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First-Order Modal Logic
with an ‘Actually’ Operator

Yannis Stephanou

Abstract In this paper the language of first-order modal logic is enriched with
an operator @ (‘actually’) such that, in any model, the evaluation of a formula
@A at a possible world depends on the evaluation of A at the actual world. The
models have world-variable domains. All the logics that are discussed extend
the classical predicate calculus, with or without identity, and conform to the
philosophical principle known as serious actualism. The basic logic relies on the
system K, whereas others correspond to various properties that the actual world
may have. All the logics are axiomatized.

1 Introduction

We can envisage an operator @ which always, even if it occurs within the scope
of other modal operators, introduces information about what is in fact the case.
Equipped with @, we can formalize sentences such as

It could have been that every singer who is in fact rich was poor
and

There could have been a table that does not actually exist.

The former sentence can be rendered as ♦(∀x)[(Sx ∧@Rx) → Px], while the latter
is paraphrasable as ♦(∃x)[T x ∧ ¬@(∃y)(x = y)]. In this paper, @ will be added to
the usual language of first-order modal logic.

What makes @ interesting is that the concept of actuality should be central in
modal logic. Necessity, actuality, and possibility are notions that are closely linked
together and equally central to our thinking about how things could be. So, to the
extent that modal logic aims to articulate the logical principles to which such thinking
ought to conform, one would expect it to focus on all three notions. But, in fact,
necessity and possibility were given pride of place, whereas actuality was relatively
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neglected. The reason for that neglect must be that apparently we do not need the
notion of actuality in order to say how things actually are: we can just say ‘The earth
moves’, without adding words like ‘in fact’. It is true that we do not need actuality
if we are not speaking in the scope of a modal operator. But if within the scope of
a necessity or possibility operator we want to speak about how things actually are,
then we must in some way or other use the concept of actuality.1

Operators such as @ have been studied in propositional modal logic (e.g., Cross-
ley and Humberstone [2], Gregory [3], and Blackburn and Marx [1]). There has also
been a study of @ in first-order modal logic based on S5 (Hodes [4]). The treatment
of @ here will be much more general; the basic axiomatization we shall discuss is
based on the system K of standard modal logic.

Our models will involve possible worlds. In each model, one world is charac-
terized as actual. When a formula is evaluated in a model, every occurrence of @
turns the evaluation to the actual world of the model. The domains of quantifica-
tion will generally vary from world to world. So, in most of the axiomatizations to
be discussed, neither the Barcan Formula, (∀x)�A → �(∀x)A, nor its converse,
�(∀x)A → (∀x)�A, is a theorem schema. The language will contain individual
constants that are treated as rigid designators.

The axiomatizations will all extend the classical predicate calculus: half of them
extend a formulation of the calculus without identity while the other half extend a
formulation with identity. So this paper is part of the effort to develop first-order
modal logic as an extension of classical first-order logic. The language will have no
primitive existence predicate, not because of any philosophical objections to treat-
ing existence as a property, but because no primitive existence predicate appears in
standard formulations of classical first-order logic.

Within modal contexts, all axiomatic systems allow existential generalization
from atomic formulas; correspondingly, the models have local predicates (i.e., the
extension of a predicate letter at a world is confined to objects drawn from the do-
main of that world). This feature of the systems is a formal analogue of the meta-
physical view known as serious actualism: for every entity e and every property P
or relation R, it could not have been that e had P , or bore R, but did not exist. So
the paper accords with that very plausible metaphysical view. Serious actualism is
part of Plantinga’s philosophy of modality; see, for example, Plantinga [6], pp. 313–
23 and 344–47. Also, in the absence of an existence predicate, local predicates are
helpful technically.

This paper extends the results of Stephanou [7] to modal logic with @. So, many,
though by no means all, of the metatheorems that are proved below have parallels
in that paper. The proofs provided here are generally different from those found
there. Different proofs are more interesting, but when two parallel results are proved
differently in the respective papers, each one can be proved in the other way.2 At
any rate, some proofs for the present paper are similar to proofs in the other paper
and have been replaced with references to the latter.

Of the two sections that follow, the one contains the claims to be proved, and the
other contains the proofs.

2 Systems and Results

Our object language will be L, which has these symbols:
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x1, x2, . . . (variables)
a1, a2, . . . (individual constants)

F1
1 , F1

2 , . . ., F2
1 , F2

2 , . . ., . . . (predicate letters)
→, ¬, �, @, ∀, [ , ] , ( , ) .

When the variables or the predicate letters of degree 1 are arranged in order of in-
creasing subscripts, their order will be called alphabetical. As usual, the predicate
letters of degree i are those whose superscript is i .

The letters A, B, C, D, and E (with or without a prime or subscript) will be used
as metalinguistic variables ranging over the well-formed formulas (wffs) of L; x, y,
z, and v range over the variables of L, and a over the individual constants; b, c, and
d range over both the variables and the individual constants; F and G range over the
predicate letters. The letters m, n, and l will be variables ranging over the natural
numbers, while i , j , and k range over the positive integers.

A series of symbols is an atomic wff just in case it has the form F i
j b1 . . . bi . For

any A, B, and x, the formulas [A → B], ¬A, �A, @A, and (∀x)A are well formed.
Nothing else is well formed. Other connectives and the existential quantifier are
introduced by standard abbreviatory definitions.3 Standard rules determine when
brackets may be omitted.4

As usual, b is free for x in A if and only if in A no free occurrence of x is in
the scope of an occurrence of (∀b). Ṡx

bA is the wff that results from A when we
substitute b for every free occurrence of x.

A structure is a quintuple 〈W, R, D, Q, w∗
〉. W and D are nonempty sets. R and

Q are relations: R (the accessibility relation) is a subset of W ×W , and Q is a subset
of W × D. The members of W and D will be called ‘worlds’ and ‘individuals’,
respectively. For every w ∈ W , dom(w) (the domain of w) will be the range of the
restriction of Q to {w}. Finally, w∗ (the actual world) is a member of W such that
dom(w∗) is nonempty. Any such quintuple is a structure.

A model is a sextuple 〈W, R, D, Q, w∗, V 〉, where 〈W, R, D, Q, w∗
〉 is a struc-

ture. V is a function such that, for each individual constant a, V (a) is a member of
dom(w∗) while, for each pair 〈F i

j , w〉 of a predicate letter and a world belonging to
W , V (F i

j , w) is a subset of (dom(w))i . Any such sextuple is a model. We shall say
that the model 〈W, R, D, Q, w∗, V 〉 is based on the structure 〈W, R, D, Q, w∗

〉.
Given a model, we can define what it means for a (denumerable) sequence s of

individuals to satisfy a wff at a world. We first define the function s∗: s∗(xi ) = si
and s∗(a) = V (a).

1. s satisfies F i
j b1 . . . bi at w if and only if 〈s∗(b1), . . . , s∗(bi )〉 ∈ V (F i

j , w).
2. s satisfies A → B at w if and only if either s does not satisfy A at w or s

satisfies B at w.
3. s satisfies ¬A at w if and only if s does not satisfy A at w.
4. s satisfies �A at w if and only if, for every world w′ such that wRw′, s

satisfies A at w′.
5. s satisfies @A at w if and only if s satisfies A at w∗.
6. s satisfies (∀xi )A at w if and only if every sequence s′ of individuals which

differs from s in at most the i th position and is such that s′

i ∈ dom(w) satisfies
A at w.



384 Yannis Stephanou

A wff is true in the model if and only if it is satisfied at w∗ by every sequence of
elements of dom(w∗).

A wff is valid in a structure 〈W, R, D, Q, w∗
〉 if and only if it is true in every

model based on the structure. A set 3 of wffs is satisfiable in 〈W, R, D, Q, w∗
〉 if

and only if, in some model based on the structure, there is a sequence of elements
of dom(w∗) which satisfies all members of 3 at w∗. A wff A is a consequence of
3 in 〈W, R, D, Q, w∗

〉 if and only if, in every model based on the structure, every
sequence of elements of dom(w∗) that satisfies all members of 3 at w∗ satisfies A,
too, at w∗. The notion of consequence generalizes that of validity in the usual way:
a wff is valid in a structure just in case it is a consequence of the empty set in that
structure.

The basic axiomatic system we shall discuss is @K. Apart from axiom schemata
and primitive rules of inference, @K also has a rule that imposes a restriction on how
a proof may develop after certain axiom schemata have been invoked. The axiomatic
system is the following.

@KA1 Every substitution instance of a classical propositional tautology.
@KA2 �[A → B] → [�A → �B].
@KA3 @[A → B] → [@A → @B].
@KA4 @¬A ↔ ¬@A.
@KA5 @A → @@A.
@KA6 @A → �@A.
@KA7 B → [(∀x)A → Ṡx

bA], where b is free for x in A, and B is an atomic
wff in which b occurs.

@KA8 (∀x)[A → B] → [(∀x)A → (∀x)B].
@KA9 A → (∀x)A where x has no free occurrence in A.
@KA10 @A → A.
@KA11 (∀x)A → Ṡx

bA where b is free for x in A.
@KR1 From A → B and A we may infer B.
@KR2 From A we may infer �A.
@KR3 From A we may infer @A.
@KR4 From A1 → O1[· · · [An → OnB] . . . ], where each one of O1, . . . , On

is � or @ while x has no free occurrence in any one of A1, . . . , An , we
may infer A1 → O1[· · · [An → On(∀x)B] . . . ].

@KR5 From (∀x)Fx → A where F does not occur in A we may infer A, as we
may from @�n(∀x)Fx → A where F does not occur in A.

@KP In the course of a proof, once we have used @KA10 or @KA11, we
must then use no rule of inference or axiom schema except @KR1,
@KA10, and @KA11.

