining unasterisked cases, (4.11), (4.12), and (4.14) are
handled by interpreting F as, respectively, any truth-function whatever, the identity
truth-function, and the negation function. The cases marked by an asterisk as prob-
lematic all have nontautologous F-free formulas among their classical consequences
(in the sense of note 11). For (4.3), Curry’s prototype, this is what is schematically
represented by ‘ϕ’, which can be instantiated as a propositional variable (or by the
conjunction of a propositional variable and its negation), as happens even more di-
rectly in case (4.5), as well as in (4.8), while for (4.6), (4.9), and (4.10) we have ¬ϕ
as a consequence, and the final case (4.13) has—as is evident from the simplified
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form—a tautologous negation. Thus aside from the source—(4.3)—of Curry’s Para-
dox, in respect of its appearance in naïve set theory (or semantics) based on classical
logic, we encounter six further binary truth-functional variations in the remaining
asterisked cases. That trouble is threatened by more than (as we would put it) just
the fixed point equivalence for F→ϕ, the Curry prototype, has been noted before: for
example, Rogerson and Butchart [41] note that the corresponding equivalence in the
case of F↔ϕ (line (4.5) in Table 1) is equally problematic. But it seems worthwhile
setting out the precise extent of the problem insofar as the binary truth-functions are
involved, as we have done here.

The relation of Curry duality interacts somewhat unpredictably with status as
“problematic,” in that we find sometimes neither a truth-function nor its Curry dual
is problematic, sometimes both are, and sometimes one is while the other is not. The
cases are surveyed here, using the bracketed labels for the truth-functions (as in our
third column), marking the problematic cases with an asterisk (as in the table, but
borrowed from the line number); we indicate that f and g are Curry duals by writing
f ∼ g:

[∧] ∼ [→]
∗
[∨] ∼ [←] [↔]

∗
∼ [ 2©] [¬∧]

∗
∼ [∨

′
]
∗

[∧¬] ∼ [∧
′
]
∗
[+]
∗
∼ [ 2©

′
] [ 1©] ∼ [>] [ 1©

′
]
∗
∼ [⊥]

Tabulating the Curry Dualities (among Binary Truth-Functions)

It is not clear whether the notion of Curry duality will turn out to be of any theoretical
interest in the end. (It certainly proved its worth on a practical level, enabling the au-
thor to detect a mistake in the information tabulated as (4) above, for which an earlier
draft of the present paper had the same entry in the “simplified truth-function” col-
umn (namely, Fϕ) for both (4.15) and (4.16): the duality implies that the “derivative
of” function is an injection, so that could not be right.)

One advantage of studying the effects of (NCA) by propositional logic of the
fixed point operators FE is that instead of taking them all on board at once, as would
be the effect of (NCA), we can look at them one at a time. For any fixed back-
ground logic, we can ask what the effects are of adding the fixed point equivalence
for any given (E and) FE, whether this FE is already definable, or can be added con-
servatively, and so on. For the background logic of the present section, the case of
classical propositional logic, in which we have been writing ‘F∧’, ‘F→’,. . ., for FE
when E = p∧q, p→ q, and so on, what we have seen is the 16 fixed point operators
(for E in two variables) fall into two disjoint classes: those whose fixed point equiv-
alences nonconservatively extend—which in the present case amounts to “inconsis-
tently extend”—the background logic, and those whose fixed point equivalences are
already in the background logic upon a suitable truth-functional reinterpretation of
the fixed point operators (automatically demonstrating conservativity). A third pos-
sibility turns out not to be realized—the possibility of an E and FE for which we can
add (1), of the preceding section, conservatively to classical propositional logic, and
yet FE is susceptible of no truth-functional interpretation.13 Putting this in the ter-
minology of Humberstone [19], we never obtain a consistent contraclassical logic—
such as is provided by various (e.g., modal) examples there.14 (Proposition 2.1 of
that paper shows that the behavior of necessity, or perhaps better put, of the box op-
erator, renders S6 a contraclassical logic. A nicer example will be recalled at the end
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of the present section, in which contraclassicality is consistently exhibited in a con-
gruential logic, unlike S6.) It is even easier to see that this is also the case for E of the
simpler form E(p) and FE a nullary connective, since we have only 4 instead of the
earlier 16 cases to consider. Their status as problematic or not, as well as their Curry
dualities, we indicate using the above notation supplemented by labels for the singu-
lary truth-functions, naming the identity, constant true, constant false, and negation
truth-functions [ ], [>1], [⊥1], and [¬] for this purpose: [ ] ∼ [>1], [¬]

∗
∼ [⊥1].

The starred case is that of Russell/Epimenides, and in the remaining cases we have
a truth-functional interpretation of FE—a truth-value, that is, since FE is nullary—
validating the fixed point equivalences as follows: for [ ], either truth-value; for [>1],
the value T; and for [⊥1], the value F.

Our final aim for this section is to show that what we have just seen for the 1-
and 2-ary cases is quite general. The result is stated as Corollary 2.3 below, and we
lead up to it by working through two representative cases in which ψ is a formula
in three variables of the more general observation that any formula in three variables
(indeed in any number of variables, as we show in Proposition 2.2), ψ(p, q1, q2), not
just one of the special form p ↔ E(p, q1, q2), which is such that for a new binary
connective #, ψ(#q1q2, q1, q2) can consistently be added as an axiom to classical
propositional logic, # can be assigned a truth-functional interpretation (verifying the
axiom). This then gives the result we are particularly interested in when the relevant
ψ(#q1q2, q1, q2) takes the form #q1q2 ↔ E(#q1q2, q1, q2), for which case we have
been writing #q1q2 as Fq1q2 (or more fully, FEq1q2).

Consider first ψ(p, q1, q2) = (q1 → p)→ (p→ q2), so that the axiom we’d be
adding would be (q1 → #q1q2)→ (#q1q2 → q2). We want to interpret #q1q2 as a
truth-function in such a way to make this tautologous. One starts with a truth-table
to be completed:

(q1 → #q1q2) → (#q1q2 → q2)

T T T T
T T F
F T T T
F T F

Here we have filled in not only the possible combinations of truth-values for the
propositional variables, but also their immediate effects given the truth-function as-
sociated with→, in lines 1 and 3, as well as the column of Ts under the main con-
nective, since we are trying to arrange matters so that the whole formula comes out
true in every case. Since this is already secured by the Ts we have entered in lines
1 and 3, our formula will come out true whatever truth-function is associated with
#, the truth-values of #q1q2 on these lines having no effect on the truth-value of the
whole formula. In line 2, we ask if we can consistently assign the value T, say, to
#q1q2. This would make the antecedent of the formula true, since it would be an
implication with a true consequent, but the consequent of the formula false since it
would itself be an implication with a true antecedent and a false consequent, making
the whole formula false. So we must try instead the possibility of assigning the value
F to #q1q2; now the antecedent of the whole formula would be a false implication
and the formula itself would be true. So the desired function, f , call it, must sat-
isfy f (T,F) = F. Finally in line 4, the same considerations show that #q1q2 cannot
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have the value T, but can consistently with verifying the whole formula, be assigned
the value F; accordingly f (F,F) = F. So any of the four binary truth functions
satisfying these two conditions can be used as a successful interpretation of #.

For a second example, consider the simpler formula ψ(p, q1, q2) =

(q1 → p) → q2, so our candidate axiom would be (q1 → #q1q2) → q2.
Again one starts by constructing and then trying to complete a partial truth table,
which we will not draw here, noting only that trouble strikes in the bottom line (both
qi false, that is). If we were to have #q1q2 true here the whole formula would have
a true antecedent and a false consequent, and likewise if we tried to declare #q1q2
false. So no truth-functional interpretation is possible. But of course our would-be
axiom leads to inconsistency for this very reason: its antecedent is provably implied
by ¬q1, which would therefore in the envisaged extension, nonconservatively and
hence inconsistently, lead to ¬q1’s provably implying q2. We now verify that this is
always the case. The phrase “Boolean valuation”15 in the proof means an assignment
of truth-values to all formulas of the language which associates with any Boolean
connectives (all those except #, that is) a stipulated pre-assigned truth-function.

