On the First-Order Prefix Hierarchy

Eric Rosen

Abstract

We investigate the expressive power of fragments of first-order logic that are defined in terms of prefixes. The main result establishes a strict hierarchy among these fragments over the signature consisting of a single binary relation. It implies that for each prefix p, there is a sentence φ_{p} in prenex normal form with prefix p, over a single binary relation, such that for all sentences θ in prenex normal form, if θ is equivalent to φ_{p}, then p can be embedded in the prefix of θ. This strengthens a theorem of Walkoe.

1 Introduction

In this paper we address the following question. Given two first-order prefixes p and q, is there a sentence with prefix p that is not equivalent to any sentence with prefix q ? Walkoe [4] proved that if p and q are different prefixes of length n, then there is such a sentence, containing a single n-ary relation symbol. Keisler and Walkoe [3] then strengthened this result by showing that it also holds over the class of finite structures. Our main theorem improves on Walkoe's result. It implies that for each prefix p, there is a sentence φ_{p} in prenex normal form with prefix p, over a single binary relation, such that for all sentences θ in prenex normal form, if θ is equivalent to φ_{p}, then p can be embedded in the prefix of θ. (We leave its precise statement to Section 2.) This also resolves a conjecture of Grädel and McColm [1], explained below.

2 Background and Statement of the Main Theorem

2.1 Terminology and definitions We adopt the following terminology and conventions. We will consider (fragments of) first-order logic (FO) and infinitary logic (L_{∞}), which allows infinitary conjunctions and disjunctions. Throughout we assume that formulas are in negation normal form, that is, negation symbols only bind atomic formulas. Signatures are always purely relational and finite. A graph is a

Received February 20, 2004; accepted November 12, 2004; printed May 25, 2005
2000 Mathematics Subject Classification: Primary, 03C07; Secondary, 0B10
Keywords: first-order prefix, expressive power
© 2005 University of Notre Dame
structure with signature $\{E\}, E$ binary; it is simple if it is undirected and loopfree. In a (directed) graph, we say that vertex a is an E-predecessor of vertex b, if $E a b \wedge \neg E b a$. Throughout, we assume that any class of structures we are talking about is closed under isomorphism.

Both structures and their universes are denoted A, B, \ldots and so on. If A is a σ-structure, and $R \in \sigma$, then R^{A} denotes the interpretation of R in A. For $\tau \subset \sigma$, $A \mid \tau$ is the reduct of A to τ, a τ-structure. If $\psi(x)$ is a σ-formula with exactly one free variable, then $A \upharpoonright \psi(x)$ is the substructure of A with universe $\psi(A)=$ $\{a \in A \mid A \models \psi[a]\}$. Given a tuple of elements \bar{a} in $A, A\lceil\bar{a}$ is the substructure of A with universe $\bar{a} . A \upharpoonright \bar{a} \cong B \upharpoonright \bar{b}$ means, moreover, that the function from $A \upharpoonright \bar{a}$ to $B \upharpoonright \bar{b}$ that takes each $a_{i} \in \bar{a}$ to the corresponding $b_{i} \in \bar{b}$ is an isomorphism. The positive diagram of a σ-structure A is the set of all atomic sentences true over the signature σ_{A}, which contains, additionally, a constant for each $a \in A$. (In this case, we will not distinguish between an element and its name.)

A prefix p is a non-null finite string of $\exists \mathrm{s}$ and $\forall \mathrm{s}$. The dual of p, denoted \bar{p}, is the prefix obtained by swapping occurrences of $\exists \mathrm{s}$ and $\forall \mathrm{s}$. A Σ-, respectively, П-prefix is a prefix beginning with \exists, respectively, \forall.

We recall the following basic concepts from formal language theory. An alphabet A is a finite set of symbols and a word is a non-null finite string of symbols. $(A)^{+}$ denotes the set of words over the alphabet A. A language is a set of words in $(A)^{+}$. The concatenation of two words is written $p * q$. When p is a word and Q a language, we use $p * Q$ to denote the set $\{p * q \mid q \in Q\}$.

We view prefixes as words over the alphabet $\Sigma_{1}=\{\exists, \forall\}$. We use $L_{1}=(\{\exists, \forall\})^{+}$ to denote the set of all prefixes. For φ a first-order formula in prenex normal form, $\operatorname{pr}(\varphi)$ is the prefix of φ. We define a partial order on prefixes as follows: $p \leq q$ if and only if p can be obtained from q by removing symbols from the latter. In this case, p is a (not necessarily contiguous) subword of q.

Given a prefix p, we define the quantifier alternation number of p, $\operatorname{alt}(p)$, to be the number of quantifier blocks that p contains. Each such p, with $\operatorname{alt}(p)=n$, can be written succinctly, in the obvious way, as $\left(s_{1}\right)^{i_{1}} \ldots\left(s_{n}\right)^{i_{n}}, i_{m} \in \omega$ and $s_{m} \in\{\exists, \forall\}$, $m \leq n ; s_{1} \neq s_{2}$; and for $l, m \leq n, s_{l}=s_{m}$ if and only if $|l-m|$ is even. For example, $\exists \exists \forall \forall \exists \forall \forall \forall$ is written $\exists^{2} \forall^{2} \exists \forall^{3}$.

We also consider words over $\Sigma_{2}=\left\{\exists, \forall, \exists^{*}, \forall^{*}\right\}$, which we treat as regular expressions that denote regular languages. For example, $\exists \forall^{*} \exists \forall$ denotes the set $\left\{\exists \forall^{n} \exists \forall \mid n \in \omega\right\}$. Let $L_{2}=\left(\left\{\exists, \forall, \exists^{*}, \forall^{*}\right\}\right)^{+}$. A string v is in reduced form if and only if occurrences of \exists, \exists^{*} alternate strictly with occurrences of \forall, \forall^{*}. Let $r:\left(\Sigma_{2}\right)^{+} \longrightarrow \mathcal{P}\left(L_{1}\right)$ be the map that takes a regular expression to the regular language it denotes, and define $r^{-}:\left(\Sigma_{2}\right)^{+} \longrightarrow \mathcal{P}\left(L_{1}\right)$ so that $r^{-}(v)=\{q \mid$ there is a $q^{\prime} \in r(v)$ and $\left.q \leq q^{\prime}\right\}$, the downward closure of $r(v)$.

The next lemma will be useful later.
Lemma 2.1 For every prefix $p \in L_{1}$, there is a (unique) word $f(p) \in L_{2}$ in reduced form, so that $r^{-}(f(p))=\{q \mid p \not 又 q\}$.

Proof Define $f: L_{1} \longrightarrow L_{2}$ as follows.

1. If $p=\exists^{n}$, then $f(p)=a_{1} \ldots a_{2 n-1}$, where $a_{i}=\forall^{*}$ for i odd, and $=\exists$ for i even.
2. If $p=\forall^{n}$, then $f(p)=a_{1} \ldots a_{2 n-1}$, where $a_{i}=\exists^{*}$ for i odd, and $=\forall$ for i even.
3. If $p=\left(s_{1}\right)^{i_{1}} \ldots\left(s_{n}\right)^{i_{n}}$, then $f(p)=f\left(\left(s_{1}\right)^{i_{1}}\right) * \cdots * f\left(\left(s_{n}\right)^{i_{n}}\right)$.

We argue by induction on the length of p. Observe that for all p, if p is a Σ-, respectively, Π-prefix, then the first symbol of $f(p)$ is \forall^{*}, respectively, \exists^{*}. For $p=\exists, f(\exists)=\forall^{*}$, and it is clear that

$$
r^{-}(f(\exists))=\left\{\forall^{m} \mid 0 \leq m\right\}=\left\{q \in L_{1} \mid \exists \not \leq q\right\}
$$

as desired. Likewise for $p=\forall$.
Now suppose that $p=\exists * p^{\prime}$ is a Σ-prefix of length $n+1$, and the lemma holds for all prefixes of length $\leq n$. For each prefix $q=\left(\forall^{m} \exists\right) * q^{\prime}, 0 \leq m$, containing at least one $\exists, p \not \leq q$ if and only if $\exists * p^{\prime} \not \subset\left(\forall^{m} \exists\right) * q^{\prime}$ if and only if $p^{\prime} \not \leq q^{\prime}$. Therefore $\{q \mid p \not \leq q\}=\left\{\forall^{m} \mid 0 \leq m\right\} \cup\left\{\left(\forall^{m} \exists\right) * q^{\prime} \mid 0 \leq m\right.$ and $\left.p^{\prime} \nsubseteq q^{\prime}\right\}$. Invoking the induction hypothesis, it is clear that this set is equal to $r^{-}\left(\left(\forall^{*} \exists\right) * f\left(p^{\prime}\right)\right)$. If p^{\prime} is a Σ-prefix, then $\left(\forall^{*} \exists\right) * f\left(p^{\prime}\right)$ is simply $f(p)$. In case p^{\prime} is a Π-prefix, then the first symbol of $f\left(p^{\prime}\right)$ is an \exists^{*}, and clearly $r^{-}\left(\left(\forall^{*} \exists\right) * f\left(p^{\prime}\right)\right)=r^{-}\left(\left(\forall^{*}\right) * f\left(p^{\prime}\right)\right.$); again $\forall^{*} * f\left(p^{\prime}\right)$ is $f(p)$. The argument for Π-prefixes is dual.

We are interested in fragments of FO defined in terms of prefixes.
Definition 2.2 For each prefix p, we define the prefix class $\mathrm{FO}(p)$ as the set $\{\theta \mid \theta$ is a FO formula in prenex normal form such that $\operatorname{pr}(\theta) \leq p\}$.

More generally, we want to assign a 'quantifier structure' to every (FO and) $L_{\infty \omega}$ formula, which will be a set of prefixes. The following definition is from [1].

Definition 2.3 The quantifier structure of a formula $\varphi \in L_{\infty \omega}, q s(\varphi)$, is defined inductively as follows.