Note that @KR4 subsumes the rule of universal generalization, since every inference
from a wff B to a wff (∀x)B is an instance of @KR4 in which n = 0. The symbol
�n means that zero, one, or more boxes may occur in its position.

Resorting to a rule such as @KR5 is necessary because our language has no prim-
itive existence predicate. If we had one, E , we could employ the axiom schema
(∀x)Ex. @KR5 will play a role in our proofs similar to the one that would be played
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by (∀x)Ex. Indeed, the intuitive idea behind @KR5 also involves the notion of ex-
istence. If a wff (∀x)Fx → A or @�n(∀x)Fx → A has been established, then it
holds however we may read its schematic letters (that is, the predicate letters and the
individual constants). In particular, it holds if we construe F as meaning ‘exists’. But
then (∀x)Fx (‘Every entity exists’) not only is true but remains so when we prefix it
with as many occurrences of @ and � as we like. So A also holds however we may
read its schematic letters (which do not include F).

@KP helps to determine what counts as a proof in @K (or in any other of the
axiomatic systems we shall discuss). A proof here is a k-tuple of ordered pairs 〈A, s〉
where s is an axiom schema or primitive rule of inference. Such a k-tuple counts as
a proof (of the wff in the last pair) if and only if each 〈Ai , si 〉 (1 ≤ i ≤ k) satisfies
two conditions. The one condition is to be expected: either si is an axiom schema
and Ai is an instance of it, or si is a rule and among A1, . . . , Ai−1 there are one or
more wffs from which Ai can be immediately inferred in accordance with that rule.
The other condition is specified by @KP: if si is @KA10 or @KA11, then every s j
such that i < j ≤ k is @KR1, @KA10, or @KA11.

If we use @KA10 or @KA11 in a proof in @K, the proof consists of two parts.
The first part, which may be empty and ends just before the first wff for which we
use one of those schemata, relies at most on @KA1–9 and @KR1–5. The second
part, which begins with the first wff for which we use @KA10 or @KA11, relies at
most on @KR1, @KA10–11, and everything that has been proved in the first part.
The first wff for which we use @KA10 or @KA11 is the wff in the first pair 〈A, s〉
such that s is one of them. When we extend @K by adding further axiom schemata,
@KP will still be in force, so the additional axiom schemata must not be used in a
proof after @KA10 or @KA11 has been invoked.

As will be shown, the theorems of @K are the wffs that are valid in every struc-
ture; in other words, @K is sound and weakly complete regarding validity in all
structures. Moreover, satisfiability in a structure is compact: it is the case for any set
3 of wffs that if, for each finite subset of 3, there is a structure in which that subset
is satisfiable, then 3 itself is satisfiable in a structure. And @K is strongly complete
regarding consequence in all structures: it is the case for any A and any set 3 of wffs
that if A is a consequence of 3 in every structure, then for some subset {B1, . . . , Bn}

of 3(n ≥ 0) `@K B1 ∧ · · · ∧ Bn → A.
If an axiomatic system for L is intended as an extension of classical first-order

logic, all wffs of the form (∀x)A → Ṡx
bA, where b is free for x in A, should be

theorems. However, applying the rule of necessitation, @KR2, to a wff of that
form will normally lead to a formula that is not a correct principle. For example,
�[(∀x1)F1

1 x1 → F1
1 a1] seems to be incorrect in the sense that, when we replace the

predicate letter and the individual constant with a real predicate and a real name, re-
spectively, the result is not always a truth. ‘�[(∀x1)(x1 is a material object) → (the
Taj Mahal is a material object)]’ is not true. It could have been that every entity was
a material object but the Taj Mahal did not exist at all and so, a fortiori, was not a
material object. Again, if an axiomatic system for L is intended to capture the logic
of the operator @, all wffs of the form @A → A should be theorems. Since @
was defined as introducing information about what is in fact the case, it is part of
the logic of this operator that all statements @p → p are true. However, applying
the rule of necessitation to a wff of the form @A → A will normally lead to a for-
mula that is not a correct principle. For instance, �[@F1

1 a1 → F1
1 a1] fails upon
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many replacements of the predicate letter and the individual constant. ‘�@(Plato is
a philosopher)’ is true, but ‘�(Plato is a philosopher)’ is not, for Plato could have led
a different life.

QKP allows us to count all wffs of the form (∀x)A → Ṡx
bA (where b is free for x

in A), as well as those of the form @A → A, as theorems while generally avoiding
their necessitations. Correspondingly, the definition of truth in a model has been so
engineered that all wffs of those two forms turn out to be true in all models while
generally their necessitations do not. The main factor is that truth in a model was
defined as satisfaction at the actual world and not at every world. This choice not
only allows a wff to be true in every model without its necessitation sharing this
feature but also, given the definition of satisfaction, suffices to ensure that the wffs
of the form @A → A are true in all models. On the other hand, to ensure that those
of the form (∀x)A → Ṡx

bA are true in all models, we also had to confine variables
and individual constants to values drawn from the domain of the actual world. So,
an appropriate clause about individual constants was inserted in the definition of a
model, and truth in a model was defined in terms of satisfaction by sequences that
take values only from dom(w∗).

It is interesting to see how we can axiomatize various conditions that a structure
may meet. There are conditions that concern the accessibility relation, and there
are others that concern the domains of the worlds. Here are some conditions of the
former kind.

1. For every world w, w∗ Rw.
2. For every w, wRw∗.
3. For any worlds w and w′, if w∗ Rw′ then wRw′.
4. For any w and w′, if wRw′ then w∗ Rw′.
5. For any w and w′, wRw′.

And here are some of the latter kind.

6. For every world w, dom(w) and dom(w∗) are disjoint unless w is w∗.
7. For every w, dom(w) and dom(w∗) have a common element.
8. For every w, dom(w) ⊆ dom(w∗).
9. For every w, dom(w∗) ⊆ dom(w).

10. For any worlds w and w′, dom(w) and dom(w′) are disjoint unless w is w′.
11. For any w and w′, dom(w) = dom(w′).

Finally, this is an example of a condition that concerns both the accessibility relation
and the domains.

12. For every world w, if w∗ Rw then dom(w∗) and dom(w) are disjoint.

(1) – (12) are conditions that either involve the actual world or can be captured by
axiom schemata that involve the symbol @.

We shall employ the following axiom schemata.

@1A @�A → A.
@2A �A → @A.
@3A �A → @�A.
@4A @�A → �A.
@6A B ∧ A → @[C → A] where B and C are atomic wffs such that a

variable or constant b occurs in both.
@7A (∃y)@[(∀x)A → Ṡx

yA] where y is free for x in A.
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@8A B → @[(∀x)A → Ṡx
bA], where b is free for x in A, and B is an atomic

wff in which b occurs.
@9A @B → [(∀x)A → Ṡx

bA], where b is free for x in A, and B is an atomic
wff in which b occurs.

@10A B ∧ A → @�n
[C → A] where B and C are atomic wffs such that a

variable or constant b occurs in both.
@12A @(∀x)�¬A where A is an atomic wff in which x occurs.

For every j such that 1 ≤ j ≤ 4 or 6 ≤ j ≤ 10 or j = 12, the axiomatic system
@ j will be @K + @ jA. The axiomatic systems @5 and @11 will be @K + @1A
+ @3A and @K + @8A + @9A, respectively.

It will be shown that, for every j (1 ≤ j ≤ 12), @ j is sound and weakly complete
regarding validity in all structures meeting condition ( j). Moreover, satisfiability in
a structure meeting ( j) is compact, and @ j is strongly complete regarding conse-
quence in all structures meeting ( j).

The model-theoretic import of @6A is that if an individual belongs to the domain
of a world w and also to the domain of the actual world, w∗, then any wff A that
is satisfied by a sequence at w is also satisfied by the same sequence at w∗. To be
precise, this is the import of claiming about a model that the instances of @6A are
satisfied at every world by every sequence. (If two atomic wffs B and C which both
contain b are satisfied by s at two worlds, then the individual s∗(b) belongs to both
domains.) We indirectly make such a claim, about any models for which our axiom-
atization will turn out to be appropriate, when we make the instances axioms and
allow both the rule of universal generalization and the rule of necessitation to be ap-
plied to them; if we only allowed universal generalization, we would only claim that
the instances of @6A are satisfied at w∗ by every sequence of elements of dom(w∗).
Now, condition (6) effectively says that if dom(w) and dom(w∗) have a common ele-
ment, w is w∗. So it would seem that @6A is too weak to capture (6); it would seem
that the axiomatization @6 is not complete regarding validity in all structures meet-
ing (6). For in a model it may be that, for some world w, every wff that is satisfied by
a sequence at w is also satisfied by the sequence at w∗ but w and w∗ are distinct. In
fact, however, @6A suffices, as will be shown in our completeness proof. The proof
will focus on canonical models, in which if a certain canonical sequence satisfies at
w′ every wff it satisfies at w, then w is w′.

Similarly, the model-theoretic import of @10A is that if an individual belongs
to the domain of a world w and also to the domain of a world w′ that is n R-steps
away from the actual world, then any wff A that is satisfied by a sequence at w is
also satisfied by the same sequence at w′.5 Condition (10) effectively says that if
dom(w) and dom(w′) have a common element, w is w′. Although the condition
refers to every world w′, and not just every world that is n R-steps away from the
actual one, @10A suffices to capture (10). In the canonical models involved in the
proof, for each world w′ there will be some n such that w′ is n R-steps away from
the actual world.