Proposition 2.2 Let ψ(p, q1, . . . , qn) be any formula (in the variables exhibited)
of the language of classical propositional logic in any functionally complete set of
connectives and # be a new n-ary connective. Then if ψ(#q1 . . . qn, q1, . . . , qn) can
consistently be added as a new axiom to classical propositional logic, there is an n-
ary truth-function which when assigned as the interpretation of # renders the formula
ψ(#q1 . . . qn, q1, . . . , qn) valid in the sense that v(ψ(#q1 . . . qn, q1, . . . , qn)) = T
for every Boolean valuation v associating that truth-function with #.

Proof We check that for each of the 2n assignments of truth-values {T,F} to
q1, . . . , qn , there is at least one possible assignment to #q1 . . . qn , so that pick-
ing one in each case gives a truth-functional interpretation of # which validates
ψ(#q1 . . . qn, q1, . . . , qn). Suppose, on the contrary, that for some assignment of
truth-values to q1, . . . , qn , there is no way of assigning a truth-value to #q1 . . . qn
which will make ψ(#q1 . . . qn, q1, . . . , qn) come out true. It follows that where σi qi
is qi for the cases in which the assignment in question verifies qi and is ¬qi when
the assignment falsifies qi that

σ1q1, . . . , σnqn `CL ¬ψ(p, q1, . . . , qn),

since otherwise, ψ(p, q1, . . . , qn) is verified by some Boolean valuation v which
extends the assignment in question, in which case v(p) could have been used as the
value of #q1 . . . qn for that case. By uniform substitution, then

σ1q1, . . . , σnqn `CL ¬ψ(#q1 . . . qn, q1, . . . , qn),

and so, contraposing, our logic with ψ(#q1 . . . qn, q1, . . . , qn) as new axiom will
have the nontautologous ¬(σ1q1 ∧ · · · ∧ σnqn) as a theorem. �

Corollary 2.3 If the extension of classical propositional logic by any fixed point
equivalence is contraclassical, then it is inconsistent.

Proof The envisaged extension may be taken to be the extension with an axiom
involving the new symbol F, of the form Fq1 . . . qn ↔ E(Fq1 . . . qn, q1, . . . , qn),
where the right-hand side results from the (n+ 1)-variable formula E(p, q1, . . . , qn)
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by substituting Fq1 . . . qn for p. The claimed corollary follows by taking the formula
p↔ E(p, q1, . . . , qn) as the ψ(p, q1, . . . , qn) of Proposition 2.2 (with F as #). �

The potential axioms ψ(#q1 . . . qn, q1, . . . , qn) treated in Proposition 2.2, and not
just the special cases addressed in the above corollary, have an important feature
that distinguishes them from the examples in Humberstone [19] giving rise to con-
sistent contraclassical extensions of classical logic; namely, that although they have
substitution instances in which there are occurrences of # within the scope of other
occurrences of #, no such embedding arises in the axioms themselves. Allowing such
embedding easily gives rise to the contraclassical possibility alluded to above, for ex-
ample, adding to the language a 1-ary # and to classical logic the axiom ##q ↔ ¬q
gives a consistent logic which, furthermore, remains consistent if we impose the fur-
ther requirement that # is congruential in the logic (in the sense of note 5) and yet
admits of no truth-functional interpretation for the new connective. Full details may
be found in Section 3 of Humberstone [19].

Corollary 2.4 Where 0 is a set of fixed point equivalences, each of which gives a
consistent extension of classical propositional logic, then the extension of classical
propositional logic obtained by simultaneously adding all of 0 is consistent.

Proof Just use the truth-functional interpretations of the various fixed point opera-
tors involved, as provided by Proposition 2.2. �

It would be a mistake to look at the two unasterisked lines (4.1) and (4.16) above,
for example, and say that since the former fixed point equivalence simplifies to the
schema Fϕ → ϕ and the latter to Fϕ, by using them simultaneously we can infer
(arbitrary) ϕ. The two fixed point operators here are different and the modus ponens
just performed was a fallacy of equivocation. The subscripts distinguishing them
were simply omitted from (4.1) – (4.16) to reduce clutter.

One aspect of the interest of Corollary 2.4 is that in general it is not the case that
if a logic is conservatively extended by principles (axioms, rules) governing one new
connective, and also conservatively extended by principles governing a second new
connective, then the logic is conservatively extended by the simultaneous addition of
both sets of principles. An example illustrating this point may be found at p. 429–30
of Humberstone [20]. As we see, however, in the present case there is no problem
about such “joint conservativity.”

3 Substructural Variations

As intimated in Section 1, it has been a popular pastime for logicians to conjecture
or prove that this or that logic can be used as the underlying logic for a consistent
(or nontrivial) version of Naïve Set Theory (or semantics)—or at least that (NCA)
does not lead to the proof of every formula on the basis of the logic in question.
Examples of such work include Skolem ([44], [45], [46]), Brady ([8], [9], [10]), and
White ([56], [57], [58]) as well as Slaney [47] (a venture into second-order proposi-
tional logic, with a very liberal comprehension principle). To keep our bibliography
within bounds we direct the reader to Petersen [34] for further references on work
in this vein (itself an example of such work), especially by Akama, Chang, Grišin,
and Komori, and also refer the reader to Terui [52], and references therein, for more
recent work in the area inspired by Girard’s Linear Logic. As was also mentioned
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in Section 1, much of this work concentrates on removing the axiom of contraction
(W below) from a suitable axiomatization—or a corresponding rule from a natural
deduction or sequent-calculus systematization—of the underlying logic. For intro-
ductory purposes we work in the axiomatic tradition (a sequent-calculus presentation
appears below)16 but concentrating on the pure implicational fragments of the logics
concerned, whose axioms—given here as axiom-schemata so that the only rule to be
used is modus ponens (ϕ, ϕ→ ψ/ψ)—are drawn from the following list:

B (ϕ→ ψ)→ ((χ → ϕ)→ (χ → ψ))

C (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

I ϕ→ ϕ

K ϕ→ (ψ → ϕ)

W (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ).

BCK logic, or BCK for short, has as axioms B,C , and K , and figures prominently
in White [57] and derivatively in White [56] since the infinite-valued Łukasiewicz
logic there considered is a contraction-free extension of BCK. This logic properly
extends the similarly defined system BCI, and since in neither logic is W provable,
the axiom corresponding in a natural way to the structural rule of contraction, both
are termed substructural logics. BCI is substructural also in lacking K , which corre-
sponds to the structural rule of thinning or “weakening” (on the left).17 BCI is the
implicational fragment of linear logic (intuitionistic or classical linear logic) while
BCIW is the implicational fragment of the relevant logic R, which is known to sat-
isfy Belnap’s relevance criterion: no implicational formula whose antecedent and
consequent do not share a propositional variable is provable. Thus a fortiori BCI sat-
isfies this variable-sharing condition, a fact we shall make some use of below. (On
the other hand BCKW is the implicational fragment of intuitionistic logic, and like
any other extension of BCK, does not satisfy the condition.)

Now the fact that BCK, say, permits a consistent set-theory with (NCA) (or “does
not trivialize naïve comprehension,” as it is sometimes put) means that the system
which we may regard as a propositional logic got by adding the fixed point opera-
tor F to the language and any one of the fixed point equivalences given as (1) in its
second occurrence in Section 1 above (or indeed several such operators with sev-
eral such equivalences) is a consistent extension of BCK. But it does not guarantee
that the extension is conservative. There might, after all, be some F-free formulas
provable via (1) that were not BCK-provable, even if not every formula becomes
provable. That question will not be settled here, though we shall be able to supply
an answer in the case of a certain implicational logic intermediate between BCI and
BCK, whence the “substructural” in our section title. (Of course since BCIW is sim-
ilarly substructural and runs foul of Curry’s Paradox, much to the chagrin of those
who had hoped the relevant logic R would double as an all-purpose paraconsistent
logic—cf. Meyer et al. [29]—this aspect of the present discussion is not new. The
novelty lies in searching elsewhere, among the contractionless logics18 in particu-
lar, and in looking for nonconservativity rather than outright inconsistency.) Some
would be disinclined to pursue such a question with ever weaker logics, and just their
implicational fragments at that, perhaps because it would not show the consistency
with (NCA) of any logic suited to play a full foundational role. But our interest here
is simply in the disruptive effects the fixed point property can have. Inconsistency
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is only one special case, after all, of nonconservativity—so why not, then, study the
general phenomenon in the simplest possible setting?