1. If φ is a literal, then $q s(\varphi)=\varnothing$.
2. If $\varphi=\bigwedge_{i} \theta_{i}$ or $\bigvee_{i} \theta_{i}$, then $q s(\varphi)=\bigcup_{i} q s(\theta)$.
3. If $\varphi=\exists x \theta$, respectively, $\forall x \theta$, then $q s(\varphi)=\exists * q s(\theta) \cup q s(\theta) \cup\{\exists\}$, respectively, $q s(\varphi)=\forall * q s(\theta) \cup q s(\theta) \cup\{\forall\}$.

Observe that we have defined the quantifier structure of a formula so that it is always a set of prefixes closed under subwords. We will reserve the term prefix set for such sets of prefixes.

Quantifier classes are defined in analogy with prefix classes.
Definition 2.4 Let \mathcal{L} be either FO or $L_{\infty \omega}$, and let P be a prefix set. We define the quantifier class $\mathcal{L}\{P\}=\{\theta \in \mathcal{L} \mid q s(\theta) \subset P\}$.

When v is a word in L_{2}, we will abuse the notation and write $L_{\infty \omega}\{v\}$ and $\operatorname{FO}\{v\}$ rather than the more cumbersome $L_{\infty \omega}\left\{r^{-}(v)\right\}$ and $\mathrm{FO}\left\{r^{-}(v)\right\}$.

Observe that for all prefixes p, and all prefix sets P such that $p \in P$, we have that $\mathrm{FO}(p) \subset \mathrm{FO}\{p\} \subset L_{\infty \omega}\{p\} \subset L_{\infty \omega}\{P\}$. (In fact it is clear that, over any finite signature, every $L_{\infty \omega}\{p\}$ formula is equivalent to a $\mathrm{FO}\{p\}$ formula.) In particular, $\mathrm{FO}(p) \subset L_{\infty \omega}\{P\}$. The main theorem is a strong converse to this.

Theorem 2.5 (Main Theorem) Let p be a prefix, and let $P=\left\{q \in L_{1} \mid p \not \approx q\right\}$. There is a sentence φ_{p} in $\mathrm{FO}(p)$, over a single binary relation, such that φ_{p} is not equivalent to any sentence in $L_{\infty \omega}\{P\}$.
(Observe that P is simply $r^{-}(f(p))$.) The following corollary is immediate.

Corollary 2.6 Let P_{1} and P_{2} be prefix sets such that $P_{1} \not \subset P_{2}$. Then there is a (FO) sentence $\varphi \in L_{\infty \omega}\left\{P_{1}\right\}$, over a single binary relation, such that φ is not equivalent to any $\theta \in L_{\infty \omega}\left\{P_{2}\right\}$.

Theorem 2.5 clearly implies the following conjecture from [1].
Conjecture 2.7 For all prefixes p and q, if p cannot be embedded in q, then there is a sentence containing a single binary relation with prefix p that is not equivalent to any sentence with prefix q.

Question 2.8 (Finite structures) It is an open question whether the Grädel-McColm conjecture holds over the class of finite structures. It is easy to show that the main theorem itself does not, as there is a collapse of the $L_{\infty \omega}$ quantifier class hierarchy to $L_{\infty \omega}\left\{r\left(\forall^{*}\right) \cup r\left(\exists^{*}\right)\right\}$. This is because every finite structure of size n can be described up to isomorphism by a sentence in $F O\left\{\exists^{n}, \forall^{n+1}\right\}$, so every class of finite structures is defined by a countable disjunction of such sentences, which is a sentence in $L_{\infty \omega}\left\{r\left(\forall^{*}\right) \cup r\left(\exists^{*}\right)\right\}$.

2.2 Definability and games

Definition 2.9 Let \mathcal{L} be a logical language. Given structures A and B, we write $A \Rightarrow \mathcal{L}^{\mathcal{L}} B$ if and only if for every $\theta \in \mathcal{L}$, if $A \models \theta$, then $B \models \theta$.

The following definitions and result in this section are essentially from [1]. Below we restrict our attention to fragments of the form $L_{\infty \omega}\{q\}$, for q a word in L_{2}, as we will not need to consider the more general case, which is quite similar.

Definition 2.10 Let $v=a_{1} \ldots a_{n}$ be a word in L_{2}, that is, $v \in\left\{\exists, \exists^{*}, \forall, \forall^{*}\right\}^{+}$. Given structures A and B, the $L_{\infty \omega}\{v\}$-game from A to B is an n-round game played between a Spoiler (S.) and a Duplicator (D.), with four types of rounds depending on whether a_{i} is $\exists, \forall, \exists^{*}$, or \forall^{*}.
[\exists round] The S . plays a (single) pebble on A. The D . then plays a pebble on B.
[\forall round] The S . plays a pebble on B. The D . then plays a pebble on A.
[\exists^{*} round] The S . plays a pebble on A. The D . then plays a pebble on B. The S . may repeat this as often as he wants to. That is, he is permitted to play arbitrarily many ' \exists moves' in a single \exists^{*} round.
[\forall^{*} round] Like an \exists^{*} round, with the S. playing instead on B.
The S. wins if at any point the pebbles do not determine a partial isomorphism from A to B.

An equivalent description of this game can be given as follows. The players play an ordinary (infinite) Ehrenfeucht-Fraïssé game, with the following additional restriction placed on the S.'s moves. We associate with each play of the game through n rounds a prefix p_{n} of length $n, p_{n}=s_{1} \ldots s_{n}$, such that for all $i \leq n, s_{i}=\exists$ if the S. played on A in the i th round, and $=\forall$ otherwise. In each round n, the S. must choose a structure to play on so that the associated prefix p_{n} is in $r^{-}(f(v))$. (If this set is finite, then he is only permitted to play some fixed finite number of rounds.)
Proposition 2.11 (Grädel and McColm [1]) Let A and B be structures, and let v be a word in L_{2}. D. has a winning strategy in the $L_{\infty \omega}\{v\}$-game from A to B if and only if $A \Rightarrow_{L_{\infty}\{v\}} B$.
2.3 Amalgamation classes and homogeneous structures In this section, we present the model theoretic background used to construct structures in the proof of the main theorem. (For more information, see, for example, Hodges [2].) Recall that a structure A is homogeneous if every partial isomorphism between finite substructures of A can be extended to an automorphism of A.

Definition 2.12 Let \mathcal{K} be a class of finite structures over a finite relational language. \mathcal{K} is an amalgamation class if it satisfies the following properties.

1. (downward closure) If $B \in \mathcal{K}$ and $A \subset B$, then $A \in \mathcal{K}$.
2. (joint embedding) If $A_{1}, A_{2} \in \mathcal{K}$, then there is a $B \in \mathcal{K}$ with substructures $A_{i}^{\prime} \cong A_{i}, i=1,2$.
3. (amalgamation) If $A_{0}, A_{1}, A_{2} \in \mathcal{K}$ and $f_{i}: A_{0} \longrightarrow A_{i}, i=1,2$, are embeddings, then there are a $B \in \mathcal{K}$ and embeddings $g_{i}: A_{i} \longrightarrow B$ such that $g_{1} \circ f_{1}=g_{2} \circ f_{2}$.
If A is a structure, then $\operatorname{Sub}(A)$ is the set of all finite structures B isomorphic to a substructure of A. The following result is due to Fraïssé.

Theorem 2.13 Let A be a homogeneous structure. Then $\operatorname{Sub}(A)$ is an amalgamation class. Conversely, if \mathcal{K} is an amalgamation class, then there is a unique, up to isomorphism, finite or countable structure, such that $\operatorname{Sub}(A)=\mathcal{K}$.

In this case, A is called the Fraïssé limit of \mathcal{K}, denoted $\operatorname{Fr}(\mathcal{K})$.
Definition 2.14 Let \mathcal{K} be a class of finite structures that is downwardly closed. Then A is a constraint of \mathcal{K} if and only if $A \notin \mathcal{K}$, but for all proper substructures $B \subset A, B \in \mathcal{K}$.

Definition 2.15 Let \mathcal{G} be any class of finite structures. Define $C l(\mathcal{G})=\{A \mid A$ is a finite structure that has no substructure isomorphic to any $B \in \mathcal{F}\}$.
Let \mathcal{g} be any set of finite structures such that for all distinct $A, B \in \mathcal{Z}, A$ does not embed as a substructure in B. Observe that $C l(\mathscr{F})$ is the unique downwardly closed class whose set of constraints is exactly \mathcal{g}. We now define a property of structures that can be used to show that $C l(\mathcal{g})$ is, additionally, an amalgamation class.

Definition 2.16 Let A be a σ-structure. Then A is irreducible if and only if for all $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$, there are a k-ary relation $R \in \sigma$ and a k-tuple \bar{a} in A containing a_{1}, a_{2}, such that $A \models R \bar{a}$.

Observe that every A of cardinality 1 is, by default, irreducible.
The next lemma is straightforward.
Lemma 2.17 Let \mathcal{G} be a set of finite, irreducible σ-structures. Then $C l(\mathcal{F})$ is a (strong) amalgamation class.

Proof It is clear that $C l(\mathcal{g})$ is downwardly closed. We now argue that it has the joint embedding property. Let A_{1}, A_{2} be two structures in $C l(\mathcal{F})$ and assume that their universes are disjoint, $A_{1} \cap A_{2}=\varnothing$. Define B to be the disjoint union of A_{1} and A_{2}, that is, the model with universe $A_{1} \cup A_{2}$ such that for all relations $R \in \sigma$, $R^{B}=R^{A_{1}} \cup R^{A_{2}}$. Clearly any irreducible substructure of B is either a substructure of A_{1} or of A_{2}. Therefore B is also in $C l(\mathcal{g})$.

A similar argument shows that $C l(\mathcal{g})$ has the amalgamation property. Again without loss of generality, let A_{0}, A_{1}, A_{2} be structures in $C l(\mathcal{g})$ such that $A_{0} \subset A_{i}$ and $f_{i}: A_{0} \rightarrow A_{i}$ is the identity map, for $i=1,2$, and $A_{1} \cap A_{2}=A_{0}$. Define B to be the model with universe $A_{1} \cup A_{2}$ such that, as above, for all relations $R \in \sigma$, $R^{B}=R^{A_{1}} \cup R^{A_{2}}$. Arguing as before, we get that B is also in $C l($ g $)$.