When we discuss first-order modal logic with identity, we shall use the letter F2
1

as a sign of identity. [b = c] is defined as F2
1 bc. The brackets will be omitted unless

omitting them would result in unclarity. A model is an identity model if and only if,
for every world w and all individuals d and d ′ in dom(w), 〈d, d ′

〉 ∈ V (F2
1 , w) just

in case d is d ′. A wff is I-valid in a structure 〈W, R, D, Q, w∗
〉 if and only if it is
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true in every identity model based on the structure. A set 3 of wffs is I-satisfiable in
〈W, R, D, Q, w∗

〉 if and only if, in some identity model based on the structure, there
is a sequence of elements of dom(w∗) which satisfies all members of 3 at w∗. And a
wff A is an I-consequence of 3 in 〈W, R, D, Q, w∗

〉 if and only if, in every identity
model based on the structure, every sequence of elements of dom(w∗) that satisfies
all members of 3 at w∗ satisfies A, too, at w∗. So a wff is I-valid in a structure just
in case it is an I-consequence of the empty set in that structure.

Our basic axiomatization with identity will be @IK, which results from @K by
adding these axiom schemata.

@IKA1 (∀x)[x = x].
@IKA2 x = y → [A → B], where A is an atomic wff in which x occurs, and B

results from A by substituting y for an occurrence of x.

@IKA3 x = y → @�n
[A → x = y] where A is an atomic wff in which x

occurs or y occurs.

As we shall see, the theorems of @IK are the wffs that are I-valid in every structure;
that is, @IK is sound and weakly complete regarding I-validity in all structures.
Further, I-satisfiability in a structure is compact: it is the case for any set 3 of wffs
that if, for each finite subset of 3, there is a structure in which that subset is I-
satisfiable, then 3 itself is I-satisfiable in a structure. And @IK is strongly complete
regarding I-consequence in all structures: it is the case for any A and any set 3
of wffs that if A is an I-consequence of 3 in every structure, then for some subset
{B1, . . . , Bn} of 3(n ≥ 0) `@IK B1 ∧ · · · ∧ Bn → A.

Each instance of the schema @IKA3 is a variant on the principle of the necessity
of identity, except for the instances in which n = 0. (They amount to a similar
principle about actuality.) It differs from standard formulations (‘If x is y then it is
necessarily the case that x is y’) in three respects: the symbol @ occurs in front of
the boxes; there may be more than one box; and what follows the boxes has the form
A → x = y, rather than just x = y. Only the last difference has any philosophical
significance. The idea is that, for anything x and anything y, it could not have been
that x bore the relation of identity to y and yet x , that is, y, did not exist: if x and
y were one and the same thing, then they, or it, would be a thing. This idea is an
application of serious actualism to identity. But there are many things that might
not have existed. So the necessity of identity should rather take a form such as ‘If
x is y, then it is necessarily the case that, if x or y exists, x is y’. Every atomic
wff A is treated in this paper as carrying existential commitment with respect to
the variables and individual constants it contains. As for the other two differences
between @IKA3 and standard formulations of the necessity of identity, they are
due to the exigencies of the proof of (3.31) below. It does not seem feasible to
deduce @IKA3 from simpler schemata (without resorting to @KA10). If the schema
x = y → @�n

[x = y] were desirable, we could derive it from x = y → �[x = y]

and x = y → @[x = y]. But we cannot derive x = y → @�n
[A → x = y] from

x = y → �[A → x = y] and x = y → @[A → x = y].
For every j such that 1 ≤ j ≤ 4 or 6 ≤ j ≤ 10 or j = 12, the axiomatization

@I j will be @IK + @ jA. The axiomatizations @I5 and @I11 will be @IK +

@1A + @3A and @IK + @8A + @9A, respectively. We shall see that, for every
j (1 ≤ j ≤ 12), @I j is sound and weakly complete regarding I-validity in all
structures meeting condition ( j). Moreover, I-satisfiability in a structure meeting ( j)
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is compact, and @I j is strongly complete regarding I-consequence in all structures
meeting ( j).

Let L′ be the language whose wffs are the wffs of L in which there is no occur-
rence of either � or @. It is the case for any one of the axiomatic systems @K and
@ j that its theorems that are wffs of L′ are just the formulas which make up the
classical predicate calculus without identity when this calculus is formulated in L′.
Also, it is the case for any one of the systems @IK and @I j that its theorems that
are wffs of L′ are just the formulas which make up the classical predicate calculus
with identity when this calculus is formulated in L′ and the sign of identity is F2

1 .

3 Proofs

The following four metatheorems will be repeatedly needed later on. S̄x
yA is the wff

that results from A when we substitute y for every bound occurrence of x.

Metatheorem 3.1 It is the case in every model that for any A, any world w, and
any sequences s and s′ of individuals such that, for every variable xi that has a free
occurrence in A, si = s′

i , s satisfies A at w if and only if s′ satisfies A at w.

Metatheorem 3.2 It is the case in every model that for any A, x, and b such that
b is free for x in A, for any world w, and for any sequences s and s′ of individuals
such that s∗(b) = s′∗(x) while, for every variable xi that has a free occurrence in A
but is other than x, si = s′

i , s′ satisfies A at w if and only if s satisfies Ṡx
bA at w.

Metatheorem 3.3 It is the case in every model that for any A, any x, any y that
does not occur in A, any world w, and any sequence s of individuals, s satisfies A at
w if and only if s satisfies S̄x

yA at w.

Metatheorem 3.4 For any predicate letter F, for any models M = 〈W, R, D, Q,
w∗, V 〉 and M ′

= 〈W, R, D, Q, w∗, V ′
〉 where V and V ′ differ in at most what they

assign to F, for any A in which F does not occur, for any world w ∈ W , and for any
sequence s of members of D, s satisfies A at w in M if and only if s satisfies A at w
in M ′.

(3.1) – (3.4) can be proved by induction on the number of occurrences of →, ¬, �,
@, and ∀ in A. The proof of (3.2) presupposes (3.1), and the proof of (3.3) presup-
poses (3.2).

A wff is W-true in a model if and only if it is satisfied at every world by every
sequence of individuals. A wff, such as @F1

1 a1 → F1
1 a1, may be valid in a structure

without being W-true in every model based on the structure. The next three metathe-
orems about W-truth are needed for demonstrating (3.8), which will be pivotal for
soundness.

Metatheorem 3.5 If A1 → O1[· · · [An → OnB] . . . ], where each one of
O1, . . . , On is � or @, is W-true in a model, then A1 → O1[· · · [An →

On(∀xi )B] . . . ], where xi has no free occurrence in any one of A1, . . . , An , is
also W-true in that model.

Proof Suppose that, in the given model and for some sequence s of individuals and
some world w, s does not satisfy A1 → O1[· · · [An → On(∀xi )B] . . . ] at w. Then
there is an (n+1)-tuple 〈w0, . . . , wn〉 of worlds such that w0 is w; if O j (1 ≤ j ≤ n)
is � then w j is a world such that w j−1 Rw j , but if O j is @ then w j is w∗; for every



390 Yannis Stephanou

j (again 1 ≤ j ≤ n) s satisfies A j at w j−1; and finally s does not satisfy (∀xi )B at
wn . So there is a sequence s′ of individuals which differs from s in at most the i th
position and does not satisfy B at wn . However, by (3.1), it is the case for every j that
s′ satisfies A j at w j−1. Hence, s′ does not satisfy A1 → O1[· · · [An → OnB] . . . ]
at w. �

Metatheorem 3.6 If, for any structure, @�n(∀x)Fx → A, where F does not occur
in A, is W-true in every model based on that structure, then A is also W-true in every
model based on that structure.

Proof Suppose that, in some model 〈W, R, D, Q, w∗, V 〉 based on the given struc-
ture, there are a sequence s of individuals and a world w such that s does not satisfy
A at w. Consider the model 〈W, R, D, Q, w∗, V ′

〉 where, for every world w′ that
is n R-steps away from w∗, V ′(F, w′) = dom(w′) but otherwise V ′ does not differ
from V . In this model, s satisfies @�n(∀x)Fx at w but, by (3.4), does not satisfy A
at w. So @�n(∀x)Fx → A is not W-true in this model, which is based on the given
structure. �

Metatheorem 3.7 If, for any structure, (∀x)Fx → A, where F does not occur in
A, is W-true in every model based on that structure, then A is also W-true in every
model based on that structure.

Proof Similar to (3.6). �

For any set 3 of axiom schemata, @K + 3 will be the axiomatic system that results
from @K by adding those schemata.

Metatheorem 3.8 If, for any structure, 3 is a set of axiom schemata whose in-
stances are W-true in every model based on that structure, the theorems of @K + 3
are valid in the structure.

Proof A proof in @K + 3 divides into two parts, although it may be that one of
them is empty: the first part relies at most on @KA1–9, 3, and @KR1–5 while
the second part relies at most on @KA10–11, @KR1, and everything that has been
proved in the first part. Now, the instances of @KA1–9 are W-true in every model
based on the given structure, since they are W-true in all models. (To establish that,
use (3.2) in the case of @KA7 and (3.1) in the case of @KA9.) It can easily be
shown that for any model the rules @KR1–3 preserve W-truth in that model. By
(3.5), for any model the rule @KR4, too, preserves W-truth in that model. And, by
(3.6) and (3.7), for any structure the rule @KR5 preserves the property of being W-
true in every model based on that structure. Therefore, everything proved in the first
part of the proof in @K + 3 is W-true in every model based on the given structure,
and so it is valid in the structure. Moreover, the instances of @KA10–11 are valid
in the given structure (since they are valid in all structures, as can be shown with the
help of Metatheorem 3.2) and @KR1 preserves validity in it. �

Metatheorem 3.9 If `@K A, A is valid in every structure.