For the moment, we attend to BCI, for which there is a simple and elegant sequent
calculus with structural rules,

(Identity) ϕ � ϕ (Cut)
0 � ϕ 1, ϕ � ψ

0,1 � ψ
,

in which we use ‘�’ as our sequent-separator (following [5]), thinking of what lies
to its left as a finite multiset of formulas (and to its right, a single formula), supple-
mented by operational rules for implication:

(→ Left)
0 � ϕ 1,ψ � χ
0,1, ϕ→ ψ � χ

(→ Right)
0, ϕ � ψ
0 � ϕ→ ψ

.

The sense in which this—which is just a part of a standard sequent calculus for (intu-
itionistic) linear logic—is a sequent calculus version of BCI is given by the fact that
for any multiset of formulas ϕ1, . . . , ϕn, ψ , the sequent ϕ1, . . . , ϕn � ψ is provable
from these rules just in case the formula ϕ1 → (ϕ2 → · · · → (ϕn → ψ) · · · ) is
provable in the axiomatic system BCI, described above (i.e., is deducible by modus
ponens from some instances of the schemata B,C , and I .)

Now a fixed point extension of axiomatic BCI with new axiom-schema

FEϕ ↔ E(ϕ,FEϕ)

for some formula E(p, q)—and, as remarked in Section 1, what we mean really is,
“with axioms FEϕ → E(ϕ,FEϕ),E(ϕ,FEϕ)→ FEϕ”—can be matched by supple-
menting the above BCI sequent calculus with suitable rules for the new F (we drop
the subscript ‘E’, taken as fixed for any given context): one replacing a fixed point
formula Fϕ on the left with its elaboration E(ϕ,Fϕ) and another making a similar
replacement on the right. We call these rules (F Left) and (F Right), though note that
unlike such labels as (→ Right), (→ Left), the rules do not insert a formula with F
as main connective: they simply “deal with” F on the left or the right, respectively
(what they insert being rather E(ϕ,Fϕ)), and moreover, deal with it in conformity
with the usual rationale for such rules: every formula occurring in a premise-sequent
for an application of one of the rules appears as a subformula of some formula oc-
curring in the conclusion-sequent. Since the only rule lacking this property is the
structural rule (Cut), the usual subformula property—that is, any provable sequent
has a proof in which the only formulas to occur are subformulas of formulas in the
sequent in question—is established by a demonstration that this last rule is redun-
dant.19 While, however, such redundancy obtains in the case of the sequent calculus
for BCI, it is apt to fail for the fixed point extensions we are now envisaging.20 But
first, the promised rules for such extensions:

(F Left)
0,Fϕ � ψ

0,E(ϕ,Fϕ) � ψ
(F Right)

0 � Fϕ
0 � E(ϕ,Fϕ)

.

As in the case of the sequent calculus for BCI, this gives a corresponding se-
quent calculus for the extension of BCI by the fixed point equivalence (we are
loosely writing as) Fϕ ↔ E(Fϕ, ϕ), in the sense that in the sequent calculus with
(F Left) and (F Right), a sequent ϕ1, . . . , ϕn � ψ is provable just in case the for-
mula ϕ1 → (ϕ2 → · · · → (ϕn → ψ) · · · ) is deducible by applications of modus
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ponens from instances of B,C, I and implications of the form Fϕ → E(Fϕ, ϕ) and
E(Fϕ, ϕ)→ Fϕ.

If for a certain E and F(= FE), a cut-elimination theorem can be proved for the
extension of the BCI sequent calculus with the above rules, that shows that the ex-
tension is conservative, since by the subformula property any provable sequent not
involving F (and so, with formulas constructed using only the connective →) can
be proved without appeal to (F Left), (F Right). However, as already intimated, in
general no such cut-elimination property obtains.

Proposition 3.1 Cut elimination fails for the fixed point extension of the BCI se-
quent calculus with the Curry fixed point operator FE with E(p, q) = p→ q.

Proof Dropping the subscript ‘E’, the fixed point equivalence we are concerned
with is Fϕ ↔ (Fϕ → ϕ), and the rules (F Left) and (F Right) encode its← and→
directions, respectively. Consider the following proof of the sequent Fp,Fp � p, in
which unlabeled steps are instances of (Identity).

Fp � Fp
Fp � Fp→ p

(F Right)
Fp � Fp p � p
Fp,Fp→ p � p

(→ Left)

Fp,Fp � p
(Cut)

There is no cut-free proof of the end-sequent, since it is not an instance of (Identity)
or a potential conclusion of an application of any of the remaining rules: (F Left),
(F Right), (→ Left), or (→ Right). �

Although we do not, then, have the guarantee that cut elimination would give of the
conservativity of the fixed point extension in this case or in other cases, the author
has not been able to find a single case in which an F-free sequent not already BCI-
provable can be proved with the aid of (F Left) and (F Right): it turns out to be
remarkably difficult to “get rid of” all the Fs from a sequent involving them. We
emphasize that it is a matter of getting rid of the fixed point operator as one passes
down a proof and not of the corresponding left-to-right disappearance. There is no
difficulty in finding examples of F for which we can prove ϕ1, . . . , ϕn �ψ where this
sequent is not a substitution instance of a BCI-provable sequent and ψ is F-free, one
of which we give here so as to use it to make another point also.

Example 3.2 Take the fixed point equivalence Fϕ ↔ ((ϕ→ Fϕ)→ Fϕ). (F Left)
then gives (ϕ→ Fϕ)→ Fϕ�Fϕ (from Fϕ�Fϕ), and we also have the easily proven
and well-known BCI principle ϕ � (ϕ → Fϕ) → Fϕ. Thus we have ϕ � Fϕ, from
which again by familiar moves (essentially Suffixing, as in note 10) we obtain

Fϕ→ ψ � ϕ→ ψ.

Instantiating the schematic letters as propositional variables, say in the form

Fp→ q � p→ q,

we obtain a sequent delivering an F-free formula on the right from a formula on the
left, where this sequent is not a substitution instance of any sequent provable in pure
implicational BCI. But as already emphasized, getting rid of ‘F’ horizontally, as
here, is not getting rid of it vertically, the sequent proved being anything but F-free.

Our attempts to find a nonconservative fixed point extension of BCI have not been
particularly systematic, and have not, for example, made any play with occurrences
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of the fixed point operator within its own scope. We sound one note of caution
here on that score, withdrawing for this purpose from the specifically sequent
calculus presentation of these extensions. Take F again as the Curry fixed point
operator of Proposition 3.1. We have the equivalence (speaking abbreviatively)
Fϕ ↔ (Fϕ → ϕ) (= (3) above) for arbitrary ϕ and hence in particular when ϕ is,
say, Fp,

FFp↔ (FFp→ Fp),

and thus, since this replacement is made within the scope only of→, by the case of
(3) in which ϕ is just plain p,

FFp↔ (FFp→ (Fp→ p)).

What would not have been justified—so here comes the cautionary note—would
have been the transition from the case of (3) with ϕ as p, to

FFp↔ F(Fp→ p),

by “applying F to both sides.” Such a would-be justification presumes that the fixed
point operators of the extensions of BCI they inhabit are congruential in those logics
(in the sense of note 5), which we have done nothing to secure. In fact reflection
on the motivating source of the introduction of these F in Section 1, via Naïve Set
Theory and (NCA), will show that the issue of their congruentiality is bound up with
the Axiom of Extensionality and the relation of identity, which we have deemed
outside of the scope of the present discussion. (Putting matters very informally,
if we have ϕ and ψ provably equivalent in a BCI-based set theory, then the sets
{x |x ∈ x → ϕ} and {x |x ∈ x → ψ}—to stick with the Curry example—will be
provably coextensive. Call these sets aϕ and aψ , respectively. For congruentiality,
we want Fϕ and Fψ to be equivalent, which, before we took them as the results
of applying a new sentential operator, started life (in Section 1) as the claims that
aϕ ∈ aϕ and aψ ∈ aψ , respectively, so it is the equivalence of these two that we are
after. Since aϕ and aψ are coextensive, we do have that aϕ ∈ aϕ and aϕ ∈ aψ are
equivalent, as are aψ ∈ aψ and aψ ∈ aϕ ; but there is nothing here to tell us that
aϕ ∈ aϕ and aψ ∈ aψ are equivalent, for which we would need instead precisely
what we do not have, that aϕ = aψ .) We return to the simpler kinds of cases we have
been considering.