Combining this lemma with Fraïssé's theorem provides an easy way to (describe and) produce homogeneous structures.

Proposition 2.18 Given any set of finite irreducible structures $\mathcal{F}, \operatorname{Fr}(\operatorname{Cl}(\mathcal{F}))$ is a homogenous structure.
Observe that for any countable homogeneous structure A, there is a unique set, up to isomorphism, of pairwise mutually nonembeddable finite structures \mathcal{F} such that $A=\operatorname{Fr}(C l(\mathcal{g}))$. The following simple lemma will be important in Section 3.3.

Lemma 2.19 Let A be a countable homogeneous structure, and let \mathcal{I} be a set of finite structures such that $A=\operatorname{Fr}(C l(\not))$. Suppose that \bar{a} is a k-tuple of distinct elements in A and $\psi^{\prime}\left(\bar{x}, \bar{x}^{\prime}\right)$ is a quantifier-free formula, with $\bar{x}=x_{1}, \ldots, x_{k}$, and $\bar{x}^{\prime}=x_{k+1}, \ldots, x_{k+l}$. Then there is an l-tuple \bar{a}^{\prime} of distinct elements in A, disjoint from \bar{a}, such that $A \models \psi^{\prime}\left[\bar{a}, \bar{a}^{\prime}\right]$ if and only if there is a structure B of size $k+l$, with universe $\bar{b} \cup \bar{b}^{\prime}, \bar{b}$ and \bar{b}^{\prime} tuples of length k and l, respectively, such that $A \upharpoonright \bar{a} \cong B \upharpoonright \bar{b}$, $B \models \psi^{\prime}\left[\bar{b}, \bar{b}^{\prime}\right]$, and no substructure of B is isomorphic to any of the constraints $C \in \mathcal{Z}$.

3 Proof of the Main Theorem

Before presenting the technical details, we outline the structure of the proof. First we define, for each prefix p, countable structures A_{p} and B_{p}. These are constructed as reducts of homogeneous structures produced as Fraïssé limits of amalgamation classes. We then define sentences $\varphi_{p} \in \mathrm{FO}(p)$, for all prefixes p, and prove that $A_{p} \models \varphi_{p}$ and $B_{p} \not \models \varphi_{p}$. Finally we prove, using a game theoretic argument, that for each $p, A \Rightarrow_{L_{\infty}\{P\}} B$, where $P=\left\{q \in L_{1} \mid p \npreceq q\right\}$. Clearly, this shows that φ_{p} is not equivalent to any $L_{\infty \omega}\{P\}$ sentence, as desired. The last step is the longest and most difficult part of the proof.

The argument divides naturally into two cases depending on whether or not $\operatorname{alt}(p)=1$. It is much simpler for $\operatorname{alt}(p)=1$ though already this case contains all the basic elements of the more general situation.

Observe that it suffices to prove the theorem for Σ-prefixes. For p a Π-prefix, it is clear that we can let $\varphi_{p}=\neg \varphi_{\bar{p}}$ (recall that \bar{p} denotes the dual of p, a Σ-prefix).
3.1 The construction Let $p=\exists^{n_{1}} \ldots\left(s_{k}\right)^{n_{k}}$ be a Σ-prefix, $\operatorname{alt}(p)=k$. We divide the construction into two cases, depending on whether or not $k=1$.

It will be helpful to introduce the following defined predicates. Recall that the n-clique K_{n} is the simple, complete graph of size n. (The 1 -clique has one vertex and no edges.)

Definition 3.1 We define the following formulas.
[Clique ${ }_{n}$] Let $K l_{n}\left(x_{1}, \ldots x_{n}\right)=$

$$
\left(\bigwedge_{i \leq n} \neg E x_{i} x_{i}\right) \wedge\left(\bigwedge_{i<j \leq n}\left(E x_{i} x_{j} \wedge E x_{j} x_{i}\right)\right)
$$

[Arrow ${ }_{m, n}$] Let $A r_{m, n}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)=$

$$
K l_{m}(\bar{x}) \wedge K l_{n}(\bar{y}) \wedge\left(\bigwedge_{i \leq m, j \leq n}\left(E x_{i} y_{j} \wedge \neg E y_{j} x_{i}\right)\right)
$$

Generally, when the length of the tuples is clear from the context, we will omit the subscripts and write simply, for example, $\operatorname{Kl}(\bar{x})$ and $\operatorname{Ar}(\bar{x} ; \bar{y})$. We say that a j-tuple \bar{a} in A is a j-clique if $A \models K l_{j}[\bar{a}]$. Given tuples \bar{a}, \bar{b} in A, \bar{a} arrows \bar{b} just in case $A \models \operatorname{Ar}(\bar{a} ; \bar{b})$. Observe that if \bar{a} arrows \bar{b}, then \bar{a} and \bar{b} must be disjoint.

Let D_{1} be the graph with one vertex and a loop, and let D_{2} be the graph with two vertices, a, b, and a single directed edge from a to b. Observe that $\mathcal{G}=C l\left(\left\{D_{1}, D_{2}\right\}\right)$ is the set of all finite, simple graphs, and $\operatorname{Fr}(\mathcal{q})$ is the (countable) random, or Rado, graph.
Case $1 \operatorname{alt}(p)=1 \quad$ Let $p=\exists^{n}$. For $n=1$, let $\varphi_{p}=\exists x E x x$. Let A_{\exists} be the countable infinite graph with exactly one edge which is a loop. Let B_{\exists} be the empty, countable infinite graph with no edges. Clearly $A_{\exists} \models \varphi_{p}$ and $B_{\exists} \not \models \varphi_{p}$.

Now suppose that $n \geq 2$. We choose φ_{p} to be $\exists x_{1} \ldots x_{n} \operatorname{Kl}(\bar{x})$, which says that there is a substructure isomorphic to K_{n}. We define B_{p} directly as the universal countable homogeneous K_{n}-free graph. (Letting $\mathscr{\mathscr { L }}_{p}^{B}=\left\{D_{1}, D_{2}, K_{n}\right\}, B_{p}$ is simply $\operatorname{Fr}\left(C l\left(\mathscr{g}_{p}^{B}\right)\right)$.) It is clear that $B_{p} \not \vDash \varphi_{p}$. We will define A_{p} as the E-reduct of a countable homogenous structure with signature $\sigma_{p}=\{E, S\}$, S unary. Let \mathcal{g}_{p}^{A} be the set of constraints $\mathscr{\mathscr { L }}_{p}^{A}=\left\{D_{1}, D_{2}\right\} \cup\left\{C|C| E \cong K_{n}\right.$ and $\left.C \models \exists x \neg S x\right\}$, and let $A_{p}^{+}=\operatorname{Fr}\left(C l\left(\mathcal{g}_{p}^{A}\right)\right)$. Finally, let $A_{p}=A_{p}^{+} \mid E$. It is not hard to see that $A_{p}^{+} \upharpoonright S$ is isomorphic to the random graph. In particular, $A_{p} \models \varphi_{p}$, as desired.

The following easy fact will be needed later.
Fact 3.2 For each n-tuple \bar{a} in A_{p}, if \bar{a} is an n-clique, then every $a_{i} \in \bar{a}$ is in S.
Case $2 \operatorname{alt}(p) \geq 2 \quad$ Given $p=\exists^{n_{1}} \ldots\left(s_{k}\right)^{n_{k}}$, let $\sigma_{p}=$

$$
\begin{gathered}
\{E\} \cup\left\{P_{i} \mid 1 \leq i \leq k, P_{i} \text { is unary }\right\} \cup\left\{R_{i} \mid 1 \leq i \leq k-1, R_{i} \text { is } n_{i}+1 \text {-ary }\right\} \\
\cup\left\{S_{i j} \mid 1 \leq i<k, 1 \leq j \leq n_{i}, S_{i j} \text { is } j \text {-ary }\right\} \cup\left\{S_{k 1}\right\}, S_{k 1} \text { unary. }
\end{gathered}
$$

Using ideas from Section 2.3, we produce homogeneous σ_{p}-structures, A_{p}^{+}, B_{p}^{+}, and then define A_{p} and B_{p} to be $A_{p}^{+} \mid E$ and $B_{p}^{+} \mid E$, respectively. Below, we use \bar{S}_{i}, $1 \leq i \leq k-1$, for the set $\left\{S_{i 1}, \ldots, S_{i n_{i}}\right\}$ and let $\bar{S}=\bigcup_{i<k} \bar{S}_{i} \cup\left\{S_{k 1}\right\}$.

The interpretation of a j-ary relation symbol Q in a structure A is simple if for all j-tuples \bar{a} in A, if $A \models Q \bar{a}$, then \bar{a} consists of j distinct elements, and for every pair of j-tuples $\bar{a}, \bar{a}^{\prime}$ consisting of the same j elements, $A \models Q \bar{a}$ if and only if $A \models Q \bar{a}^{\prime}$. (For example, the interpretation of a binary relation symbol E is simple just in case it determines a simple graph.)