(3.9) is a corollary of (3.8).
In order to demonstrate the completeness of the axiomatizations introduced in

Section 2, we must prove some theorems in them. If a1, . . . , an are distinct individ-
ual constants, Sa1,...,an

y1,...,yn A is the wff that results from A when we replace a1, . . . , an
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with the variables y1, . . . , yn , respectively. Let S be an arbitrary axiomatic system
which differs from @K in at most having additional axiom schemata such that if A is
an instance of one of those schemata, a1, . . . , an are distinct, and y1, . . . , yn do not
occur in A, then Sa1,...,an

y1,...,yn A is also an instance of the relevant schema. This restric-
tion on additional axiom schemata is needed for the proof of (3.11) below; all the
schemata named in Section 2 comply with it. The notation `S A, of course, means
that A is a theorem of S, but the notation `

∗

S A will mean that A can be proved in S
without using @KA10 or @KA11; in other words, there is a proof of A which relies
at most on @KA1–9, @KR1–5, and any axiom schemata that S has in addition to
those of @K. When the name of a theorem schema ends with a star (e.g., ST1∗), the
star will indicate that neither @KA10 nor @KA11 has been used in the proof.

When we have proved A and are sketching a proof of a further theorem, it fre-
quently happens that, at some point in the sketch, we invoke A; if we do so in the
context of the axiomatizations discussed in this paper, we should make sure that
inserting the proof of A at that point will not lead to a violation of QKP. Easy or
standard proofs will normally be omitted. For proofs of ST10 and ST11∗, see [7],
p. 203. For a proof of ST14∗, see [7], p. 204.

ST1∗ �A ∧ �B → �[A ∧ B].

ST2∗
[@A → @B] → @[A → B].

Proof We can first prove @¬A → @[A → B]: begin with ¬A → [A → B], prefix
@, and distribute it. Thus, by @KA4, ¬@A → @[A → B]. We can similarly prove
@B → @[A → B]. �

ST3∗ @@A → @A.

Proof By @KA4 we have ¬@A → @¬A and @¬@A → ¬@@A. By
@KA5 we have @¬A → @@¬A. By @KA4, @KR3, and @KA3 we have
@@¬A → @¬@A. Then use @KA1. �

ST4∗
¬@¬A → @A.

ST5∗ @[A ↔ B] → [@A ↔ @B].
ST6∗

¬[@A ∧ @¬A].
ST7∗ @[A ∧ B] ↔ @A ∧ @B.
ST8∗ @�[A → B] → [@�A → @�B].
ST9∗ (∀x)[A → B] → [A → (∀x)B] where x has no free occurrence in A.
ST10 (∀x)[(∀y)A → Ṡy

bA] where b is free for y in A.

SR6 If B results from A by substituting D for an occurrence of C and
`
∗

S C ↔ D, then `
∗

S A ↔ B.

For a proof of this rule see [7], p. 203; the only difference is that here we should
also use @KR3 and ST5∗ in the proof. SR6 can be deployed as a derived rule of
inference because the way in which it is established provides us with an effective
method for getting from a proof of C ↔ D in which @KA10–11 are not used to a
proof of A ↔ B in which @KA10–11 are not used.

ST11∗ (∀x)A ↔ (∀y)Ṡx
yA where y is free for x in A and has no free occurrence

in A.
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ST12∗ A ↔ S̄x
yA where y does not occur in A.6

Proof By SR6 and ST11∗. �

ST13∗ (∀x)[A ∧ B] → (∀x)A ∧ (∀x)B.
ST14∗ (∀x)A → A ∨ (∀y)¬[B → B] where x has no free occurrence in A.

ST15∗ @(∀x)[A → @A].

Proof Let B be a wff in which x has no free occurrence and which is a substitution
instance of a propositional tautology. From @KA5 and ST2∗ we get @[A → @A],
so B → @[A → @A]. Hence, by @KR4, B → @(∀x)[A → @A]. �

ST16∗ @(∀x)[@A → A].

Proof Similar to ST15∗, but using ST3∗ instead of @KA5. �

ST17∗ @(∀x)A → @(∀x)@A.
ST18 (∀x)[@A → A].

SR7 If `
∗

S A → @�B and x has no free occurrence in A, then `
∗

S A →

@�(∀x)B.

Proof Let C be a wff in which x has no free occurrence and which is a substitu-
tion instance of a propositional tautology. We can easily show that `

∗

S @�B →

@[C → �B]. Thus, since `
∗

S A → @�B, we have `
∗

S A → @[C → �B].
Hence, by @KR4, `

∗

S A → @[C → �(∀x)B]. But we can also easily show that
`
∗

S @[C → �(∀x)B] → @�(∀x)B. �

SR8 If `
∗

S A → @�[C1 → �[· · · [Ci → �B] . . . ] ] and x has no free
occurrence in any one of A, C1, . . . , Ci , then `

∗

S A → @�[C1
→ �[· · · [Ci → �(∀x)B] . . . ]].

The proof of SR8 is similar to that of SR7.
A set 3 of wffs is S-consistent if and only if there are no wffs A1, . . . , Ai ∈ 3

(i ≥ 1) such that `S ¬[A1 ∧ · · · ∧ Ai ]. It is S-consistent∗ if and only if there are no
wffs A1, . . . , Ai ∈ 3 (i ≥ 1) such that `

∗

S ¬[A1 ∧ · · · ∧ Ai ]. 3 is maximal if and
only if, for each A, A ∈ 3 or ¬A ∈ 3. The following metatheorem is standard.

Metatheorem 3.10 It is the case for any maximal S-consistent∗ set 0 of wffs that
if `

∗

S A then A ∈ 0, and that if 0 contains both A → B and A it also contains B.

3 is an actuality set if and only if every one of its members begins with @. It is finite∗

just in case there are infinitely many variables (of L) that have no free occurrence
in its members, as well as infinitely many predicate letters of degree 1 that do not
occur in its members. It has the ∀-property if and only if, for every wff (∀x)A, it
contains (∀x)¬[A → A] or else there is a variable y, not occurring in A, and a
predicate letter F of degree 1 such that 3 contains both Ṡx

yA → (∀x)A and Fy.
3 has the �∀-property if and only if it has the ∀-property and moreover, for every
wff �[A1 → · · · �[Am → �(∀x)B] . . . ] where m ≥ 0, there is a variable y, not
occurring in any one of A1, . . . , Am, B, and a predicate letter F of degree 1 such that



‘Actually’ Operator 393

3 contains

�[A1 → · · · �[Am → �[Fy → Ṡx
yB]] . . . ]

→ �[A1 → · · · �[Am → �(∀x)B] . . . ].

Finally, 3 has the �n-property just in case, for each n, there is a predicate letter F of
degree 1 such that �n(∀x1)Fx1 ∈ 3.

A set W is S-full if and only if every member 0 of W satisfies the following
conditions: it is a maximal S-consistent∗ set of wffs that has the ∀-property and, for
some F, contains (∀x1)Fx1, and for each wff ¬�A ∈ 0 there is a set 0′

∈ W which
contains ¬A and includes {B : �B ∈ 0}.7 We can also define what it means to say
that, in an S-full set W , a member 0′ is n steps away from a member 0: 0′ is 0 steps
away if and only if it is 0 itself, and it is n + 1 steps away just in case a set 0′′

∈ W
is n steps away from 0 and {A : �A ∈ 0′′

} ⊆ 0′. Moreover, given an S-full set W
and a member 0 of W , we can say that 0 is distinguished in W if and only if, for
each 0′

∈ W , there is a number n such that 0′ is n steps away from 0 and, for every
A, @A ∈ 0′ just in case A ∈ 0.

With the help of the above definitions we can turn to weak completeness. The
main metatheorems here will be (3.11) and (3.14). (3.12) and (3.13) are in effect
lemmas that contribute to demonstrating (3.14). (3.17), which is the central result
about weak completeness for systems without identity, is deduced from (3.16) and
(3.15), which is a corollary of (3.11) and (3.14). When we later discuss weak com-
pleteness for systems with identity, we shall see that (3.32), which is the central
result for such systems, is deduced from (3.31) and (3.30), which is another corol-
lary of (3.11) and (3.14). The proof of (3.12) – (3.14) adapts a method that is due to
R. Thomason and is presented in Hughes and Cresswell [5], pp. 296–301. If instead
we used the method of demonstrating completeness which was introduced in [7], the
proof would be more complicated.

Metatheorem 3.11 If 3 is an S-consistent, finite∗, and nonempty actuality set of
wffs, then there is an S-consistent∗ and finite∗ actuality set 3′ of wffs where 3 ⊆ 3′

and, for each individual constant a, there is an atomic wff A such that @A ∈ 3′ and
a occurs in A.

Proof Let F1, F2, . . . be infinitely many distinct predicate letters of degree 1, ex-
cluding those that occur in members of 3 and also excluding infinitely many others.
3′ will be 3∪{@F1a1, @F2a2, . . . }. It is clear that 3′ has all the desirable features
other than S-consistency∗. So suppose, for reductio, that 3′ is not S-consistent∗.
Then

`
∗

S ¬[@G1a1 ∧ · · · ∧ @Gnan ∧ A1 ∧ · · · ∧ Ai ]

where @G1a1, . . . , @Gnan are distinct members of {@F1a1, @F2a2, . . . } while
A1, . . . , Ai ∈ 3. Hence,

`
∗

S @G1a1 → [· · · → [@Gnan → ¬[A1 ∧ · · · ∧ Ai ]] . . . ].

So this theorem has a proof in which @KA10–11 are not used. Let y1, . . . , yn be
distinct variables that do not occur in the proof. If throughout that proof we replace
a1, . . . , an with y1, . . . , yn , the result will again be a proof in which @KA10–11 are
not used. Thus

`
∗

S @G1y1 → [· · · → [@Gnyn → Sa1,...,an
y1,...,yn

¬[A1 ∧ · · · ∧ Ai ]] . . . ].
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Hence, by universal generalization, @KA8, and ST9∗,

`
∗

S (∀y1)@G1y1 → [@G2y2 → [· · ·

→ [@Gnyn → (∀y1)Sa1,...,an
y1,...,yn

¬[A1 ∧ · · · ∧ Ai ]] . . . ]].