As mentioned, there was an ulterior motive behind giving Example 3.2, namely,
to remark apropos of it that this particular choice of F would be a nonstarter in the
search for a nonconservative extension of BCI, since there is already in BCI itself an
“endogenous” candidate for Fϕ equivalent to (ϕ → Fϕ) → Fϕ—namely, take Fϕ
as ϕ itself. If, by way of a contrast, we discard the consequent, and consider instead
Fϕ equivalent to ϕ → Fϕ, then we obtain an equivalence which holds in neither
direction in BCI for any implicational reconstrual of ‘Fϕ’, since, taking ϕ as p, for
instance, there is no formulaψ for which either (p→ ψ)→ ψ orψ → (p→ ψ) is
BCI-provable. The easiest way to see this is to note that BCI is a sublogic of classical
equivalential logic—that is, interpreting the ‘→’ as the material biconditional all the
theorems of BCI (or all the provable sequents, if one prefers that formulation) are tau-
tologous, which of course cannot be so for either of (p→ ψ)→ ψ,ψ → (p→ ψ),
since whatever ψ is, these formulas will have an odd number of occurrences of the
variable p. The same conclusion—no endogenous candidate—applies for the same
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reasons in the case of the Curry fixed point operator of Proposition 3.1, whose elabo-
ration is the converse of that just considered: nothing of the form (ψ → p)→ ψ or
ψ → (ψ → p) is BCI-provable. (The issue of endogenous candidates is an abstrac-
tion to the case of arbitrary logics—though here applied to BCI—from the issue of
the possible truth-functional interpretation of the fixed point operators in the preced-
ing section, which amounts to endogenousness in a functionally complete classical
logic. The issue of Curry duality does not arise here, in view of the points made in
Section 2 about the case of intuitionistic logic—and we are now even further down
from classical logic than that.)

To recapitulate, then, with regard to the claim that every fixed point extension of
BCI is conservative, we are in possession neither of a proof of the claim, nor of a
counterexample to it. Accordingly, we pass to a stronger logic, between BCI and
BCK, for which we can give a counterexample to the corresponding claim for that
logic. As it happens, this logic raises a further question somewhat tangential to our
pursuit of variations on a theme of Curry, but of some interest in its own right, and
accordingly addressed in a section of its own below. For the extension we have in
mind, we revert to the axiomatic presentation of BCI given earlier, and replace I with

(ϕ→ ϕ)→ (ψ → ψ). (I ∗)

I can be derived from I ∗ (with modus ponens)—for instance, put ψ → ψ for ϕ
and we have an instance of I ∗ whose antecedent is also an instance of I ∗ and whose
consequent is I (relettered). BCI∗ is one of several extensions of BCI considered in
Bunder [12]. (See further note 22 below.) It is a proper extension of BCI, because
instantiating the schematic letters to distinct propositional variables yields a provable
implication whose antecedent and consequent do not share a variable—a violation
of Belnap’s relevance criterion which places it outside of BCI (or even BCIW , alias
R→, the setting in which that criterion was originally wielded). Using one of the
fixed point equivalences mentioned in the previous paragraph, namely,

Fϕ ↔ (ϕ→ Fϕ),

we can easily show that this gives a nonconservative extension of BCI∗, thereby
illustrating the generalized phenomenon of Curry-paradoxicality we were after and
had failed to turn up with BCI itself.

Proposition 3.3 The extension of BCI∗ by the fixed point equivalence above is
nonconservative.

Proof Note that, like BCI itself, BCI∗ is a sublogic of the equivalential fragment
of classical logic (reading ‘→’ as the biconditional), in which therefore, the formula
q → (p → p) is not provable. But the→ direction of the equivalence above, once
we permute (as we may because of C) its antecedents, is ϕ → (Fϕ → Fϕ). In
particular, then, the formula q → (Fq → Fq) is provable. But I ∗ gives us as one of
its instances

(Fq → Fq)→ (p→ p),

so by Transitivity in the terminology of note 10 (appeal to B and modus ponens
twice, that is), we have a proof of q → (p → p) showing the nonconservativity of
the fixed point extension in this case. �
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We remark that the formula whose provability was used to show that the exten-
sion treated in Proposition 3.3 was nonconservative is nothing but a “permuted an-
tecedents” version of a representative instance, p → (q → p), of the schema K ,21

so the fixed point equivalence featured there—and note that only one half of the
equivalence was actually appealed to—takes us from BCI∗ all the way up to BCK, at
least.

4 Monothetic BCI and Other Open Problems

Our main concern here is with the identity of the logic BCI∗ that figured in Propo-
sition 3.3. Let us call a logic, conceived of (for definiteness, merely as a set of
formulas) monothetic if any two formulas provable in the logic are interreplaceable
in longer formulas salva provabilitate. Clearly BCK is monothetic and BCI is not—
witness the BCI-unprovability I ∗. By monothetic BCI we mean the smallest exten-
sion of BCI (identified with its set of theorems) which is monothetic. This logic,
which for brevity we will call simply µBCI, can be axiomatized by means of B,C, I
and, alongside modus ponens, the following further rule expressly securing that any
theorems be interreplaceable (since the provability of an implication and its con-
verse guarantees such interreplaceability for its antecedent and consequent): from
premises ϕ,ψ , to conclusion ϕ → ψ .22 Of course I ∗ is provable in µBCI, since
its antecedent and consequent are instances of the schema I and thus, since they are
therefore provable, so is the implication connecting them, via the new rule. Thus
BCI∗ ⊆ µBCI. But what about the converse inclusion? That will be our concern
in this section. Is the logic BCI∗ none other than monothetic BCI? If not, one may
ask whether µBCI can be presented as an axiomatic extension of BCI—that is, with
additional axioms but no new proper rules.23 A preliminary observation in that di-
rection, Proposition 4.1, reducing the two-premise rule to a one-premise rule is all
we shall offer here. It will set off in a promising direction for settling the question
just raised as to whether BCI∗ = µBCI.

Proposition 4.1 In the axiomatization of µBCI the two-premise rule ϕ,ψ/ϕ→ ψ
can be replaced by the one-premise rule ϕ/ϕ→ (ψ → ψ).

Proof In view of the provability of ψ → ψ , the one-premise rule is derivable from
the two-premise rule. For the other direction, suppose that ϕ and ψ are provable. In
view of the provable BCI-equivalence of ψ with (ψ → ψ)→ ψ , and the conclusion
of an application of the one-premise rule, ϕ → (ψ → ψ), we obtain the conclusion
ϕ→ ψ of the two-premise rule by Transitivity. �

The above proof takes us half way toward showing—if it can be shown—that
µBCI ⊆ BCI∗. The BCI-equivalence mentioned, of an arbitrary formula ψ with
the formula (ψ → ψ) → ψ means that every formula is provably implied by
a self-implication (an instance of the schema I , that is).24 All we would really
need to derive the inclusion in question is that every theorem is provably implied
by a self-implication—if we also knew that every theorem provably implied a
self-implication. If we had both of these results, then we could derive the rule
ϕ,ψ/ϕ → ψ as follows. Suppose ϕ is provable and that ψ is. Then since every
theorem provably implies a self-implication, ϕ → (ϕ0 → ϕ0) is provable for some
formula ϕ0, and since every theorem is provably implied by a self-implication we
have for some ψ0, that (ψ0 → ψ0)→ ψ .25 By I ∗ we have that ϕ0 → ϕ0 provably
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implies ψ0 → ψ0, so by Transitivity we conclude that ϕ → ψ is provable, as
desired.