Definition 3.3 Let \mathcal{C}_{p} be the class of finite σ_{p}-structures A such that

1. A is loop-free, that is, $A \models \forall x \neg E x x$;
2. A is partitioned by the P_{i} s-for all $i \leq k, S_{i 1}^{A} \subseteq P_{i}^{A} ; S_{k 1}^{A}=P_{k}^{A}$;
3. for $a, b \in A$, if $E a b \wedge E b a$, then there is an $i \leq k, P_{i} a \wedge P_{i} b$;
4. for $a, b \in A$, if $E a b \wedge \neg E b a$, then there is an $i<k, P_{i} a \wedge P_{i+1} b$;
5. for each $i<k, n_{i}$-tuple $\bar{a}=a_{1}, \ldots, a_{n_{i}}$ in A, and $b \in A$, if $A \models R_{i}(\bar{a}, b)$, then
(i) $K l(\bar{a})$;
(ii) the elements in \bar{a} are pairwise distinct and are each in P_{i};
(iii) $b \in P_{i+1}$;
(iv) for each $a \in \bar{a}, A \models E a b$;
(v) for each n_{i}-tuple \bar{a}^{\prime} containing exactly the same elements as $\bar{a}, R_{i}\left(\bar{a}^{\prime}, b\right)$;
6. for each relation symbol $S_{i j}, S_{i j}^{A}$ is simple;
7. for each relation symbol $S_{i j}$, and each j-tuple \bar{a}, if $A \models S_{i j} \bar{a}$, then
(i) $K l(\bar{a})$ and $P_{i} a$, for each $a \in \bar{a}$;
(ii) for all subsequences $\bar{a}^{\prime} \subset \bar{a}$ of length $j^{\prime}, S_{i j^{\prime}} \bar{a}^{\prime}$;
8. for each $i<k, A$ satisfies the sentence $\psi_{i}=$

$$
\begin{gathered}
\forall x_{1} \ldots x_{n_{i}} y_{1} \ldots y_{n_{i+1}}\left(\bigwedge_{m \leq n_{i}} P_{i} x_{m} \wedge\right. \\
\left.\bigwedge_{m \leq n_{i+1}} P_{i+1} y_{m} \wedge \operatorname{Ar}(\bar{x} ; \bar{y}) \rightarrow \bigwedge_{m \leq n_{i+1}} R_{i}\left(\bar{x}, y_{m}\right)\right)
\end{gathered}
$$

The following lemma is easy to establish.
Lemma 3.4 \mathcal{C}_{p} is an amalgamation class defined by a finite set of irreducible constraints.

Sketch of Proof Each of the eight conditions above on finite structures $A \in \mathcal{C}_{p}$ is equivalent to saying that A has no substructure isomorphic to one or more irreducible structures. For example, (1) holds of A if and only if it has no substructure isomorphic to D_{1} (the graph with one vertex and a loop). It is an easy exercise to show that this is true also of the remaining conditions.

Let $\mathscr{\mathscr { F }}_{p}$ be the minimal such set of irreducible structures. We now define a number of irreducible σ_{p}-structures which will serve as additional constraints.

Definition 3.5

1. For each $i<k$, define M_{i}^{p} to be the structure with universe $\left\{1,2, \ldots, n_{i}+1\right\}$ and positive diagram $\left\{P_{i} m \mid 2 \leq m \leq n_{i}+1\right\} \cup\left\{P_{i+1} 1\right\} \cup\left\{S_{(i+1) 1} 1\right\} \cup$ $\left\{R_{i}(\bar{a}, 1) \quad \mid \quad \bar{a}\right.$ is an n_{i}-tuple containing exactly $\left.\left\{2, \ldots, n_{i}+1\right\}\right\} \cup$ $\bigcup_{j \leq n_{i}}\left\{S_{i j} \bar{m} \mid \bar{m}\right.$ is a j-tuple of distinct elements in $\left.\left\{2, \ldots, n_{i}+1\right\}\right\}$.
2. Let N^{p} be the σ_{p}-structure with universe $\{1\}$ and positive diagram $\left\{P_{1} 1, S_{11} 1\right\}$.

We are now ready to define the structures A_{p} and B_{p}.

Definition 3.6

1. Let $\mathscr{\mathscr { F }}_{p}^{A}=\mathcal{g}_{p} \cup\left\{M_{i}^{p} \mid i<k\right\}$ and let

$$
\mathscr{g}_{p}^{B}=\mathscr{g}_{p} \cup\left\{M_{i}^{p} \mid i<k\right\} \cup\left\{N^{p}\right\} .
$$

2. Let $A_{p}^{+}=\operatorname{Fr}\left(C l\left(\mathscr{g}_{p}^{A}\right)\right)$ and $B_{p}^{+}=\operatorname{Fr}\left(C l\left(\mathscr{g}_{p}^{B}\right)\right)$.
3. Let $A_{p}=A_{p}^{+} \mid E$ and $B_{p}=B_{p}^{+} \mid E$.

By Corollary 2.18, A_{p}^{+}and B_{p}^{+}are indeed homogeneous structures. Observe, on the other hand, that the reducts A_{p} and B_{p} are not.

We make a number of observations about these structures. For any element a in A_{p}^{+}or B_{p}^{+}, define height (a) to be the unique $i \leq k$ such that $P_{i} a$. When \bar{a} is a tuple of elements that all have the same height, we sometimes write simply $\operatorname{height}(\bar{a})$, instead of height $\left(a_{1}\right), a_{1} \in \bar{a}$.

Observations Observations 3.7,3.9, and 3.8(a) and (b) hold equally for both A_{p}^{+} and $B_{p}^{+} ; 3.8(\mathrm{c})$ does not.

Observation 3.7

(a) For all a, b, if there is an undirected, respectively, directed, edge from a to b, then $\operatorname{height}(a)=\operatorname{height}(b)$, respectively, $\operatorname{height}(b)=\operatorname{height}(a)+1$. Furthermore, a has no E-predecessors if and only if height $(a)=1$.
(b) For all j-ary relations $T \in \sigma_{p}, j \geq 2$, and all j-tuples \bar{a}, if $T \bar{a}$, then for all $a, a^{\prime} \in \bar{a},\left|\operatorname{height}(a)-\operatorname{height}\left(a^{\prime}\right)\right| \leq 1$.

Observation 3.8 (The substructures $\left(A_{p}^{+} \upharpoonright \boldsymbol{P}_{\boldsymbol{j}}\right), \boldsymbol{j} \leq \boldsymbol{k}$)

(a) For all $j \leq k,\left(A_{p}^{+} \upharpoonright P_{j}\right) \mid E$ is the countable random graph.
(b) Let $j<k, l<n_{j}$, and \bar{a} be an l-tuple in $\left(A_{p}^{+} \upharpoonright P_{j}\right)$.

If $A_{p}^{+} \models S_{j l} \bar{a}$, then \bar{a} is an l-clique.
For all $m \leq n_{j}-l$, there is an m-tuple \bar{a}^{\prime} of elements in P_{j} such that $S_{j(l+m)}\left(\bar{a}, \bar{a}^{\prime}\right)$ if and only if $S_{j l} \bar{a}$. (See Definition 3.3.7.)
(c) There is an n_{1}-tuple \bar{a} in $S_{1 n_{1}}$ in A_{p}^{+}. For all $m \leq n_{1}$, the relations $S_{1 m}$ are empty in B_{p}^{+}. (See Definitions 3.3.7 and 3.5.2.)

Observation 3.9 (Arrowing)

(a) For all tuples \bar{a} and \bar{b}, if \bar{a} arrows \bar{b}, then $\operatorname{height}(\bar{b})=\operatorname{height}(\bar{a})+1$.
(b) For $i<k$, let \bar{a} be an n_{i}-clique in P_{i}, b an element in P_{i+1}. Then, $R_{i}(\bar{a}, b)$ if and only if there is an n_{i+1}-clique $\bar{b}, b \in \bar{b}$ such that $\operatorname{Ar}(\bar{a} ; \bar{b})$. (See Definition 3.3.8.)
(c) For $i<k, \bar{a}$ an n_{i}-tuple, b an element, if $R_{i}(\bar{a}, b)$ and $S_{i n_{i}} \bar{a}$, then b is in $P_{i+1} \wedge \neg S_{(i+1) 1}$. (See Definition 3.5.1.)
(d) For $i<k$, let \bar{a} be an n_{i}-tuple in P_{i}, \bar{b} an n_{i+1}-tuple in P_{i+1}. If $\operatorname{Ar}(\bar{a} ; \bar{b})$, then either $\neg S_{i n_{i}} \bar{a}$ or every $b \in \bar{b}$ is not in $S_{(i+1) 1}$. (See Definition 3.5.1.)
(e) For $i<k-1$ and each n_{i}-clique \bar{a} of elements in P_{i}, there is an n_{i+1}-clique \bar{b} not in $S_{(i+1) n_{i+1}}$, each $b \in \bar{b}$ in P_{i+1}, such that \bar{a} arrows \bar{b}. Furthermore, there is an n_{i+1}-clique \bar{c} in $S_{(i+1) n_{i+1}}$ such that \bar{a} arrows \bar{c} if and only if \bar{a} is not in $S_{i n_{i}}$.

For $i=k-1$ and each n_{i}-clique \bar{a} of elements in P_{i}, there is an n_{k}-clique \bar{b} of elements in P_{k} such that \bar{a} arrows \bar{b}, if and only if, \bar{a} is not in $S_{i n_{i}}$. (See Definitions 3.3.8, 3.5, and 3.6.)

Observation 3.10

(a) $A_{p}^{+} \upharpoonright \neg\left(P_{1} \wedge S_{11}\right) \cong B_{p}^{+}$.
(b) $A_{p}^{+} \upharpoonright \neg P_{1} \cong B_{p}^{+} \upharpoonright \neg P_{1}$.
3.2 The sentences $\varphi_{p} \quad$ We define, for each prefix p, a sentence $\varphi_{p} \in \mathrm{FO}(p)$ and prove that for the structures A_{p} and B_{p} defined above, $A_{p} \vDash \varphi_{p}$ and $B_{p} \not \models \varphi_{p}$. Recall that for each p with $\operatorname{alt}(p)=1, \varphi_{p}$ has already been defined: $\varphi_{\exists}=\exists x E x x$ and for $n \geq 2, \varphi_{\exists}{ }^{n}=\exists x_{1} \ldots x_{n} \operatorname{Kl}\left(x_{1}, \ldots, x_{n}\right)$.