Therefore, by @KR3, @KA3, and @KA5,

`
∗

S @(∀y1)@G1y1 → [@G2y2 → [· · ·

→ [@Gnyn → @(∀y1)Sa1,...,an
y1,...,yn

¬[A1 ∧ · · · ∧ Ai ]] . . . ]].

So, by ST17∗ and @KR5,

`
∗

S @G2y2 → [· · · → [@Gnyn → @(∀y1)Sa1,...,an
y1,...,yn

¬[A1 ∧ · · · ∧ Ai ]] . . . ].

Proceeding in the same way, we infer that

`
∗

S @(∀yn) · · · @(∀y1)Sa1,...,an
y1,...,yn

¬[A1 ∧ · · · ∧ Ai ].

Hence, by @KA10, `S (∀yn)@(∀yn−1) · · · @(∀y1)Sa1,...,an
y1,...,yn ¬[A1 ∧ · · · ∧ Ai ] and

so, by @KA11, `S @(∀yn−1) · · · @(∀y1)S
a1,...,an−1
y1,...,yn−1¬[A1 ∧ · · · ∧ Ai ]. Continuing

in the same manner, we conclude that `S ¬[A1 ∧ · · · ∧ Ai ], which contradicts the
S-consistency of 3. �

Metatheorem 3.12 If 3 is an S-consistent∗, finite∗, and nonempty actuality set of
wffs, then there is a maximal S-consistent∗ set 0 of wffs which is a superset of 3, has
the �∀-property and the �n-property, and includes {@A : A ∈ 0}.

Proof Let F0, F1, . . . be infinitely many distinct predicate letters of degree 1, ex-
cluding those that occur in members of 3 and also excluding infinitely many oth-
ers. 3′ will be 3 ∪ {@(∀x1)F0x1, @�(∀x1)F1x1, @��(∀x1)F2x1, . . . }. The S-
consistency∗ of 3′ can be proved using @KR5. 3′ is also a finite∗ actuality set.

Now let C1, C2, . . . be an enumeration of all the wffs that have the form @A or
the form (∀x)A or the form �[A1 → · · · �[Am → �(∀x)B] . . . ]. We shall define
the sets 00, 01, 02, . . . where 00 is 3′.

Case 1 Cn+1 is @A.

Subcase 1a There are wffs B1, . . . , Bi ∈ 0n such that `
∗

S B1 ∧ · · · ∧ Bi → @A.
Then 0n+1 will be 0n ∪ {@A}.

Subcase 1b There are no such wffs B1, . . . , Bi . Then 0n+1 will be 0n ∪ {@¬A}.

Case 2 Cn+1 is (∀x)A.

Subcase 2a There are wffs B1, . . . , Bi ∈ 0n such that `
∗

S B1 ∧ · · · ∧ Bi
→ @(∀x)¬[A → A]. Then 0n+1 will be 0n ∪ {@(∀x)¬[A → A]}.

Subcase 2b There are no such wffs B1, . . . , Bi . Then 0n+1 will be 0n ∪ {@Fy,
@[Ṡx

yA → (∀x)A]}, where y is the first variable (in alphabetical order) that has no
free occurrence in any member of 0n and does not occur in A, and F is the first
predicate letter of degree 1 (in alphabetical order) that occurs neither in the members
of 0n nor in A.

Case 3 Cn+1 is �[A1 → · · · �[Am → �(∀x)B] . . . ]. Then 0n+1 will be
0n ∪ {@C′

}, C′ being the wff �[A1 → · · · �[Am → �[Fy → Ṡx
yB]] . . . ] → Cn+1,

where y is the first variable that has no free occurrence in any member of 0n and
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does not occur in A1, . . . , Am, B, while F is the first predicate letter of degree 1 that
occurs neither in the members of 0n nor in A1, . . . , Am, B.

Assume for reductio that 0n is S-consistent∗ but 0n+1 is not. Subcases 1a and 2a
are trivial, and Subcase 1b follows from ST4∗.

Subcase 2b. There will be wffs D1, . . . , D j ∈ 0n such that

`
∗

S D1 ∧ · · · ∧ D j → [@Fy → ¬@[Ṡx
yA → (∀x)A]].

Hence, by @KA4 and ST2∗ (inter alia),

`
∗

S D1 ∧ · · · ∧ D j → @[Fy → Ṡx
yA ∧ ¬(∀x)A].

Thus, by @KR4, @KA8, and ST13∗,

`
∗

S D1 ∧ · · · ∧ D j → @[(∀y)Fy → (∀y)Ṡx
yA ∧ (∀y)¬(∀x)A].

So, by @KA3, ST11∗, and ST14∗,

`
∗

S @(∀y)Fy → [D1 ∧ · · · ∧ D j → @[(∀x)A ∧ [¬(∀x)A ∨ (∀x)¬[A → A]]]].

Therefore, by @KR5, `
∗

S D1 ∧ · · · ∧ D j → @(∀x)¬[A → A], which contradicts
the characteristics of the subcase.

Case 3. There will be wffs D1, . . . , D j ∈ 0n such that `
∗

S D1 ∧ · · · ∧ D j
→ ¬@C′. Hence, by @KA4 and ST7∗,

`
∗

S D1 ∧ · · · ∧ D j → @�[A1 → · · · �[Am → �[Fy → Ṡx
yB]] . . . ]

and
`
∗

S D1 ∧ · · · ∧ D j → ¬@�[A1 → · · · �[Am → �(∀x)B] . . . ].

Thus, by SR8 (or SR7) and @KA8,

`
∗

S D1 ∧ · · · ∧ D j → @�[A1 → · · · �[Am → �[(∀y)Fy → (∀y)Ṡx
yB]] . . . ].

So, by @KA2,

`
∗

S D1 ∧ · · · ∧ D j

→ @�[A1 → · · · �[Am−1 → �[�(∀y)Fy → [Am → �(∀y)Ṡx
yB]]] . . . ].

Proceeding repeatedly as in the last step, we infer that

`
∗

S @�m+1(∀y)Fy → [D1∧· · ·∧D j → @�[A1 → · · · �[Am → �(∀y)Ṡx
yB] . . . ]].

Therefore, by @KR5 and ST11∗,

`
∗

S D1 ∧ · · · ∧ D j → @�[A1 → · · · �[Am → �(∀x)B] . . . ].

Hence `
∗

S ¬[D1 ∧ · · · ∧ D j ], which contradicts the S-consistency∗ of 0n .
Thus 00, 01, 02, . . . are all S-consistent∗, as is their union, 0′. 0′ is also an

actuality set.
0 will be 0′

∪ {A : @A ∈ 0′
}. Assume that 0 is not S-consistent∗. Then

`
∗

S ¬[B1 ∧ · · · ∧ Bi ∧ A1 ∧ · · · ∧ A j ] where B1, . . . , Bi , @A1, . . . , @A j ∈ 0′.
Hence, by @KR3 and @KA4, `

∗

S ¬@[B1 ∧ · · · ∧ Bi ∧ A1 ∧ · · · ∧ A j ]. So,
by ST7∗, `

∗

S ¬[@B1 ∧ · · · ∧ @Bi ∧ @A1 ∧ · · · ∧ @A j ]. Thus, by @KA5,
`
∗

S ¬[B1 ∧ · · · ∧ Bi ∧ @A1 ∧ · · · ∧ @A j ], which contradicts the S-consistency∗ of
0′. 0 is therefore S-consistent∗. It is also maximal and has the �∀-property and the
�n-property. Finally, if A ∈ 0 then @A ∈ 0; for if @A /∈ 0, then @¬A ∈ 0′ and
so ¬A ∈ 0. �
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In order to prove the next metatheorem, we must presuppose an enumeration of all
the ordered pairs 〈F, y〉 where F is a predicate letter of degree 1 and y is a variable.

Metatheorem 3.13 Let 0 and 1 be sets of wffs such that 1 is maximal and S-
consistent∗, has the �∀-property and the �n-property, and includes {@B : B ∈ 0}.
Also let �A /∈ 1. Then there is a maximal S-consistent∗ set 2 of wffs which has the
�∀-property and the �n-property, includes {@B : B ∈ 0}, and is such that ¬A ∈ 2
and {C : �C ∈ 1} ⊆ 2.

Proof Let D1, D2, . . . be an enumeration of all the wffs that have the form
(∀x)B or the form �[A1 → · · ·�[Am → �(∀x)B] . . . ]. We shall define the
sets 20, 21, 22, . . ..

20 will be {¬A} ∪ {@B : B ∈ 0} ∪ {C : �C ∈ 1}. Assume that 20 is not
S-consistent∗. Then, for some wffs �C1, . . . ,�Ci ∈ 1 and B1, . . . , Bl ∈ 0,
`
∗

S C1 ∧ · · · ∧ Ci ∧ @B1 ∧ · · · ∧ @Bl → A. Hence, by @KR2, @KA2, and
ST1∗, `

∗

S �C1 ∧ · · · ∧ �Ci ∧ �@B1 ∧ · · · ∧ �@Bl → �A. Thus, by @KA6,
`
∗

S �C1 ∧ · · · ∧ �Ci ∧ @B1 ∧ · · · ∧ @Bl → �A. So, by (3.10), �A ∈ 1, which is
contrary to our hypothesis. 20 is therefore S-consistent∗. Note that 20 also has the
�n-property.

Case 1 Dn+1 is (∀x)B.

Subcase 1a There are wffs E1, . . . , Ei ∈ 2n such that `
∗

S E1 ∧ · · · ∧ Ei
→ (∀x)¬[B → B]. Then 2n+1 will be 2n ∪ {(∀x)¬[B → B]}.

Subcase 1b There are no such wffs E1, . . . , Ei . Then 2n+1 will be 2n ∪ {Fy,
Ṡx

yB → (∀x)B} where 〈F, y〉 is the first ordered pair of a predicate letter G of degree
1 and a variable z such that z does not occur in B and 2n ∪ {Gz, Ṡx

zB → (∀x)B} is
S-consistent∗.