The trouble with the above argument is of course that we don’t know that every
theorem provably implies (in BCI) a self-implication. The remainder of our discus-
sion will address (without managing to fill) this gap in the argument. We begin with
some extensions of BCI which evidently have the required property. Principally, we
have in mind extensions in the same language and mention an extension not of this
kind briefly first (and then again at the end of our discussion). The constant T with
the axiom schema ϕ → T commonly encountered in relevant logic (and, differently
notated, in linear logic) provides—or rather BCI in the language with it as a new
nullary connective and the above formulas ϕ→ T as new axioms provides—a logic
in which every formula (not just every theorem) provably implies a self-implication
because for any ψ we can always prove ψ → (T → T ). (Indeed, we can prove
any instance of ψ → (χ → T ). If fusion or “multiplicative conjunction,” ◦ , were
present with its usual logical powers, then we could obtain this by taking the ϕ of
the T schema as ψ ◦ χ . We leave it as a pleasant exercise for the reader to provide a
derivation not appealing to ◦.) Let us return to the purely implicational language and
to possible extensions of BCI therein.

In BCIW , as with the above T extension of BCI, not just every theorem, but every
formula provably implies a self-implication, because we can substitute any formula
for p in the BCIW theorem,

p→ [(p→ (q → q))→ (p→ (q → q))], (5)

which is not hard to prove, as is mentioned at p. 18 of Thistlewaite et al. ([53],
q.v. for additional references). (In fact the authors are discussing the R-provability
of a version of (5) with the antecedents p and p → (q → q) permuted, and are
not particularly concerned, as we are, with the provability of implications whose
consequents are instances of I . Indeed they go so far as to say that its provability “is
of no special interest in relevant logic,” though they think of the speed with which
it can be proved as an indicator of the efficiency of automated theorem-provers for
nonclassical logics.) The closest the present author has been able to get to (5) in
BCI itself, however, is (6), with of course no means of contracting the repeated
antecedent:

p→ [(p→ (q → q))→ [(p→ (q → q))→ (p→ (q → q))]]. (6)

An incidental addendum is called for by the above remark that “not just every theo-
rem but every formula” provably implies a self-implication, since in fact whenever
one knows that in BCIW every theorem implies something of a prescribed form, one
can always infer that every formula does so also, since in this logic every formula
provably implies a theorem—as (5) itself shows.26 By the considerations about odd
and even occurrences of variables aired two paragraphs after Example 3.2, we know
that matters stand very differently in BCI: nothing of the form p → (ψ0 → ψ0)
is provable, since such a formula would have an odd number of occurrences of ‘p’.
(Indeed these considerations show that more generally, in BCI a propositional vari-
able can never provably imply any provable formula. Note that the T extension of
BCI mentioned above destroys these properties.) It is for this reason that we pose
the question as one of whether every theorem—rather than every formula—provably
implies a self-implication in BCI.
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Another well-known extension of BCI, in which, as with BCIW , every for-
mula provably implies a self-implication, is the extension with the additional
axiom-schema (Mingle), namely, ϕ → (ϕ → ϕ), which secures this property
by fiat in the simplest possible way. Like the logic treated in Proposition 3.3,
BCI∗,BCI + (Mingle) is intermediate between BCI and BCK. Let us call a formula
ϕ a mingler, relative to a certain logic, if that logic proves ϕ → (ϕ → ϕ). Thus in
BCI + (Mingle) every formula is a mingler. What about BCI? If, in BCI, all the
theorems were minglers, then every theorem would imply a self-implication, solving
our problem. Every instance of I is a mingler (in BCI—this relativization will be left
implicit for the most part from now on), because we have for ϕ → ϕ the following
instance of B:

(ϕ→ ϕ)→ ((ϕ→ ϕ)→ (ϕ→ ϕ)). (7)
Thus all self-implications are minglers, and it is not hard to see that anything BCI-
equivalent to a self-implication is a mingler, which includes all instances of the
schema C , in view of the BCI-provability of (8), by which of course we mean that
each of the→ and← directions is provable:

[(p→ (q→ r))→ (q→ (p→ r))] ↔ [(p→ (q→ r))→ (p→ (q→ r))]. (8)

The fact that any instance of I or C—we will get to B presently—is a mingler is
due not so much to the fact that that instance is provable, being (equivalent to) a
self-implication, as to the fact that it has a converse which is provable—which in this
special case happens to coincide with the given formula. That is, our observations
concerning I and C can be subsumed under the following generalization.

Proposition 4.2 Any formula which is the converse of a BCI-theorem is a mingler.

Proof One needs only to check the BCI-provability of formulas of the form
(ϕ → ψ) → [(ψ → ϕ) → ((ψ → ϕ) → (ψ → ϕ))], from which the claimed
result follows by appeal to modus ponens. �

Since having a provable converse is sufficient for being a mingler in BCI, one might
also wonder whether it is necessary. A negative answer is suggested by the fact
that provably equivalent formulas in general have nonequivalent converses. (9), for
instance, a representative instance of a schema which is sometimes used to replace
C in axiomatizations of BCI and BCK and their extensions (and is referred to as
Assertion in the “relevant logic” tradition):

p→ ((p→ q)→ q), (9)

has a BCI-unprovable converse but is equivalent (permuting antecedents) to the self-
implication with p → q as antecedent and consequent. Thus (9), too, is a mingler,
and we state the appropriate generalization as a corollary to Proposition 4.2.

Corollary 4.3 Any formula which is BCI-equivalent to a formula with a BCI-
provable converse is a mingler.

We further illustrate this point—which would no doubt be more useful if we had a
“characterization of converses” for BCI (as it is put in Humberstone [21], where such
characterizations are supplied, inter alia, for various proper extensions of BCI)—with
a formula related to (9), and provable from it by using p→ p in place of p and then
applying modus ponens, namely, (10):

((p→ p)→ q)→ q. (10)
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Example 4.4 We can show that (10) is a mingler, because it is equivalent to the
converse of a BCI-theorem—in fact again to a self-implication, namely, the formula

((p→ p)→ q)→ ((p→ p)→ q).

It is clear that this formula provably implies (10), since we can permute the second
‘p→ p’ to the front and then detach. That (10) in turn provably implies this formula
is less obvious and to demonstrate it, we give a natural deduction proof illustrating
the Lemmon-style system alluded to in note 16.

1 (1) ((p→ p)→ q)→ q Assumption
2 (2) (p→ p)→ q Assumption
3 (3) p→ p Assumption
4 (4) p→ p Assumption
5 (5) p Assumption
3, 5 (6) p 3, 5(→E)
3, 4, 5 (7) p 4, 6(→E)
3, 4 (8) p→ p 5–7(→I)
2, 3, 4 (9) q 2, 8(→E)
2, 3 (10) (p→ p)→ q 4–9(→I)
1, 2, 3 (11) q 1, 10(→E)
1, 2 (12) (p→ p)→ q 3–11(→I)
1 (13) ((p→ p)→ q)→ ((p→ p)→ q) 2–12(→I)

The claimed implication then follows by one further application of (→I), discharging
assumption 1.

Thus (10) is a mingler, by Corollary 4.3. (The contrary had been claimed in Example
1.13 of Avron [4].)27 Of course, since our interest in minglers is as instances of
provably implying a self-implication, we have a shorter ϕ than (10) itself for which
(10) provably implies ϕ→ ϕ, namely, take ϕ as the antecedent of (10), by the above
proof. However, to the question implicitly raised above as to whether every mingler
is equivalent to the converse of some theorem, we do not have the answer.

We have found two of the three axioms in the axiomatization of BCI are minglers,
namely, C and I , so it is only fair to report on the status of the remaining axiom. For
this purpose understand by B a representative instance of the schema. (Note that by
Corollary 4.3, the following implies that B is not BCI-equivalent to any formula with
a BCI-provable converse.)

Proposition 4.5 B is not a mingler (in BCI).