We first explicitly define the sentences φ_{p}, for $\operatorname{alt}(p)=2$. We then give an inductive definition for prefixes p with $\operatorname{alt}(p) \geq 3$. For $p=\exists^{l} \forall^{m}$, let $\varphi_{p}=$

$$
\exists x_{1} \ldots x_{l} \forall y_{1} \ldots y_{m}\left(K l(\bar{x}) \wedge \bigwedge_{i \leq l} \neg\left(E y_{1} x_{i} \wedge \neg E x_{i} y_{1}\right) \wedge \neg \operatorname{Ar}(\bar{x} ; \bar{y})\right)
$$

Now assume that $p=\exists^{n_{1}} \ldots s^{n_{k}}$ is a prefix with $\operatorname{alt}(p)=k \geq 3$. We define a sequence of formulas $\theta_{k-1}, \theta_{k-2}, \ldots, \theta_{1} ; \varphi_{p}$ will be the sentence obtained by putting θ_{1} into prenex normal form. Variables will be indexed so that $x_{i j}$ is bound by the j th quantifier in the i th block: $\varphi_{p}=\exists x_{11} \ldots x_{1 n_{1}} \forall x_{21} \ldots$, and so on. We often use \bar{x}_{i} for $x_{i 1}, \ldots, x_{i n_{i}}$.

For each $i \geq 2$, the free variables in θ_{i} will be exactly $x_{i 1}, \ldots, x_{i n_{i}}$. For k odd, we define $\theta_{k-1}=\exists x_{k 1} \ldots x_{k n_{k}} \operatorname{Ar}\left(\bar{x}_{k-1} ; \bar{x}_{k}\right), \bar{x}_{i}=\left(x_{i 1}, \ldots, x_{i n_{i}}\right)$. For k even, $\theta_{k-1}=\forall x_{k 1} \ldots x_{k n_{k}} \neg \operatorname{Ar}\left(\bar{x}_{k-1} ; \bar{x}_{k}\right)$.

Now suppose that $\theta_{k-1}, \ldots, \theta_{i}$ have already been defined and that $i>2$. For i odd, we let $\theta_{i-1}=\exists \bar{x}_{i}\left(\operatorname{Ar}\left(\bar{x}_{i-1} ; \bar{x}_{i}\right) \wedge \theta_{i}\left(\bar{x}_{i}\right)\right)$. For i even, we let $\theta_{i-1}=$ $\forall \bar{x}_{i}\left(\operatorname{Ar}\left(\bar{x}_{i-1} ; \bar{x}_{i}\right) \rightarrow \theta_{i}\left(\bar{x}_{i}\right)\right)$.

Finally, let $\theta_{1}=$

$$
\exists \bar{x}_{1}\left(K l\left(\bar{x}_{1}\right) \wedge \forall \bar{x}_{2}\left(\bigwedge_{j \leq n_{1}} \neg\left(E x_{21} x_{1 j} \wedge \neg E x_{1 j} x_{21}\right) \wedge\left(\operatorname{Ar}\left(\bar{x}_{1} ; \bar{x}_{2}\right) \rightarrow \theta_{2}\left(\bar{x}_{2}\right)\right)\right)\right)
$$

Observe that for all $i<k$, every quantifier in θ_{i} occurs positively, that is, in the scope of no negations. It is easy to see that, when θ_{1} is put into prenex normal form, we obtain a sentence φ_{p} with $\operatorname{pr}\left(\varphi_{p}\right)=p$.

The following idea is critical in the next two important lemmas. Though we consider the structures A_{p} and B_{p}, the description appeals constantly to the expanded structures A_{p}^{+}and B_{p}^{+}. That is, because the universes of A_{p} and B_{p} are the same as those of A_{p}^{+}and B_{p}^{+}, respectively, we can refer to the atomic σ_{p}-type of elements and tuples of the reduced structures. For example, we say that an element a in A_{p} is a P_{i}-element or is in P_{i}, if $A_{p}^{+} \models P_{i} a$. (We also say that an element $a \in A_{p}$ is an S-element if there is some $i \leq k$ such that $A_{p}^{+} \models S_{i 1} a$.) Homogeneous structures are particularly convenient to work with because the isomorphism type of a tuple is determined by its atomic type. In particular, Lemma 2.19 will be extremely helpful (both implicitly and explicitly).

Lemma 3.11 For all prefixes $p, A_{p} \models \varphi_{p}$ and $B_{p} \not \models \varphi_{p}$.
Proof Suppose that $\operatorname{alt}(p)=2, p=\exists^{l} \forall^{m} . \varphi_{p}$ says that there is an l-clique of elements, each having no E-predecessor, that does not arrow any m-tuple. Consider A_{p}. We claim that for any l-tuple \bar{a} in A, if \bar{a} is in $S_{1 n_{1}}$, then it is such an l-clique. Such tuples exist, by Observation 3.8(b) and (c). By Observation 3.7(a), no a^{\prime} in P_{1}, and hence no $a^{\prime} \in \bar{a}$, has an E-predecessor. By Observations 3.9(a) and (e), \bar{a} arrows no m-tuple. Thus $A_{p} \vDash \varphi_{p}$, as desired. Next we show $B_{p} \not \vDash \varphi_{p}$. Suppose that \bar{b} in B_{p} is an l-clique and no $b^{\prime} \in \bar{b}$ has an E-predecessor. As above, \bar{b} is in P_{1} but, in contrast to A_{p}, \bar{b} must not be in $S_{1 n_{1}}$, also by Observation 3.8(c). By Observation 3.9(e), there is an m-tuple \bar{c} such that \bar{b} arrows \bar{c}. Thus $B_{p} \not \models \varphi_{p}$.

We now suppose that alt $(p)=k \geq 3$. First we claim that for all even, respectively, odd, $i, 2 \leq i \leq k-1$, and all n_{i}-tuples \bar{a} in A_{p} such that \bar{a} is an n_{i}-clique of P_{i} elements, then $A_{p} \models \theta_{i}[\bar{a}]$ if and only if \bar{a} is not in $S_{i n_{i}}$, respectively, $A_{p} \models \theta_{i}[\bar{a}]$ if and only if \bar{a} is in $S_{i n_{i}}$. Likewise for B_{p} (the argument is identical). We argue by downward induction on i, starting with $i=k-1$. If i is even, then k is odd, so $\theta_{i}=\exists \bar{x}_{k} \operatorname{Ar}\left(\bar{x}_{k-1} ; \bar{x}_{k}\right)$. The claim now follows immediately from Observation 3.9(e). Likewise for i odd.

Assume now the claim holds for $i, i-1 \geq 2$, and i is odd. Recall that for i odd, $\theta_{i-1}=\exists \bar{x}_{i}\left(\operatorname{Ar}\left(\bar{x}_{i-1} ; \bar{x}_{i}\right) \wedge \theta_{i}\left(\bar{x}_{i}\right)\right)$. Suppose that \bar{a} is an n_{i-1}-clique of elements in P_{i-1}. By Observation 3.9(a), for each n_{i+1}-clique \bar{b}, if \bar{a} arrows \bar{b} then $\operatorname{height}(\bar{b})=i$. Invoking the induction hypothesis, $A_{p} \models \theta_{i-1}[\bar{a}]$ if and only if there is an n_{i}-clique \bar{b} of elements in P_{i} such that \bar{a} arrows \bar{b} and \bar{b} is in $S_{i n_{i}}$. By Observation 3.9(e), $A_{p} \models \theta_{i-1}[\bar{a}]$ if and only if \bar{a} is not in $S_{(i-1) n_{i-1}}$. The argument is similar for $i-1$ even.

It remains to show that $A_{p} \models \theta_{1}$ and $B_{p} \not \vDash \theta_{1}$ (recall $\theta_{1} \equiv \varphi_{p}$). The sentence θ_{1} says that there is an n_{1}-clique \bar{a} of elements, each with no E-predecessor, such that for every n_{2}-tuple \bar{b}, if \bar{a} arrows \bar{b}, then $\theta_{2}[\bar{b}]$. As in the case $\operatorname{alt}(p)=2$, we claim that any n_{1}-tuple \bar{a} of P_{1}-elements in A_{p} such that $A_{p} \models S_{1 n_{1}} \bar{a}$ witnesses that $A_{p} \models \theta_{1}$. We know already that such a tuple must form a clique and that no $a \in \bar{a}$ has an E-predecessor. So it only remains to show that for any n_{2}-tuple \bar{b}, if \bar{a} arrows \bar{b}, then $A_{p} \models \theta_{2}[\bar{b}]$. Suppose that \bar{b} is an n_{2}-tuple such that \bar{a} arrows \bar{b}. By the definition of arrowing, and Observation 3.9(a), this implies that \bar{b} is an n_{2}-clique of elements in P_{2}. Above, we showed that for any such tuple, $A_{p} \models \theta_{2}[\bar{b}]$ if and only if \bar{b} is not in $S_{2 n_{2}}$. Finally, note that Observation 3.9(e) says that every n_{2}-tuple \bar{b} arrowed by \bar{a} is indeed not in $S_{2 n_{2}}$, as desired.

To establish that $B_{p} \models \neg \theta_{1}$, using the above reasoning, it suffices to observe that every n_{1}-clique \bar{a} of P_{1}-elements in B_{p} is not in $S_{1 n_{1}}$ (by Observation 3.8(c)) and hence arrows an n_{2}-tuple \bar{b} in $S_{2 n_{2}}$ (by Observation 3.9(e). Then $B_{p} \notin \theta_{2}[\bar{b}]$, as shown above, so $B_{p} \models \neg \theta_{1}$.
3.3 The central argument All that remains is to prove the following lemma.

Lemma 3.12 For each prefix $p, A_{p} \Rightarrow_{L_{\infty \omega}\{f(p)\}} B_{p}$.
Proof By Proposition 2.11, it suffices to show that the D. wins the $L_{\infty \omega}\{f(p)\}$ game from A_{p} to B_{p}. We again consider two cases, depending on whether or not $\operatorname{alt}(p)=1$. Without loss of generality, we assume that the S . always plays on a previously unpebbled element.
Case $1 \operatorname{alt}(p)=1 \quad$ For $p=\exists$, recall that $f(\exists)=\forall^{*}, A_{\exists}$ is the countable graph with one loop, and B_{\exists} is the countable graph with no edges at all. Observe that the $L_{\infty \omega}\left\{\forall^{*}\right\}$-game from A_{\exists} to B_{\exists} is an ordinary infinite Ehrenfeucht-Fraïssé game in which the S . may only play on B_{\exists}. The D.'s strategy is simply never to play on the element of A_{\exists} with a loop. It is clear that she wins.