Case 2 Dn+1 is �[A1 → · · · �[Am → �(∀x)B] . . . ]. Then 2n+1 will be
2n ∪ {�[A1 → · · · �[Am → �[Fy → Ṡx

yB]] . . . ] → Dn+1} where 〈F, y〉 is the
first ordered pair of a predicate letter G of degree 1 and a variable z such that z does
not occur in A1, . . . , Am, B and 2n ∪ {�[A1 → · · · �[Am → �[Gz → Ṡx

zB]] . . . ]
→ Dn+1} is S-consistent∗.

Assume that 2n is defined and S-consistent∗. If we have Subcase 1a, it is then
trivial that 2n+1 is defined and S-consistent∗.

Subcase 1b. Suppose that, for every predicate letter G of degree 1 and every variable
z not occurring in B, 2n ∪{Gz, Ṡx

zB → (∀x)B} is not S-consistent∗. If G and z have
this feature, then, for some wffs �C1, . . . ,�Ci ∈ 1 and B1, . . . , Bl ∈ 0,

`
∗

S C1 ∧ · · · ∧ Ci ∧ @B1 ∧ · · · ∧ @Bl → [E → [Gz → Ṡx
zB ∧ ¬(∀x)B]]

where E is the conjunction (in some order) of ¬A and all wffs that our construction
has added to 20 at stages 1, . . . , n. Hence

`
∗

S �C1 ∧ · · · ∧ �Ci ∧ �@B1 ∧ · · · ∧ �@Bl → �[E → [Gz → Ṡx
zB ∧ ¬(∀x)B]].

So

`
∗

S �C1 ∧ · · · ∧ �Ci ∧ @B1 ∧ · · · ∧ @Bl → �[Gz → [E → Ṡx
zB ∧ ¬(∀x)B]].

Thus by (3.10), for every G of degree 1 and every z not occurring in B, the wff
�[Gz → [E → Ṡx

zB ∧ ¬(∀x)B]] belongs to 1.
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Let v be a variable that occurs neither in E nor in B. Since 1 has the �∀-
property, there is a predicate letter G of degree 1 and a variable z not occurring
in E → Ṡx

vB ∧ ¬(∀x)B such that 1 contains

�[Gz → [E → Ṡx
zB ∧ ¬(∀x)B]] → �(∀v)[E → Ṡx

vB ∧ ¬(∀x)B].

Hence 1 contains �(∀v)[E → Ṡx
vB ∧ ¬(∀x)B]. But

`
∗

S �(∀v)[E → Ṡx
vB ∧ ¬(∀x)B] → �[E → (∀v)Ṡx

vB ∧ (∀v)¬(∀x)B]

`
∗

S �[E → (∀v)Ṡx
vB ∧ (∀v)¬(∀x)B]

→ �[E → (∀x)B ∧ [¬(∀x)B ∨ (∀x)¬[B → B]]]

and

`
∗

S �[E → (∀x)B ∧ [¬(∀x)B ∨ (∀x)¬[B → B]]] → �[E → (∀x)¬[B → B]].

Thus 1 contains �[E → (∀x)¬[B → B]]. So 20, as well as 2n , contains
E → (∀x)¬[B → B], contrary to the characteristics of the subcase.

Hence, our supposition that, for every predicate letter G of degree 1 and every
variable z not occurring in B, 2n ∪ {Gz, Ṡx

zB → (∀x)B} is not S-consistent∗ was
wrong. 2n+1 is therefore defined and S-consistent∗.

Case 2. Suppose that, for every predicate letter G of degree 1 and every variable z not
occurring in A1, . . . , Am, B, the set 2n ∪ {�[A1 → · · · �[Am
→ �[Gz → Ṡx

zB]] . . . ] → Dn+1} is not S-consistent∗. If G and z have this
feature, then, for some wffs �C1, . . . ,�Ci ∈ 1 and B1, . . . , Bl ∈ 0,

`
∗

S C1 ∧ · · · ∧ Ci ∧ @B1 ∧ · · · ∧ @Bl

→ [E → �[A1 → · · · �[Am → �[Gz → Ṡx
zB]] . . . ]]

and

`
∗

S C1 ∧ · · · ∧ Ci ∧ @B1 ∧ · · · ∧ @Bl

→ [E → ¬�[A1 → · · · �[Am → �(∀x)B] . . . ]]

where E is as in Subcase 1b above. Hence

`
∗

S �C1 ∧ · · · ∧ �Ci ∧ @B1 ∧ · · · ∧ @Bl

→ �[E → �[A1 → · · · �[Am → �[Gz → Ṡx
zB]] . . . ]]

and

`
∗

S �C1 ∧ · · · ∧ �Ci ∧ @B1 ∧ · · · ∧ @Bl

→ �[E → ¬�[A1 → · · · �[Am → �(∀x)B] . . . ]].

Thus, for every G of degree 1 and every z not occurring in A1, . . . , Am, B, the
wffs �[E → �[A1 → · · ·�[Am → �[Gz → Ṡx

zB]] . . . ]] and �[E → ¬�[A1
→ · · · �[Am → �(∀x)B] . . . ]] belong to 1.

Now, since 1 has the �∀-property, there is a predicate letter G of degree 1 and a
variable z not occurring in E, A1, . . . , Am, B such that 1 contains

�[E → �[A1 → · · · �[Am → �[Gz → Ṡx
zB]] . . . ]]

→ �[E → �[A1 → · · · �[Am → �(∀x)B] . . . ]].
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Hence 1 contains �[E → �[A1 → · · · �[Am → �(∀x)B] . . . ]]. Since it also
contains �[E → ¬�[A1 → · · ·�[Am → �(∀x)B] . . . ]], we have that �¬E ∈ 1.
Thus, ¬E belongs to 20 and to 2n , contrary to the S-consistency∗ of 2n . Conse-
quently, once more, 2n+1 is defined and S-consistent∗.

So, all of 20, 21, 22, . . . are defined and S-consistent∗. Let 2′ be their union.
It is S-consistent∗, too, and has the �∀-property. 2′ can be extended in a standard
manner to a maximal S-consistent∗ set 2. 2 has all the desirable features. �

Metatheorem 3.14 If 3 is an S-consistent∗, finite∗, and nonempty actuality set of
wffs, then there is an S-full set W in which a superset of 3 is distinguished.

Proof By (3.12), 3 can be extended to a set 0 of wffs which has the following
five traits: it is maximal, it is S-consistent∗, it has the �∀-property, it also has the
�n-property, and it includes {@A : A ∈ 0}. Consider the set P of those sets of
wffs which have the five traits. By (3.13) P is S-full. Let W be the set of just those
members w of P such that, for some n, w is, in P , n steps away from 0. W is
also S-full. Moreover, in it 0 is distinguished. In particular, for any w ∈ W , if
@A ∈ w then A ∈ 0; for if A /∈ 0, then ¬A ∈ 0, so @¬A ∈ w, in which case, by
ST6∗, @A /∈ w. �

A model 〈W, R, D, Q, w∗, V 〉 is S-canonical just in case it satisfies the following
conditions: W is an S-full set in which w∗ is distinguished; for all worlds w and w′,
wRw′ if and only if {A : �A ∈ w} ⊆ w′; D is the set of variables and individual
constants; for every world w and every b, wQb if and only if w contains an atomic
wff in which b occurs; for every a, V (a) = a; and, for every predicate letter F i

j ,
every world w, and all b1, . . . , bi that belong to dom(w), 〈b1, . . . , bi 〉 ∈ V (F i

j , w)

if and only if F i
j b1 . . . bi ∈ w. From (3.11) and (3.14) we can derive (3.15).

Metatheorem 3.15 If 3 is an S-consistent, finite∗, and nonempty actuality set of
wffs, there is an S-canonical model whose actual world is a superset of 3.

We may now prove the following.

Metatheorem 3.16 It is the case in any S-canonical model that, for every A and
every world w, (x1, x2, . . . ) satisfies A at w if and only if A ∈ w.

Proof The proof proceeds, as usual, by induction on the number of occurrences of
→, ¬, �, @, and ∀ in A and relies on the properties of S-full sets. For some details,
see [7], pp. 210–11. The only new clause here concerns the case in which A is @B;
for this case we need to invoke the fact that, in any S-canonical model, the actual
world is distinguished in the set of worlds. �

If x1, . . . , xi are distinct variables arranged in alphabetical order and they are all the
variables that have a free occurrence in A, then the closure of A, clo(A), will be
(∀x1) · · · (∀xi )A; if no variable has a free occurrence in A, clo(A) will be A itself.
(3.15) and (3.16) imply (3.17).

Metatheorem 3.17 If A is true in every S-canonical model, then `S A.

Proof If A is true in every S-canonical model, so is clo(A). Now assume
that 6`S clo(A). Then 6`S @clo(A). So {@¬clo(A)} is S-consistent. (For if
`S ¬@¬clo(A) then `S @clo(A): we know from ST4∗ that there is a proof of
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¬@¬clo(A) → @clo(A) in which @KA10–11 are not used, so by prefixing such
a proof to a proof of ¬@¬clo(A) and then using modus ponens we get a proof of
@clo(A).) Hence, by (3.15), there is an S-canonical model whose actual world, w∗,
contains @¬clo(A). So, by (3.16), in that model (x1, x2, . . . ) satisfies @¬clo(A)
at w∗. Thus (x1, x2, . . . ) does not satisfy clo(A) at w∗. Let b ∈ dom(w∗). Then
by (3.1) (b, b, . . . ) does not satisfy clo(A) at w∗, contrary to the truth of clo(A) in
every S-canonical model. Therefore `S clo(A), so `S A. �

Metatheorem 3.18 If A is valid in all structures, `@K A.