Proof The countermodel-finding program MaGIC created by Slaney can be used
to test the formula B → (B → B) for derivability from the axioms of BCI, and
in response it produces (among others) a 6-element matrix validating all of BCI
and an assignment on which the formula assumes an undesignated value—the sole
undesignated value, in fact, the remaining 5 values all being designated. We do not
reproduce the invalidating matrix here (since MaGIC is freely available). �

Faced with this disappointing result, we should recall that all we wanted was for
every BCI-theorem ϕ to provably imply some self-implication, not necessarily the
implication ϕ → ϕ. We still do not know whether that is so for arbitrary BCI-
theorems, or even, indeed, for the specific case of B. Recall that our interest in
this question was that an affirmative answer would show a particularly simple way
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that µBCI coincided with BCI∗: this was the argument involving the passage from
ϕ → (ϕ0 → ϕ0) and (ψ0 → ψ0) → ψ to ϕ → ψ via I ∗, for provable ϕ,ψ . We
have been exploring the possibility of showing that BCI provides for every provable
ϕ, some ϕ0 for which ϕ → (ϕ0 → ϕ0). Now although this may be the simplest
way of trying to show that µBCI ⊆ BCI∗, it is not the only way, and in particular
the strategy tries to do much of the work within BCI. Yet I ∗ itself could be asked to
pull its weight a little more. For instance, if we had successfully shown that B, along
with C and I , provably implied a self-implication, it would still not be clear how this
would extend to all theorems of BCI, the property in question (of provably implying
a self-implication) not being clearly preserved by modus ponens in BCI. In BCI∗,
however, matters stand otherwise, as was observed by Butchart.

Proposition 4.6 In BCI∗, modus ponens preserves the property of provably imply-
ing a self-implication.

Proof (Butchart) Let the premises of an application of modus ponens be ϕ → ψ
and ϕ and suppose each provably implies a self-implication in BCI∗, say α→ α and
β → β, respectively. By appeal to I ∗, then, we may replace α → α with ϕ → ϕ
and also β → β with ψ → ψ , meaning that (ϕ → ψ) → (ϕ → ϕ) and also
ϕ → (ψ → ψ) are provable. From the latter we permute antecedents to obtain
ψ → (ϕ → ψ), which, with the former (by Transitivity) gives ψ → (ϕ → ϕ), so
our modus ponens conclusion from ϕ → ψ and ϕ, namely, ψ , does provably imply
a self-implication on the hypothesis that each of the premises does. �

Thus if B provably implies a self-implication in BCI, or for that matter if it does
so in BCI∗, then the latter logic is none other than µBCI. We shall end as we began
with extensions of BCI, by reporting on another enrichment of the pure implicational
language. Instead of adding T to the language with its own axiom schema making it
provably implied by every formula, we add another sentential constant governed by
a single new axiom: this constant itself. The idea behind this venture was to see if
in the resulting extension of BCI, this formula provably implied a self-implication,
and indeed the author began by “asking” Slaney’s MaGIC (see the proof of 4.5)
if it could find a countermodel in this extension of BCI to a specific candidate for
provability (with a self-implication as consequent), namely, the substitution instance
of (5) above obtained by replacing each of p, q , in (5), by the new constant, which
will be written as H :28

H → [(H → (H → H))→ (H → (H → H))]. (11)

The point of the exercise was that if some formula or other of the form H→(ψ→ψ)
turned out to be provable in the extension of BCI with H as a new axiom, then, since
all that was assumed about H was its provability, this would reveal in a general and
uniform way how every BCI theorem provably implies a self-implication: just re-
place ‘H ’ throughout the successful ‘H → (ψ → ψ)’ by any theorem ϕ, to see
ϕ’s provably implying a self-implication. Of course one has to ask this of a specific
candidate ψ , and (11) embodies the hypothesis that H → (H → H) will serve as
ψ . Interestingly enough, MaGIC offers no countermodels to (11) as a theorem of
BCI+H , suggesting either that any suitable matrix, even if finite, might be too large
to lie within the space of matrices searched, or else that (11) is indeed provable. The
latter seemed unlikely in view of a concerted effort by the author, who was accord-
ingly pleased to have the matter resolved when Avron pointed out that the infinite
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matrix for BCI given in [3] invalidates (11) on an assignment which gives H a desig-
nated value. It follows that (11) is not provable in BCI + H . The matrix in question
has as elements the integers and as designated elements the positive integers, with
x → y = 1 − x + y. Assigning H the value 2 then gives the undesignated value 0
to (11). (Alternatively, we can consider the integer matrix of Meyer and Slaney [30],
with the same set of values, but now with all nonnegative integers designated and
implication handled by the simpler x → y = y − x . Indeed this special case of
a generalization of Avron’s procedure is noted: see Theorem 4.5 and Note 4.6 in
Avron [3]. When attention is restricted, as here, to pure implicational formulas, the
set of valid formulas in all cases of the generalization is the same. We continue with
Avron’s procedure as described above, though with suitable adjustments the argu-
ment could be conducted using the Meyer-Slaney matrix.)29 Better still, this matrix
shows that no formula of the form H → (ψ → ψ) is provable in BCI + H , since
ψ → ψ will always receive the value 1, so if H is assigned the (designated) value
2, H → (ψ → ψ) receives the undesignated value 0 = (1 − 2 + 1), showing its
unprovability (in BCI + H ).

What does this show about whether every BCI-theorem provably implies a self-
implication? BCI + H is after all not BCI, and every BCI-theorem evaluates to 1 in
Avron’s matrix (is “strictly valid,” as it is put in [3]), so the kind of assignment we
needed above to show the unprovability of H → (ψ → ψ), for any ψ , will not be
available in BCI proper. So our problem about BCI and self-implications remains
unsolved.30 An incidental question thrown up by the discussion of BCI+ H and the
infinite model(s) just considered arises over whether this logic has the finite model
property. According to Buszkowski ([14], [15]), BCI itself does have the fmp—so it
would be fascinating if the property were to be lost on addition of one new formula
about which all that is said is that this formula is provable (though it would certainly
explain why MaGIC might have failed to find a countermodel to (11)).

We conclude by collecting some of the questions that have arisen but gone unan-
swered in our discussion, and in particular its last two sections. Several of them take
us somewhat beyond the theme of Curry’s Paradox and concern structural features of
BCI into which the pursuit of that theme had led us. (We do not repeat the two ques-
tions falling under this general heading that were posed in note 27, or the question
just asked concerning BCI + H and the finite model property.)

(1) Is every fixed point extension (in the sense of Section 3) of BCI conservative?
(2) In the remark after the proof of Proposition 3.3, we described the fixed point

extension there treated as taking us “from BCI∗ all the way up to BCK, at
least.” Do any fixed point extensions—for example, that considered in Propo-
sition 3.3—of BCI∗ take us nonconservatively beyond the logic BCK, and in-
deed, Is BCK itself always conservatively extended by arbitrary fixed point
extensions?

(3) Is every mingler (in BCI) equivalent to the converse of a BCI theorem?
(4) Does (every instance of the schema) B provably imply a self-implication, in

BCI (or in BCI∗)?

And more generally, and perhaps of greatest interest in its own right,

(5) Does every BCI-theorem provably imply a self-implication? (As we saw in
Section 4, if the answer to this question is affirmative, then BCI∗ = µBCI.)
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Added in Press (i) The mistake in Raftery and van Alten [38] remarked on in
note 30 has since been acknowledged by them: see the 2005 Corrigendum. (ii) An
ingenious syntactic derivation establishing that BCI∗ = µBCI, thereby settling one
of our open questions, appears in a note by T. Kowalski and S. Butchart, dated 2005.

Notes

1. In Restall [39] and Rogerson and Restall [42], what we are calling the background logic
is something which is extended by (NCA), the result being a kind of higher order logic.
We prefer to think of matters somewhat differently, along the lines of the relationship
between “pure” classical predicate logic and arbitrary first-order theories. However,
this difference in outlook will vanish presently, when we abstract from the way (NCA)
provides fixed points and pursue their upshot by considering sentential logics with added
fixed point operators.

2. A somewhat similar formulation, though couched in terms of a rather unusual proof-
system, appears as Theorem 7.1 of Petersen [34]. For bibliographical information to
the seminal literature (including Curry’s own contributions) we refer the reader to van
Benthem [55].

3. Cf. Geach [16], van Benthem [55], Hazen [18].

4. No doubt even more familiar would be a notation in which FEϕ1 . . . ϕn was written
with parentheses, which we avoid here to maximize the contrast with (1) as originally
formulated.