For $p=\exists^{n}, n \geq 2, f(p)=\left(\forall^{*} \exists\right)^{n-1} \forall^{*}$, a word of length $2 n-1$ containing $n \forall^{*} \mathrm{~s}$ and $n-1 \exists \mathrm{~s}$. Thus, the $L_{\infty \omega}\{f(p)\}$-game from A_{p} to B_{p} is a $(2 n-1)$-round game during which the S . is permitted to play $(n-1)$ pebbles on A_{p}. (In particular, he is not able to play, through the course of the entire game, n pebbles on an n-clique of S-elements in the relation $S^{A_{p}}$.) We claim that the D . can win by using the following strategy.
(i) In each round, play so as to maintain a partial isomorphism between the pebbled elements.
(ii) In each (odd numbered) \forall^{*} round, never play on an S-element of A_{p}.

Observe that this strategy implies that for all $m \leq n$, after round $2 m-1$, there are at most $m-1$ pebbles on S-elements of A_{p}. We argue by induction on the length of the game (number of rounds and number of moves).

Each odd numbered round is an \forall^{*} round, during which the S. may play pebbles on B_{p} an arbitary number of times. By the induction hypothesis, the active pebbles, on j-tuples \bar{a} and \bar{b}, determine a partial isomorphism from A_{p} to B_{p}. Suppose that the S . now plays on some b^{\prime} in B_{p}. Let $\psi\left(\bar{x}, x_{j+1}\right)$ be the quantifier-free type of the $(j+1)$-tuple $\left(\bar{b}, b^{\prime}\right)$, that is, a maximally consistent quantifier-free formula such that $B_{p} \models \psi\left[\bar{b}, b^{\prime}\right]$. In order to maintain a partial isomorphism, it suffices for the D. to play on an element $a^{\prime} \in A_{p}$ such that also $A_{p} \vDash \psi^{\prime}\left[\bar{a}, a^{\prime}\right]$. Furthermore, to carry out part (ii) of the strategy described above, a^{\prime} must also not be in S. Define $\psi^{\prime}\left(\bar{x}, x_{j+1}\right)=\psi\left(\bar{x}, x_{j+1}\right) \wedge \neg S x_{j+1}$. Let C be the unique σ_{p}-structure of size $j+1$, with universe $\left(\bar{c}, c^{\prime}\right)$, such that $A\left\lceil\bar{a} \cong C \upharpoonright \bar{c}\right.$ and $C \models \psi^{\prime}\left[\bar{c}, c^{\prime}\right]$. It is clear that C does not embed any of the constraints in $\mathscr{\mathscr { F }}_{p}^{A}$ (e.g., C contains no n-clique because B_{p} does not). So by Lemma 2.19, there is an $a^{\prime} \in A_{p}$, not in S, such that $A_{p} \models \psi^{\prime}\left[\bar{a}, a^{\prime}\right]$. The D. places a pebble on this a^{\prime}.

Each even numbered round is an \exists round, during which the S. plays one pebble on A_{p}. By the induction hypothesis, because the D . never plays a pebble on A_{p} in S, there are less than n pebbles on A_{p} in S so that the tuple \bar{a} of elements in A_{p} on which there are pebbles cannot contain an n-clique. As B_{p} is the universal homogeneous K_{n}-free graph, it is clear that the D . can choose some $b^{\prime} \in B_{p}$ so as to maintain a partial isomorphism. (To make the argument more explicit one can apply Lemma 2.19 as above.) Therefore, the D . does indeed have a winning strategy.
Case $2 \operatorname{alt}(p) \geq 2 \quad$ Let $p=\exists^{n_{1}} \ldots s^{n_{k}}, s \in\{\exists, \forall\}$, $\operatorname{alt}(p)=k \geq 2$. Recall that $f(p)=f\left(\exists^{n_{1}}\right) * \cdots * f\left(s^{n_{k}}\right)$ is a word of length $\sum_{i \leq k} 2 n_{i}-1$. It will be convenient to view the rounds of the $L_{\infty \omega}\{f(p)\}$-game as being divided into k levels by the subwords $f\left(s^{n_{i}}\right), s \in\{\exists, \forall\}$. Thus, the first $\left(2 n_{1}-1\right)$ rounds are level 1 , the next $\left(2 n_{2}-1\right)$ rounds are level 2 and so on. We write round $\langle j, m\rangle$ for the m th round in level j. More precisely, $\langle j, m\rangle=\left(\sum_{i<j} 2 n_{i}-1\right)+m$.

We claim that the D . wins by playing according to the following strategy.

The D.'s strategy

(i) (1) For all $a \in A_{p}, b \in B_{p}$, if there is a pair of pebbles on (a, b), then $\operatorname{height}(a)=\operatorname{height}(b)$.
Furthermore, let \bar{a} in $A_{p}, \bar{b} \in B_{p}$, be corresponding m-tuples of pebbled elements, all of height $=i$, and $m \leq n_{i}$. Then either $S_{i m} \bar{a}$ if and only if $S_{i m} \bar{b}$ or, in case i is odd, respectively, even, $S_{i m} \bar{a}$ and $\neg S_{i m} \bar{b}$, respectively, $\neg S_{i m} \bar{a}$ and $S_{i m} \bar{b}$. Moreover, if \bar{a}, \bar{b} were completely pebbled by the end of level j, and $j<i$, then in fact $S_{i m} \bar{a}$ if and only if $S_{i m} \bar{b}$.
(2) Suppose that round $\langle j, 2 m\rangle$ or $\langle j, 2 m+1\rangle$ has just been completed, $j<k$ and odd, $0 \leq m<n_{j}$. Then for all $m^{\prime}, m<m^{\prime} \leq n_{j}$, there is not a pair of correspondingly pebbled m^{\prime}-tuples of elements \bar{a} in A_{p}, \bar{b} in B_{p}, all of height $=j$, such that $A_{p}^{+} \models S_{j m^{\prime}} \bar{a}$ and $B_{p}^{+} \models \neg S_{j m^{\prime}} \bar{b}$. Likewise, for $j<k$ and even, there is not a pair of correspondingly pebbled m^{\prime}-tuples \bar{a} in A_{p}, \bar{b} in B_{p} such that $A_{p}^{+} \models \neg S_{j m^{\prime}} \bar{a}$ and $B_{p}^{+} \models S_{j m^{\prime}} \bar{b}$.
(ii) For each $j<k$, at the completion of level j the active pebbles, on \bar{a} in A_{p} and \bar{b} in B_{p}, induce a partial isomorphism between the $\left(\sigma_{p} \backslash\left\{\bar{S}_{1}, \ldots, \bar{S}_{j}\right\}\right)$ reducts of A_{p}^{+}and B_{p}^{+}. That is,

$$
\left(A_{p}^{+} \upharpoonright \bar{a}\right)\left|\left(\sigma_{p} \backslash\left\{\bar{S}_{1}, \ldots, \bar{S}_{j}\right\}\right) \cong\left(B_{p}^{+} \upharpoonright \bar{b}\right)\right|\left(\sigma_{p} \backslash\left\{\bar{S}_{1}, \ldots, \bar{S}_{j}\right\}\right)
$$

In particular, the D . plays so as to respect all the relations R_{i}.
(iii) The D.'s strategy during level k is somewhat different. We describe the case for k odd (k even is similar, essentially 'dual').

As in the case of previous levels, during round $\langle k, 1\rangle$ (an \forall^{*} round), the S. may perhaps be able to play so that there are (arbitrarily many) pairs of corresponding pebbles so that the A_{p} pebble is on an element in $P_{k-1} \wedge \neg S_{(k-1) 1}$ and the B_{p} pebble is on an element in $P_{k-1} \wedge S_{(k-1) 1}$. In particular, he may play so that there is an n_{k-1}-tuple of pebbles on an n_{k-1}-clique \bar{b} in B_{p} of P_{k-1}-elements in $S_{(k-1) n_{k-1}}$ such that the corresponding pebbles are on an n_{k-1}-clique \bar{a} in A_{p} of P_{k-1}-elements not in $S_{(k-1) n_{k-1}}$.

The significant difference between the above tuples \bar{a} and \bar{b} is the following. In A_{p}, there is an n_{k}-clique \bar{a}^{\prime} (in P_{k}) such that \bar{a} arrows \bar{a}^{\prime}, but there is no such matching n_{k}-clique in B_{p} (by Observation 3.9(d) again). Thus the S . would win if he was allowed to play n_{k} more pebbles on A_{p}. Fortunately, he may only play $n_{k}-1$ more. Further, the S. can, in round $\langle k, 2\rangle$, and subsequent rounds $\langle k, 2 m\rangle, m<n_{k}$, force the D. to 'break' R_{k-1}-types. That is, if he plays a pebble on some $a_{0} \in A_{p}$ such that $R_{k-1}\left(\bar{a}, a_{0}\right)$, then there is no b_{0} in B_{p} such that $R_{k-1}\left(\bar{b}, b_{0}\right)$ (by Observation 3.9(c)).