(3.18), which states the weak completeness of @K, is a corollary of (3.17).
Turning to the axiomatic systems @ j , we can now easily establish their sound-

ness and weak completeness. The soundness is derived from (3.8). For example, in
the case of @1 we should prove that, for every structure meeting condition (1), the
instances of the schema @1A are W-true in all models based on that structure. The
weak completeness is derived from (3.17). In the case of @1, say, we should prove
that each @1-canonical model is based on a structure meeting condition (1). As an
example, I shall deal with the completeness of @5, @7, @10, @11, and @12.

Metatheorem 3.19 Each @5-canonical model is based on a structure that satisfies
condition (5).

Proof We must show that, in each @5-canonical model and for any worlds w and
w′, if �A ∈ w then A ∈ w′. Assume that �A ∈ w. Then, by @3A and (3.10),
@�A ∈ w, so �A belongs to the actual world of the model. Hence, @�A ∈ w′.
So, by @1A, A ∈ w′. �

Metatheorem 3.20 Each @7-canonical model is based on a structure that satisfies
condition (7).

Proof We should first note a general fact: if a maximal S-consistent∗ set 0 has
the ∀-property and contains a wff that can be abbreviated as (∃y)A, then there is a
variable x such that 0 contains both Ṡy

xA and an atomic wff in which x occurs. For 0
does not contain (∀y)¬[¬A → ¬A]: if it does, then, contrary to the S-consistency∗

of the set, (∀y)¬A ∈ 0, since for every B `
∗

S (∀y)¬[B → B] → (∀y)B. Thus,
by the ∀-property, there is a variable x and a predicate letter G such that both Gx
and Ṡy

x¬A → (∀y)¬A belong to 0. Hence, 0 also contains ¬(∀y)¬A → Ṡy
xA, so

Ṡy
xA ∈ 0.

Now, we must show that, in each @7-canonical model and for every world w,
there is a variable or individual constant b such that w contains an atomic wff in
which b occurs, and the actual world, w∗, also contains such an atomic wff. We
know that, for some F, (∀x1)Fx1 ∈ w∗. Also, by @7A, for any y, the wff abbreviated
as (∃y)@[(∀x1)Fx1 → Fy] belongs to w. So there is a variable x such that w
contains both @[(∀x1)Fx1 → Fx] and an atomic wff in which x occurs. Thus
(∀x1)Fx1 → Fx belongs to w∗, so Fx ∈ w∗. �

Metatheorem 3.21 Each @10-canonical model is based on a structure that satis-
fies condition (10).

Proof We must show that, in each @10-canonical model and for any worlds w and
w′, if w contains an atomic wff B in which b occurs, and w′ contains an atomic
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wff C in which b occurs, then w is w′. Let A ∈ w. We know that, for some
n, w′ is n steps away from the actual world, w∗. Also, by @10A, w contains
B ∧ A → @�n

[C → A]. Thus �n
[C → A] belongs to w∗, so A ∈ w′. And, con-

versely, if A ∈ w′, then A ∈ w. For, if A /∈ w, then ¬A ∈ w, and so ¬A ∈ w′. �

Metatheorem 3.22 Each @11-canonical model is based on a structure that satis-
fies condition (11).

Proof We must show that, in each @11-canonical model and for any worlds w and
w′, if w contains an atomic wff B in which b occurs, w′ also contains an atomic
wff in which b occurs. We know that, for some F and G, (∀x1)Fx1 ∈ w∗ and
(∀x1)Gx1 ∈ w′. Also, by @8A, w contains B → @[(∀x1)Fx1 → Fb]. So Fb ∈ w∗,
and @Fb ∈ w′. But, by @9A, w′ also contains @Fb → [(∀x1)Gx1 → Gb]. Hence,
Gb ∈ w′. �

Metatheorem 3.23 Each @12-canonical model is based on a structure that satis-
fies condition (12).

Proof We must show that, in each @12-canonical model and for any world w such
that {C : �C ∈ w∗

} ⊆ w, if w∗ (the actual world) contains an atomic wff B in
which b occurs then w contains no atomic wff in which b occurs. Suppose that
such a wff A belongs to w, let x be a variable that does not occur in A, and let A′

result from A by replacing b with x. Then, by @12A, w∗ contains (∀x)�¬A′, and
by @KA7 it contains B → [(∀x)�¬A′

→ �¬A]. Thus ¬A ∈ w, contrary to the
@12-consistency∗ of w. �

Now, in order to demonstrate compactness and strong completeness, we extend the
language L to a language L+ by adding the denumerably many variables y1, y2, . . .
and the denumerably many predicate letters G1

1, G1
2, . . . and H1

1 , H1
2 , . . . of degree

1. The variables of L+, old and new, are enumerated. The concept of a model+ is
defined in the context of L+ just as the concept of a model was defined in the context
of L. Given a model+〈W, R, D, Q, w∗, V +

〉 and a sequence s of elements of D, the
function s+ is the following: for every variable v of L+, s+(v) = sk where v is the
kth variable in the enumeration of the variables of L+; s+(a) = V +(a). Satisfaction
in a model+ is defined like satisfaction in a model, except that now the basic clause
relies on the function s+, and the clause for ∀ relies on the enumeration of all the
variables of L+. The axiomatic system @K+ will be just like @K except that it
concerns the language L+. Other model-theoretic and proof-theoretic concepts are
also extended to the new language. I assume that we have proved the analogues in
L+ of various metatheorems we proved above for L.

Metatheorem 3.24 For any model M = 〈W, R, D, Q, w∗, V 〉 and any
model+ M+

= 〈W, R, D, Q, w∗, V +
〉 where V ⊂ V +, for any wff A of L, for

any w ∈ W , and for any sequences s and s′ of elements of D such that, for every i ,
s∗(xi ) = s′+(xi ), s satisfies A at w in M if and only if s′ satisfies A at w in M+.

(3.24) can be proved by induction on the number of occurrences of →, ¬, �, @, and
∀ in A.

We shall now establish that satisfiability in a structure is compact.
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Metatheorem 3.25 Let 3 be any set of wffs of L. If, for each finite subset of
3, there is a structure in which that subset is satisfiable, then 3 is satisfiable in a
structure.

Proof We assume that 3 is not finite, for the case of finite 3 is trivial. Let 1 be the
set of wffs of L which results from 3 when we prefix @ to each wff in it, and let 2
be 1 ∪ {@G1

1x1, @G1
2x2, . . . }.

Consider any finite subset 1′ of 1. We can see that there is a model M =

〈W, R, D, Q, w∗, V 〉 in which, for some sequence s of elements of dom(w∗),
s satisfies all members of 1′ at w∗. Further, we can construct a model+ M+

=

〈W, R, D, Q, w∗, V +
〉 where V +

⊃ V and, for every i , V +(G1
i , w

∗) = dom(w∗).
Finally, let s′ be a sequence of elements of dom(w∗) such that, for every i ,
s′+(xi ) = s∗(xi ). Then (3.24) implies that, in M+, s′ satisfies all members of
1′ at w∗. But, in M+, s′ also satisfies all members of {@G1

1x1, @G1
2x2, . . . } at w∗.

In other words, 1′
∪ {@G1

1x1, @G1
2x2, . . . } is satisfiable in a structure. Hence, so is

every finite subset of 2.
Suppose that 2 is not @K+-consistent. Then there will be wffs A+

1 , . . . , A+

j of
L+ such that A+

1 , . . . , A+

j ∈ 2 and `@K+ ¬[A+

1 ∧· · ·∧A+

j ]. So, by the soundness of
@K+, ¬[A+

1 ∧· · ·∧A+

j ] will be valid in every structure, contrary to the satisfiability
of {A+

1 , . . . , A+

j } in some structure. Hence 2 is @K+-consistent.
2 is a nonempty actuality set, and it is finite∗ in L+. Let s′ now be the se-

quence of all the variables of L+ in increasing order of their enumeration. By the
analogues of (3.15) and (3.16) for L+, there is an @K+-canonical model+ M+

=

〈W, R, D, Q, w∗, V +
〉 in which s′ satisfies every member of 2 at w∗. Thus, in M+,

s′ satisfies all of G1
1x1, G1

2x2, . . . at w∗. So, for every i , s′+(xi ), which is xi itself,
belongs to dom(w∗).

Consider the model M that results from M+ when we delete the valuation of the
predicate letters that extend L to L+. (3.24) shows that, in M , (x1, x2, . . . ) satisfies
all members of 1 at w∗, and thus it satisfies all members of 3 at w∗. �

Proceeding as in the proof of (3.25) and relying on metatheorems for L+ such as
(3.19) – (3.23), we can also demonstrate, for every j (1 ≤ j ≤ 12), that satisfiabil-
ity in a structure that meets condition ( j) is compact. In other words, if, for each
finite subset of 3, there is a structure which meets ( j) and in which that subset is
satisfiable, then 3 itself is satisfiable in a structure that meets ( j).

It is time to prove the strong completeness of @K.

Metatheorem 3.26 Let A be a wff of L, and 3 be a set of wffs of L. If A is a
consequence of 3 in every structure, then for some subset {B1, . . . , Bn} of 3 (n ≥ 0)
`@K B1 ∧ · · · ∧ Bn → A.

Proof Since A is a consequence of 3 in every structure, there is no structure in
which 3 ∪ {¬A} is satisfiable. Thus, by (3.25), for some subset {B1, . . . , Bn} of 3
there is no structure in which {B1, . . . , Bn, ¬A} is satisfiable. So B1 ∧· · ·∧Bn → A
is valid in every structure. We can then invoke the weak completeness of @K. �

Proceeding as in the proof of (3.26), we can prove the strong completeness of @ j ,
for 1 ≤ j ≤ 12. In other words, if A is a consequence of 3 in every struc-
ture that meets condition ( j), then for some subset {B1, . . . , Bn} of 3 (n ≥ 0)
`@ j B1 ∧ · · · ∧ Bn → A.
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Now, in order to see why the theorems of @K (or those of @ j) which belong to
the language L′ (the nonmodal part of L) are just the wffs that make up the classical
predicate calculus without identity when this calculus is formulated in L′, we may
follow the reasoning deployed in [7], pp. 213–14. Note that, in establishing the
analogue of Metatheorem 3.19 of that paper, we must use both ST10 and ST18 (of
the present paper).