5. In particular, we have in mind the requirement that the relation ≡ defined to hold be-
tween formulas ϕ,ψ , just in case ϕ ↔ ψ is provable, should be a congruence relation
on the algebra of formulas (with the various primitive connectives taken as fundamen-
tal operations), so that the (Tarski-)Lindenbaum algebra emerges as the quotient algebra
modulo≡. Following, e.g., Makinson [27] we accordingly call a logic with this property
congruential; it amounts to saying that when ϕ ↔ ψ is provable, ϕ and ψ are freely
interreplaceable in longer formulas, salva provabilitate. It is also convenient to have a
more localized version of this property, and we shall say that a particular connective is
congruential according to a logic if provably equivalent formulas are similarly interre-
placeable within the scope of that connective. Now the condition of congruentiality is
one that is not satisfied by the fixed point operators we shall consider below (see the
paragraph following Example 3.2) and to that extent the “fixed point” terminology is
accordingly somewhat metaphorical. (A notion of congruentiality equally worthy of the
name would apply it to consequence relations ` when ϕ ` ψ and ψ ` ϕ together imply
that ϕ and ψ are interreplaceable in all consequence statements 0 ` χ , however deeply
embedded ϕ and ψ may be inside the formulas in 0 ∪ {χ}. This property too can be
applied derivatively to individual connectives in the language of `. But it is not the same
property as that isolated by the earlier definition, the formula logic BCI considered in
Section 3 below, being congruential, while the consequence relation we call `BCI in
note 22 below is not.)

6. Modal provability logic, already mentioned above, has its own supply of fixed points—
though of a rather different nature from those considered here; see Boolos [7], esp. Chap-
ter 8.
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7. For example, Prior [37], Meyer, Routley and Dunn [29], Slaney [49]. (This last paper
even blames the Sorites Paradox on contraction: p. 87.) The contraction axiom—or
axiom schema, as we have stated it—appears as W in the list of labeled principles at
the start of Section 3 below. In some (especially of the earlier) of our references, the
word “absorption” is used in place of “contraction”—an unfortunate choice in view of
the (unrelated) absorption law in lattice theory.

8. Restall [39] conjectured, plausibly enough in the light of work such as Shaw-Kwei [43],
though as it turned out—see Rogerson and Butchart [41]—falsely in the end, that all
would be well as long as no definable connective obeyed a modus ponens rule and also
a contraction principle. It should also be noted that a reaction rather different from
that of rejecting contraction is associated with Fitch; see the contributions by Myhill and
(especially) Anderson in [2] for discussion and references. A more recent contribution in
this general “don’t blame contraction” tradition may be found in Aitken and Barrett [1].

9. Accordingly, as is noted in line 2 of the table on p. 21 of Kabziński [22], conjunction
is intuitionistically definable in terms of implication and equivalence (taking the latter
as primitive—something not usually done); thus any one of {∧,→,↔} is definable
intuitionistically in terms of the other two.

10. This wording is admittedly tailored rather specifically to a context in which the contrast
between classical and intuitionistic logic is especially salient. More generally, any
logic with Peirce’s Law but not Contraction would, as just observed, “trivialize naïve
comprehension.” The observation goes back to Bunder [13]; see further Rogerson
and Restall [42]. This point is somewhat academic, however, since any logic closed
under the rules of Suffixing (ϕ → ψ/(ψ → χ) → (ϕ → χ) and Transitivity
(ϕ → ψ,ψ → χ/ϕ → χ)—and thus any logic including the suffixing schema B′ (=
the prefixing schema B from Section 3 below, with antecedents commuted) and closed
under modus ponens—delivers Contraction from Peirce, as the following argument from
Meredith shows. (See Meredith and Prior [28], p. 213; we have translated the proof out of
the equational presentation given there to make it clear that only the Peircean direction of
the corresponding equivalence is actually used.) (1) ((p → q)→ p)→ p (Peirce), so
(2), from (1) by Suffixing p→ q : (p→ (p→ q))→ [((p→ q)→ p)→ (p→ q)];
(3) [((p → q) → p)) → (p → q)] → (p → q) (more Peirce); then by Transitivity
from (2) and (3), (p → (p → q)) → (p → q). The striking deductive potency of
Peirce’s Law had been noted long before the reference last cited, in a 1948 observation
of Łukasiewicz (appearing in English in pp. 306–10 of Borkowski [26] and further
discussed in, e.g., Thomas [54], Sobociński [51]) and has also been noted since (e.g., in
Meyer [31], which is an immediate corollary of Łukasiewicz’s result).

11. On the intuitionistic nonequivalence of ϕ ↔ (ϕ ↔ ψ) with ψ , see further note 28 of
Humberstone [19].

12. More precisely, we have in mind here the relation—call it `CL—on any language (refer-
ence to which we do not record in the ‘`CL’ notation) defined thus: for any set 0∪{ψ} of
formulas of that language, 0 `CL ψ if and only if for some ϕ1, . . . , ϕn ∈ 0 the formula
(ϕ1 ∧ · · · ∧ ϕn)→ ψ is a substitution instance of a truth-functional tautology. While it
is usually deemed philosophically preferable to think of logics as consequence relations
in the first place rather than as sets of formulas and isolate the “set of formulas” logic
derivatively as the set of consequences of the empty set, we are here simply sticking with
the majority of works listed in our bibliography and taking the consequence relation as
secondary.



124 Lloyd Humberstone

13. And we mean no interpretation according to which the logic obtained by adding (1)
is sound, not just no interpretation according to which it is both sound and com-
plete. (Cf. Humberstone [19] on translational embeddings vs. faithful translational
embeddings.)

14. More explicitly, in all but the inconsistent case, we avoid, for each logic extending clas-
sical logic by one of the fixed point equivalences, ending up with a logic that is “con-
traclassical modulo the Boolean connectives.” This means that in each case in which
the extension is conservative, there is some way of translating the language with the
new fixed point operator into the language with just the Boolean connectives (any func-
tionally complete collection of which may be taken as primitive), where this translation
translates the Boolean connectives by themselves, and the translations of theorems of the
logic with F are all classical tautologies.

15. As in note 18 of Humberstone [19].

16. The most user-friendly proof-system for BCI, however, is a natural deduction system
in the style of Lemmon [25], except that instead of sets of line numbers in the far left
“dependency column” of a Lemmon proof, multisets are used to keep track of how many
times a given assumption has been used, with the Conditional Proof rule—or as we
shall call it “→I(ntroduction)” when we illustrate this system in action in Example 4.4
below—removing only one occurrence of the discharged assumption’s line number per
application, thereby avoiding what would otherwise be tacit appeals to contraction. The
corresponding elimination rule, we call→E. Because the only connective we are con-
cerned with is implication, there will be no need of the distinction between two kinds
of “bunching” (due to Dunn) found in the Lemmon-style system of Slaney [49], and be-
cause the target logic is BCI, we will have no need either for the apparatus of structural
rules to be found there.

17. For further details the monographs Restall [40] and Paoli [33] may be consulted, though
the latter does not mention the BCI/BCK nomenclature (to be found in the former’s
§§2.7–2.8, as well as at p. 86). This nomenclature is due to Meredith, and the realization
that the individual ingredients (B,C , etc.) led a double life as the principal types of
(the eponymous) combinators and as well-loved implicational principles to Curry. That
observation constituted the first stone in the edifice that was to become known as the
Curry-Howard correspondence (or isomorphism). This is the only point in the present
discussion at which we make any contact with the subject of the (coincidentally) simi-
larly entitled Poernomo [35].

18. Though see also Slaney [48].

19. We take it to be part of the meaning of “sequent calculus” that with the exception of
the Cut rule, formulas in premise-sequents survive intact or as proper subformulas of
formulas in the conclusion sequent. (Many a sequent-logical proof-system accordingly
fails to count as a sequent calculus, or Gentzen system, as these are often called. The
distinction between sequent calculi and arbitrary sequent logics—proof systems with
sequent-to-sequent rules—is not always observed, e.g., Slaney [49], p. 80, line 2.)

20. Prawitz [36] uses a normal form theorem for natural deduction proofs to obtain numer-
ous results traditionally obtained in proof theory by an appeal to Cut Elimination for a
sequent calculus and in Appendix B of that work shows that a natural deduction system
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for (roughly speaking) naïve set theory proofs like that involved in Curry’s Paradox can-
not be reduced to normal form, which strongly suggests that there will be trouble with
Cut Elimination for a corresponding sequent calculus. The exact nature of this parallel
has been the subject of considerable discussion (e.g., Zucker [59]).

21. By a representative instance of a schema, we mean a formula instantiating the schema,
in which distinct schematic letters are replaced by distinct propositional variables.