We now introduce some more terminology. Call a pair of correspondingly pebbled n_{k-1}-tuples of P_{k-1}-elements \bar{a}^{\prime} in A_{p}, \bar{b}^{\prime} in B_{p}, switched just in case that $\neg S_{(k-1) n_{k-1}} \bar{a}^{\prime}$ and $S_{(k-1) n_{k-1}} \bar{b}^{\prime}$. We will also say that each of the tuples \bar{a}^{\prime} and \bar{b}^{\prime} is itself switched. A pair (a, b) of correspondingly pebbled P_{k}-elements in A_{p} and B_{p} is distinguished if there are correspondingly pebbled switched n_{k-1}-tuples $\bar{a}^{\prime}, \bar{b}^{\prime}$, such that $\neg S_{(k-1) n_{k-1}} \bar{a}^{\prime} \wedge R_{k-1}\left(\bar{a}^{\prime}, a\right)$ and $S_{(k-1) n_{k-1}} \bar{b}^{\prime} \wedge \neg R_{k-1}\left(\bar{b}^{\prime}, b\right)$.
We are now prepared to describe this part of the strategy.
(\exists) round In each (\exists) round $\langle k, 2 m\rangle, 1 \leq m<n_{k}$, we modify the D.'s strategy so that it no longer requires that she always respects the relation R_{k-1}. (But she will still play so as to preserve a partial isomorphism on the $\left\{E, P_{1}, \ldots, P_{k}, R_{1}, \ldots, R_{k-2}\right\}-$ reducts of the pebbled parts of A_{p}^{+}and B_{p}^{+}.) In any such (\exists) round, if the S. plays on an element a^{\prime} in P_{k} in A_{p}, then the D. plays on some b^{\prime} in P_{k} in B_{p} in accordance with the following restrictions.

1. She maintains the partial $\{E\}$-isomorphism between pebbled elements.
2. If $\bar{a}^{\prime}, \bar{b}^{\prime}$ are correspondingly pebbled tuples of P_{k-1}-elements that are not switched, then $R_{k-1}\left(\bar{a}^{\prime}, a^{\prime}\right)$ if and only if $R_{k-1}\left(\bar{b}^{\prime}, b^{\prime}\right)$.
(Observe that if $\bar{a}^{\prime}, \bar{b}^{\prime}$ are switched, then necessarily $\neg R_{k-1}\left(\bar{b}^{\prime}, b^{\prime}\right)$, so the D. 'has no choice' here.) (2) is thus a weakened condition on 'respecting'.
$\left(\forall^{*}\right)$ round $O n$ the other hand, in each $\left(\forall^{*}\right)$ round $\langle k, 2 m+1\rangle, 0 \leq m<n_{k}$, in which the S. plays a pebble in P_{k}, the D. still plays so as to 'respect' R_{k-1}. More precisely, since the mapping between previously pebbled elements may not 'preserve' R_{k-1}, this means the following. Let $b^{\prime} \in B_{p}, a^{\prime} \in A_{p}$ be the P_{k}-elements on which the S . and the D . have played, respectively, in this round. Then for any pair \bar{a}, \bar{b}, in A_{p}, B_{p}, of ($n_{k-1}+1$)-tuples of correspondingly pebbled elements, such that $a^{\prime} \in \bar{a}$ and $b^{\prime} \in \bar{b}, R_{k-1} \bar{a}$ if and only if $R_{k-1} \bar{b}$.

Observe that the pair $\left(a^{\prime}, b^{\prime}\right)$ are not distinguished, as defined above.
Outside of $\boldsymbol{P}_{\boldsymbol{k}}$ Finally, if the S . plays on some element not in P_{k}, then the D. plays as described above in parts (i) and (ii). In particular, she preserves partial
$\left(\{E\} \cup \bar{P} \cup\left\{R_{1}, \ldots, R_{k-2}\right\}\right)$-isomorphism between the pebbled elements. Again, regarding R_{k-1}, she plays so as to respect R_{k-1} in the weaker sense explained above. This completes the description of the strategy.

The D. does win if she can successfully carry out this strategy since it entails that at the completion of level k, the end of the game, the pebbles determine a partial isomorphism between A_{p} and B_{p}, the E-reducts of A_{p}^{+}and B_{p}^{+}, as desired. It remains to show that this is possible.

Proving that the D. wins We argue by induction on the number of rounds. The induction hypothesis is that the D . has, through round r, been able to carry out the above strategy successfully.

Before giving the argument, we make a general observation. By Observation 3.7(b), if $T \in \sigma_{p}, \bar{a} \in A_{p}$ or B_{p}, and $T \bar{a}$, then for all $a, a^{\prime} \in \bar{a}$, \mid height $(a)-\operatorname{height}\left(a^{\prime}\right) \mid \leq 1$. This implies the following point, which simplifies the D.'s choice of moves. Suppose that the S. has just played a pebble on an element of height $i, i \leq k$. By Condition (i), the D. should play on an element of the same height in the other structure. We claim that, in making her choice, she only needs to consider the pebbles that are on elements of height $i-1, i$, or $i+1$. This is because the strategy is defined in terms of preserving partial isomorphisms between reducts of the σ_{p}-structures A_{p}^{+}and B_{p}^{+}, and no tuple in any σ_{p}-relation contains an element of height i and one of height j, when $|j-i|>1$.

Part I—Round \boldsymbol{r} occurs in level $\boldsymbol{j}, \boldsymbol{j}<\boldsymbol{k}$

Case A Suppose the S . plays a pebble in P_{i}, where i is $<j$ and even. (The argument for i odd is similar.)
By the induction hypothesis, the D. has maintained Conditions (i.1) and (ii) of the strategy. By the preceding note, we can restrict our attention to (the pebbled elements in) the substructures of A_{p} and B_{p} with universe $P_{i-1} \vee P_{i} \vee P_{i+1}$. Let \bar{a}, \bar{b} denote the (corresponding) tuples of currently pebbled elements in $A_{p} \upharpoonright\left(P_{i-1} \vee P_{i} \vee P_{i+1}\right)$ and $B_{p} \upharpoonright\left(P_{i-1} \vee P_{i} \vee P_{i+1}\right)$, respectively. We know that \bar{a} and \bar{b} realize the same $(\{E\} \cup \bar{P} \cup \bar{R})$-type. Also, for each $j \in\{i-1,1, i+1\}$ and each pair of m-tuples $\bar{a}^{\prime}, \bar{b}^{\prime}, m \leq n_{j}$, of correspondingly pebbled elements in A_{p}, B_{p}, such that every element in \bar{a}^{\prime} and in \bar{b}^{\prime} has height j, if \bar{a}^{\prime} and \bar{b}^{\prime} do not realize the same \bar{S}-type, then either $j=i$ and $\neg S_{i m} \bar{a}^{\prime}$ and $S_{i m} \bar{b}^{\prime}$ or $|j-i|=1$ and $S_{j m} \bar{a}^{\prime}$ and $\neg S_{i m} \bar{b}^{\prime}$.

There are various kinds of moves the S. can make.
A(i) The S. plays on an element b^{\prime} in $S_{i 1}$ in B_{p}. We must show that the D. can choose an element a^{\prime} in A_{p} while respecting the strategy described above. To this end, we use Lemma 2.19 to show that there is an a^{\prime} in $P_{i} \wedge \neg S_{i 1}$ such that $\left(B_{p}^{+} \upharpoonright\left(\bar{b}, b^{\prime}\right)\right)\left|\left(\sigma_{p} \backslash \bar{S}\right) \cong\left(A_{p}^{+} \upharpoonright\left(\bar{a}, a^{\prime}\right)\right)\right|\left(\sigma_{p} \backslash \bar{S}\right)$. It is easy to see that this shows that the D . can make a move that respects the conditions of her strategy.

Let $\theta\left(\bar{x}, x^{\prime}\right)$ be the complete atomic ($\left.\sigma_{p} \backslash \bar{S}\right)$-type of $\left(\bar{b}, b^{\prime}\right)$, and let $\psi\left(\bar{x}, x^{\prime}\right)$ be a conjunction of every negated atomic formula of the form $S_{l m} \bar{y}, \bar{y} \subset \bar{x} \cup\left\{x^{\prime}\right\}$ and $x^{\prime} \in \bar{y}$. We define $\theta^{\prime}\left(\bar{x}, x^{\prime}\right)=\theta\left(\bar{x}, x^{\prime}\right) \wedge \psi\left(\bar{x}, x^{\prime}\right)$. Then there is a unique σ_{p}-structure C, with universe $\left(\bar{c}, c^{\prime}\right)$, such that $C \upharpoonright \bar{c} \cong A_{p} \upharpoonright \bar{a}$ and $C \models \theta^{\prime}\left[\bar{c}, c^{\prime}\right]$. Observe that there is a natural $\left(\sigma_{p} \backslash \bar{S}\right)$-isomorphism from $\left(B_{p}^{+} \upharpoonright\left(\bar{b}, b^{\prime}\right)\right) \mid\left(\sigma_{p} \backslash \bar{S}\right)$ to $C \mid\left(\sigma_{p} \backslash \bar{S}\right)$, taking each $b_{l} \in \bar{b}$ to the corresponding $c_{l} \in \bar{c}$ and b^{\prime} to c^{\prime}. By Lemma 2.19, it suffices to show that no constraint in $\mathscr{\mathscr { F }}_{p}^{A}$ is isomorphic to a substructure of C.

Say that a constraint D in $\mathscr{g}_{p}^{A} \cup \mathcal{g}_{p}^{B}$ is \bar{S}-symmetric just in case for all σ_{p}-structures D^{\prime}, if $D\left|\left(\sigma_{p} \backslash \bar{S}\right) \cong D^{\prime}\right|\left(\sigma_{p} \backslash \bar{S}\right)$, then also D^{\prime} in $\mathscr{\mathscr { F }}_{p}^{A}$ and in $\mathscr{\mathscr { F }}_{p}^{B}$. In particular, it is clear from the definitions of $\mathscr{\mathscr { C }}_{p}^{A}$ and $\mathscr{\mathscr { F }}_{p}^{B}$ that the only constraints that are not \bar{S}-symmetric are the structures $M_{l}^{p}, l<k$, and N^{p} from Definition 3.5.

Suppose, for the sake of contradiction, that there is a substructure $D \subset C$ that is isomorphic to a constraint in \mathscr{g}_{p}^{A}. We claim that D cannot be \bar{S}-symmetric. As $B_{p}^{+} \upharpoonright\left(\bar{b}, b^{\prime}\right)\left|\left(\sigma_{p} \backslash \bar{S}\right) \cong C\right|\left(\sigma_{p} \backslash \bar{S}\right)$, there is a $D^{\prime} \subset B_{p}^{+} \upharpoonright\left(\bar{b}, b^{\prime}\right)$, with $D\left|\left(\sigma_{p} \backslash \bar{S}\right) \cong D^{\prime}\right|$ $\left(\sigma_{p} \backslash \bar{S}\right)$. Since $D^{\prime} \subset B_{p}$, this implies that $D^{\prime} \notin \mathscr{g}_{p}^{B}$, so that D is not \bar{S}-symmetric, as desired.