We should turn to the axiomatizations that introduce a sign of identity. Our first
task is to prove analogues of (3.6) – (3.8). For any set 3 of axiom schemata, @IK +

3 will be the axiomatic system that results from @IK by adding those schemata.

Metatheorem 3.27 If, for any structure, @�n(∀x)Fx → A, where F does not
occur in A, is W-true in every identity model based on that structure, then A is also
W-true in every identity model based on that structure.

Metatheorem 3.28 If, for any structure, (∀x)Fx → A, where F does not occur in
A, is W-true in every identity model based on that structure, then A is also W-true in
every identity model based on that structure.

Metatheorem 3.29 If, for any structure, 3 is a set of axiom schemata whose in-
stances are W-true in every identity model based on that structure, the theorems of
@IK + 3 are I-valid in the structure.

The proofs of (3.27) and (3.28) are similar to those of (3.6) and (3.7). The proof of
(3.29) is similar to that of (3.8) but makes use of (3.27) and (3.28) and of the fact that
the instances of the schemata @IKA1–3 are W-true in every identity model.

Relying on (3.29), we can easily establish the soundness of @IK and @I j
(1 ≤ j ≤ 12). In order to demonstrate their completeness, we must prove some
theorems in those systems. Let SI be an arbitrary axiomatic system which differs
from @IK in at most having additional axiom schemata such that if A is an in-
stance of one of those schemata, a1, . . . , an are distinct individual constants, and
y1, . . . , yn are variables that do not occur in A, then Sa1,...,an

y1,...,yn A is also an instance of
the relevant schema. Any such axiomatic system is among those designated by S, so
we can speak of SI -fullness, SI -consistency, and so forth, on the basis of definitions
that have already been given. For a proof of SI T2∗, SI T3∗, and SI T4∗, see [7],
pp. 214–15.

SI T1∗ A → b = b where A is an atomic wff in which b occurs.

Proof Let x be any variable. Then we need @IKA1 and A → [(∀x)[x = x]

→ b = b], which is an instance of @KA7. �

SI T2∗ b = c → c = b.
SI T3∗ b = c → [c = d → b = d].
SI T4∗ b1 = c1 → [· · · → [bi = ci → [Fb1 . . . bi → Fc1 . . . ci ]] . . . ].

SI T5∗ b = c → @�n
[A → b = c] where A is an atomic wff in which b

occurs or c occurs.
Proof Let x and y be distinct variables that do not occur in b = c → @�n

[A
→ b = c]. Let A′ result from A by substituting y for every occurrence of
c, and let A′′ result from A′ by substituting x for every occurrence of b. Note
that if b and c are the same symbol, then A′′ is A′. Also, x does not occur
in A′. x = y → @�n

[A′′
→ x = y] is an instance of @IKA3. Hence
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(∀x)(∀y)[x = y → @�n
[A′′

→ x = y]]. Thus, by @KA7, b = c → (∀y)[b = y
→ @�n

[A′
→ b = y]]. But by @KA7 we also have b = c → [(∀y)[b = y

→ @�n
[A′

→ b = y]] → [b = c → @�n
[A → b = c]]]. �

The standard order of variables and individual constants will be x1, a1, x2, a2, . . ..
Given an SI -full set W , we can define the function f from variables and individual
constants: for each b, f (b) is the first individual constant or variable c in the standard
order such that, for every world w ∈ W containing an atomic wff in which b or c
occurs, b = c ∈ w.8 It is a consequence of SI T1∗ that, for every world w ∈ W
containing an atomic wff in which b occurs, b = b ∈ w.

A model 〈W, R, D, Q, w∗, V 〉 is SI -identity-canonical just in case it is an iden-
tity model and satisfies the following conditions: W is an SI -full set in which w∗ is
distinguished; for all worlds w and w′, wRw′ if and only if {A : �A ∈ w} ⊆ w′; D
is the range of f ; for every world w and every b ∈ D, wQb if and only if w contains
an atomic wff in which b occurs; for every a, V (a) is f (a); and, for every predi-
cate letter F i

j other than F2
1 , for every world w, and for all b1, . . . , bi that belong to

dom(w), 〈b1, . . . , bi 〉 ∈ V (F i
j , w) if and only if F i

j b1 . . . bi ∈ w. From (3.11) and
(3.14) we can derive (3.30).

Metatheorem 3.30 If 3 is an SI -consistent, finite∗, and nonempty actuality set of
wffs, there is an SI -identity-canonical model whose actual world is a superset of 3.9

The following is analogous to (3.16).

Metatheorem 3.31 It is the case in any SI -identity-canonical model that, for every
A and every world w, ( f (x1), f (x2), . . . ) satisfies A at w if and only if A ∈ w.

Proof We shall only discuss the case in which A is F2
1 b1b2, and so can be

abbreviated as b1 = b2, while f (b1), f (b2) ∈ dom(w). Then w contains
b1 = f (b1) and b2 = f (b2). Also ( f (x1), f (x2), . . . ) satisfies A at w if and
only if 〈 f (b1), f (b2)〉 ∈ V (F2

1 , w) if and only if f (b1) is f (b2). Now, if f (b1) is
f (b2), then b1 = f (b2) ∈ w; but by SI T2∗, f (b2) = b2 ∈ w; thus, by SI T3∗,
b1 = b2 ∈ w. On the other hand, if f (b1) is other than f (b2), let f (b1) appear
earlier than f (b2) in the standard order. Then there is a world w′ which does not
contain b2 = f (b1) but contains an atomic wff C in which b2 or f (b1) occurs.
For some n, w′ is n steps away from w∗. Assume that b2 = f (b1) belongs to w.
Then, by SI T5∗, w also contains @�n

[C → b2 = f (b1)], and so w∗ contains
�n

[C → b2 = f (b1)]. But then b2 = f (b1) belongs to w′, contrary to what we
know. Hence b2 = f (b1) does not belong to w. Therefore, since b1 = f (b1) ∈ w,
w does not contain b2 = b1, and so it does not contain b1 = b2. Things are similar
if f (b2) appears earlier than f (b1) in the standard order.

For the case in which A is @B, see the proof of (3.16). For other cases, see [7],
pp. 215–16. �

(3.30) and (3.31) imply the next metatheorem.

Metatheorem 3.32 If A is true in every SI -identity-canonical model, then `SI A.

The proof of (3.32) is like that of (3.17). Using (3.32), we can demonstrate the
weak completeness of the axiomatic systems @IK and @I j (1 ≤ j ≤ 12): the
proof is essentially the same as the proof of weak completeness for their counterparts
without identity, except that a few additional steps are needed in the reasoning for
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@I7. For example, the wffs that are I-valid in every structure meeting condition (1)
are theorems of @I1.

Proceeding as in the proofs of (3.25) and (3.26), we can establish compactness
of I-satisfiability, as well as strong completeness, for the systems @IK and @I j .
As regards @I1, for example, it is the case for any set 3 of wffs that if, for each
finite subset of 3, there is a structure which meets condition (1) and in which that
subset is I-satisfiable, then 3 itself is I-satisfiable in a structure meeting (1); and if
A is an I-consequence of 3 in every structure that meets (1), then for some subset
{B1, . . . , Bn} of 3 (n ≥ 0) `@I1 B1 ∧ · · · ∧ Bn → A.

Finally, in order to see why the theorems of @IK (or those of @I j) which belong
to the language L′ are just the wffs that make up the classical predicate calculus with
identity when this calculus is formulated in L′ and the sign of identity is F2

1 , we may
follow the reasoning deployed in [7], pp. 216–17.

Notes

1. I happen to believe that an operator which always introduces information about what is in
fact the case captures only some of the aspects of the notion that is expressed in natural
languages in words like ‘actually’ and its cognates. Be that as it may, it is still the case
that adding such an operator to the usual idiom of modal logic goes a long way toward
rectifying the neglect of actuality.

2. There is an exception to this generalization. In the proof of (3.31) below, the case in
which A can be abbreviated as b1 = b2 is treated in a way that involves the symbol @
essentially and so could not have been followed in the other paper.

3. A statement such as ‘A ∨ ¬A is a theorem’ will mean ‘The wff abbreviated as A ∨ ¬A is
a theorem’.

4. Outermost brackets are omitted. The rule of the association to the left applies; for exam-
ple, A → B → C abbreviates [[A → B] → C]. The brackets that enclose a disjunction
or conjunction are omitted when the disjunction or conjunction is an argument of an oc-
currence of → or ↔; so A → B ∨ C abbreviates [A → [B ∨ C]]. No other brackets are
omitted.

5. Given a structure, a world w′ is 0 R-steps away from w if and only if it is w itself, and it
is m + 1 R-steps away from w if and only if there is a world w′′ that is m R-steps away
from w while w′′ Rw′.

6. ST12∗, as well as (3.3), should be used in the proofs of (3.16) and (3.31) below.

7. The requirement that each set in W should contain a wff of the form (∀x1)Fx1 contributes
to proving the completeness of @7, @8, @9, @11, and the corresponding systems with
identity.

8. A statement such as ‘b = c belongs to w’ will mean ‘The wff abbreviated as b = c
belongs to w’.
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9. In order to derive (3.30), note that if a member 0 of an SI -full set contains an atomic wff
in which a constant a occurs, then 0 also contains an atomic wff in which f (a) occurs —
e.g., the wff F2

1 a f (a).
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