22. The extension of BCI by this rule is proposed in Kabziński [23] in the interests of turn-
ing the logic BCI into something for which the class of BCI-algebras would provide an
appropriate algebraic semantics. Note that we give the new rule only in the course of
describing an axiomatic system, which leaves open the question of what consequence
relation is at issue, without which the question of whether the logic is algebraizable in
the sense of Blok and Pigozzi [6] cannot be asked. Let `BCI be the consequence rela-
tion defined by setting 0 `BCI ϕ if and only if ϕ can be obtained by successive uses of
modus ponens from instances of the schemas B,C , and I and formulas in 0. This con-
sequence relation, Theorem 5.9 of Blok and Pigozzi [6] shows not to be algebraizable.
If we define 0 `µBCI ϕ along similar lines but allowing not only modus ponens but also
the new rule ϕ,ψ/ϕ → ψ to be used in derivations from 0 (and the axioms) we obtain
the consequence relation that Kabziński has in mind, and this consequence relation is al-
gebraizable, with its equivalent quasi-variety semantics being the class of BCI-algebras.
The present author has in mind a different consequence relation—as is evident from the
description “monothetic” (= to within interreplaceability, there is just one “thesis,” or
theorem)—namely, that ` defined by saying 0 ` ϕ just in case ϕ can be obtained by
applications of modus ponens from formulas in 0 and theorems of µBCI. Thus the new
rule is restricted in its application to applying to formulas provable outright. In other
words—words from Smiley [50], in particular—we are considering the new rule as a
rule of proof rather than a rule of inference. Since the consequences of the empty set are
the same on either definition, this difference does not affect our discussion. (The author
is uncertain as to whether the definition given is equivalent to defining ` as the least
consequence relation extending `BCI and satisfying the condition that ` ϕ → ψ , that
is, ∅ ` ϕ → ψ , whenever ` ϕ and ` ψ , and also as to whether this consequence rela-
tion is algebraizable, though a negative answer here seems likely in view of what Blok
and Pigozzi’s Theorem 5.9 says about the implicational fragment of S5 à la Wajsberg.)
Here, as in note 12, 0 ranges over sets, not, as in the sequent calculus of Section 3, over
multisets of formulas; for an account of the relation between the provability of a sequent
in the BCI sequent calculus and the consequence relation `BCI , and of an appropriate
form of the Deduction Theorem for the latter relation, see Avron [3], p. 931. We add that
“BCI- algebra” is used here in its traditional sense, as explained in Kabziński [23] and
the references there cited, and not for the structures referred to by that name in Meyer
and Ono [32]. Like Kabziński, Bunder also sought a closer alignment with BCI-algebras
and suggested (Bunder [11], [12]) extending BCI accordingly. In the first of these pa-
pers, he considered I∗ and a further schema, namely, ϕ → (ϕ → (χ → χ)), while
in the second, I∗ disappears, presumably because it is easily derivable from the further
schema, and only this schema survives. However, for the purposes of a rapprochement
between logic and algebra this is not very helpful because the new schema is not valid on
all BCI-algebras (as indeed Bunder [11] recognizes). (In both of these papers, Bunder
writes in a way that conflates the threefold distinction between an individual algebra, a
class of algebras, and the equational theory of a class of algebras, though his observations
survive more careful reformulation.)
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23. It was because of the greater simplicity of an axiomatic extension of BCI that BCI∗

was cited in Proposition 3.3 rather than µBCI—for which the same result holds, by the
same argument mutatis mutandis. Indeed, these may turn out, as we are now observing,
to be the same logic, in which case the above use of “cited” means “cited under that
description.” (Even if they are distinct, the possibility would remain open of exhibiting
µBCI as an axiomatic extension of BCI.)

24. Self-implications are often called identities, but as this usage might be confusing for
those with an algebraic background, we avoid it here.

25. Of course, for the present case we know we can choose ψ0 as just ψ itself, but this part
of the reasoning extends to systems such as BB′I (B′ as in note 10) where that choice of
ψ0 can’t be made but we can still find a suitable ψ0 by taking either the antecedent or
the consequent of ψ , which must be an implicational formula if it is to be provable.

26. One could already be aware of this fact independently of knowing that every formula
provably implies a theorem of the type we are currently interested in—an instance of I ,
that is—from other examples such as the following (BCI and therefore) BCIW theorem
with, thanks to W , a provable consequent: p→ [(p→ (p→ q))→ (p→ q)].

27. The mistake, which stands as an isolated assertion in Avron [4], does not affect the main
results of that paper, of which the most interesting for the topic under discussion in the
present paper is the following. Call a formula ϕ a contractor (in a given logic) if for
all formulas ψ , the formula (ϕ → (ϕ → ψ)) → (ϕ → ψ) is provable (in the logic).
Then the result is that the contractors in BCI are precisely the theorems of BCI. It would
be interesting to know if there is a nontheorem ϕ for which such an instance of W was
provable even for a single formula ψ . A negative answer to this question would mean
that the rule (ϕ → (ϕ → ψ)) → (ϕ → ψ)/ϕ was (though not of course derivable in
any of the proof systems we have considered) admissible for BCI. A related question
arises over the admissibility of the rule (ϕ → ψ) → ψ/ϕ; using the cut-free sequent
calculus for BCI from Section 3, the author had trouble over some cases in obtaining
an affirmative answer to this question, which others more ingenious may see how to
circumvent.

28. Since the first letter of the word “theorem” is reserved for a special role (whether the
“Ackermann constant” t—no relation to the “t” for “term” in (NCA) as formulated in
Section 1—or the “Church constant” T from earlier in this section), its second letter was
pressed into service in this capacity.

29. The matrix in question is not just a matrix for the logic Meyer and Slaney consider, but
a characteristic matrix—for their Abelian logic, whose implicational fragment can be
axiomatized (somewhat redundantly) by adding the converse of (9), or rather (given how
we have been doing things) the converse of the corresponding schema. For the extension
of this system to accommodate disjunction, conjunction, and so on, the nonnegative inte-
gers, rather than just 0, have to be taken as designated elements. The implicational frag-
ment was rediscovered in Kabziński [24]) under the potentially confusing name BCII,
and with some rule-of-inference vs. rule-of-proof issues arising (as in note 22) which
we need not go into here. The same fragment had previously been studied by Meredith
in the 1950s and Kalman in the 1960s and 1970s; see the reference to Forder’s axiom
in line 13 on p. 221 of Meredith and Prior [28]. (Note that the Corrigendum must be
consulted because of a misprint in this line.) The issues we have been concerned with
for BCI, arising over the effect of replacing I with I∗, do not arise for “Abelian BCI”
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since this logic is easily seen to be monothetic (like BCK), especially in the light of
Meyer-Slaney’s characteristic matrix with 0 as sole designated element.

30. After the present paper was accepted for publication, my attention was drawn by
Matthew Spinks to Raftery and van Alten [38], which appears to provide a solution to
this problem. The authors’ Proposition 22 claims, inter alia, that the same consequence
relation is characterized twice over as (i) the least extension ` of `BCI (see note 22
above) such that ` (ϕ → ϕ) → (ψ → ψ) for all formulas ϕ,ψ , and (ii) as the least
extension ` of `BCI satisfying the condition that ϕ,ψ ` ϕ → ψ for all ϕ,ψ . That
is, against the background of BCI logic, what we have called I∗ (and Raftery and van
Alten call (P)) and the rule mentioned apropos of Kabziński in note 22 (which Raftery
and van Alten call (G)) are equivalent. As explained in that note, the latter is much
stronger that the condition of monotheticity, which demands only that ` ϕ and ` ψ
should imply ` ϕ → ψ , so certainly, if Raftery and van Alten’s result were correct,
it would show I∗ to guarantee monotheticity. But despite the putative proof offered,
the result is not correct, as one may see using the Meyer-Slaney/Avron integer matrix
mentioned above, with reverse subtraction interpreting→ and the nonnegative integers
as designated elements. This is a matrix for `BCI on which all instances of I∗ are valid,
but it invalidates a representative instance of the condition ϕ, ψ ` ϕ → ψ obtained by
taking ϕ and ψ as p and q , respectively: assign these variables the respective values 1
and 0, both designated, and the right-hand formula receives the undesignated value −1.
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