Consequently, if there is a substructure $D \subset C$ isomorphic to a constraint in $\mathscr{\mathscr { F }}_{p}^{A}$ it must be isomorphic to one of the structures M_{l}^{p} from Definition 3.5. Furthermore, this substructure must include the element c^{\prime}, since (the universe of C is $\bar{c} \cup\left\{c^{\prime}\right\}$ and) $C \upharpoonright \bar{c}$ is isomorphic to a substructure of A_{P}^{+}, so it cannot embed any such constraint. But this is not possible, as every element in any of the $M_{l}^{p}, l<k$, is an S-element (that is, in some relation $S_{j 1}, 1 \leq j \leq k$), while c^{\prime} is not. So we have shown that no substructure of C is isomorphic to a constraint of \mathscr{g}_{p}^{A}, as desired.

A(ii) The S . plays on an element a^{\prime} in $S_{i 1}$ in A_{p}. We argue as above, using Lemma 2.19 to show that the D. can choose a b^{\prime} in $P_{i} \wedge S_{i 1}$ so as to satisfy Conditions (i) and (ii) of her strategy. Recall that \bar{a}, \bar{b} are the (corresponding) tuples of currently pebbled elements in $A_{p} \upharpoonright\left(P_{i-1} \vee P_{i} \vee P_{i+1}\right)$ and $B_{p} \upharpoonright\left(P_{i-1} \vee P_{i} \vee P_{i+1}\right)$, respectively. Let g be the natural bijection from \bar{a} to \bar{b} that takes a pebbled element in \bar{a} to the element in \bar{b} on which the corresponding pebble is located.

Let $\theta\left(\bar{x}, x^{\prime}\right)$ be the complete atomic ($\sigma_{\underline{p}} \backslash \bar{S}$)-type of (\bar{a}, a^{\prime}). Define $\psi_{1}\left(\bar{x}, x^{\prime}\right)$ to be the conjunction of (positive !) atomic \bar{S}_{i} formulas satisfied by (\bar{a}, a^{\prime}), and $\psi_{2}(\bar{x})$ to be the conjunction of atomic \bar{S} formulas satisfied by \bar{b}. Finally, we let $\theta^{\prime}\left(\bar{x}, x^{\prime}\right)$ be the unique σ_{p}-type extending $\theta \wedge \psi_{1} \wedge \psi_{2}$ such that every atomic formula that occurs as a conjunct of θ^{\prime} is a conjunct of θ, ψ_{1}, or ψ_{2}. One can easily check that it suffices for the D . to pebble an element $b^{\prime} \in B_{p}$ such that $B_{p} \models \theta^{\prime}\left[\bar{b}, b^{\prime}\right]$.

Again, there is a unique σ_{p}-structure C, with universe $\left(\bar{c}, c^{\prime}\right)$, such that $C \upharpoonright \bar{c} \cong B_{p} \upharpoonright \bar{b}$ and $C \models \theta^{\prime}\left[\bar{c}, c^{\prime}\right]$. There is also a natural isomorphism h from $A_{p}^{+} \upharpoonright\left(\bar{a}, a^{\prime}\right) \mid\left(\sigma_{p} \backslash \bar{S}\right)$ to $C \mid\left(\sigma_{p} \backslash \bar{S}\right)$. By Lemma 2.19, it now suffices to show that no constraint in $\mathscr{\mathscr { D }}_{p}^{B}$ embeds in C. If some constraint in $\mathscr{\mathscr { ~ }}_{p}^{B}$ is isomorphic to a substructure of C, then, as in $\mathrm{A}(\mathrm{i})$, it is not \bar{S}-symmetric and can only be one of the structures M_{l}^{p}. In fact, it must be either M_{i}^{p} or M_{i-1}^{p}, since these are the only such structures with an element in P_{i}. Here the element c^{\prime} is in S_{i}, so we cannot argue quite as we did in $\mathrm{A}(\mathrm{i})$.

We show that M_{i}^{p} does not embed in C. Suppose for contradiction that $D \subset C$ and $D \cong M_{i}^{p}$. We will show that this implies that M_{i}^{p} is also a substructure of $A_{p} \upharpoonright\left(\bar{a}, a^{\prime}\right)$, which is not possible. Let $\left\{d_{1}, \ldots, d_{n_{i}+1}\right\}$ be the universe of D, $\bar{d}=\left(d_{1}, \ldots, d_{n_{i}}\right)$. We can assume that $d_{n_{i}+1}$ is in $S_{(i+1) 1}$, so every $d^{\prime} \in \bar{d}$ is in P_{i} and $S_{i n_{i}} \bar{d}$ (because $D \cong M_{i}^{p}$. Let $a_{l}=h^{-1}\left(d_{n_{i}+1}\right)$, for some $a_{l} \in \bar{a}$, and let $b_{l}=g\left(a_{l}\right)$. Observe that $a^{\prime} \in h^{-1}(\bar{d})$ (where $h^{-1}(\bar{d})=\left(h^{-1}\left(d_{1}\right), \ldots, h^{-1}\left(d_{n_{i}}\right)\right)$.

First, we claim that $a_{l} \in S_{(i+1) 1}$. Otherwise, if $a_{l} \notin S_{(i+1) 1}$, then also $b_{l} \notin S_{(i+1) 1}$, by Condition (i) of the strategy. Then clearly $\neg S_{(i+1) 1} x_{l}$ is a conjunct of θ^{\prime}, which contradicts the fact that $d_{n_{i}+1}$ is in $S_{(i+1) 1}$. Furthermore
$A_{p} \models R_{i}\left(h^{-1}(\bar{d}), a_{l}\right)$, because $C \models R_{i}\left(\bar{d}, d_{n_{i}+1}\right)$ and h is a ($\sigma_{p} \backslash \bar{S}$)-isomorphism from $\left(A_{p} \upharpoonright\left(\bar{a}, a^{\prime}\right)\right) \mid\left(\sigma_{p} \backslash \bar{S}\right)$ to $C \mid\left(\sigma_{p} \backslash \bar{S}\right)$.

Finally, we want to show that in fact $A_{p} \models S_{i n_{i}}\left(h^{-1}(\bar{d})\right)$. It is then easy to see that this implies that the substructure of A_{p} with universe $\left\{h^{-1}(d) \mid d \in D\right\}$ is isomorphic to M_{i}^{p}, yielding the desired contradiction. Because $C \models S_{i n_{i}} \bar{d}$, there is a conjunct $S_{i n_{i}} \bar{y}$ of $\theta^{\prime}, \bar{y} \subset \bar{x} \cup\left\{x^{\prime}\right\}$, with $x^{\prime} \in \bar{y}$ (because a^{\prime} must be in $h^{-1}(\bar{d})$). Clearly $S_{i n_{i}} \bar{y}$ cannot be a conjunct of ψ_{2}, since x^{\prime} does not occur in this formula, so we can conclude that $S_{i n_{i}} \bar{y} \in \psi_{1}$ and, thus, that $A_{p} \models S_{i n_{i}}\left(h^{-1}(\bar{d})\right)$.

The argument to show that M_{i-1}^{p} does not embed in C is a simple variant of the previous one, and straightforward.

There are a number of other cases that we do not treat explicitly, though we note the following facts. One, if the S . plays instead in $P_{i} \wedge \neg S_{i 1}$, in either A_{p} or B_{p}, then it is easy to show that the D . can maintain her strategy by also playing on an element in $P_{i} \wedge \neg S_{i 1}$. Two, the argument for i odd is essentially identical. When $i=1$, things look slightly different, since the formula $P_{1} x \wedge S_{11} x$ is not satisfied in B_{p}, but it is easy to see that this makes no real difference: whenever the S . plays on an element in $P_{1} \wedge S_{11}$ in A_{p}, the D.'s strategy allows her to choose an element in $P_{1} \wedge \neg S_{11}$ in B_{p} in response.
Case B S. plays in P_{j}. Assume that j is even (odd is identical). We have the D. play precisely as she did in the preceding Case A, so it only remains to show that in doing so she also respects Condition (ii) of the strategy. It suffices to establish the following claim.

Claim 3.13 Suppose that after round $\langle j, 2 m+1\rangle, 0 \leq m \leq n_{j}-1$, there are l-tuples, $l \leq n_{j}, \bar{a}$ in $A_{p}, \bar{b} \in B_{p}$, of correspondingly pebbled P_{j}-elements such that $\neg S_{j l} \bar{a}$ and $S_{j l} \bar{b}$. Then every $b \in \bar{b}$ was pebbled by the S .. In particular, $l \leq m$.
To verify the claim, we examine the above construction in Case A. If the S. plays a pebble not in $S_{j 1}$, in either structure, then the D . does so too, and neither element can be in any tuple that is in any relation $S_{j l}, l \leq k$. It only remains to consider the case when the S. plays a pebble on an element a^{\prime} in $S_{j 1}$. The D. then also plays on some $b^{\prime} \in S_{j 1}$, as described above. Suppose that there are correspondingly pebbled l-tuples \bar{a} in $A_{p}, \bar{b} \in B_{p}$, of P_{j}-elements such that $\neg S_{j l} \bar{a}$ and $S_{j l} \bar{b}$. By the properties of \bar{S}_{j}, we know that $\neg S_{j(l+1)}\left(\bar{a}, a^{\prime}\right)$. So we must show that also $\neg S_{j(l+1)}\left(\bar{b}, b^{\prime}\right)$. But this is clear from the definition of $\theta^{\prime}\left(\bar{x}, x^{\prime}\right)$ in Case $\mathrm{A}(i i)$.

Case C S. plays in P_{i}, and $i>j$.
This case is rather straightforward, and we give a less formal and more intuitive argument. Given that the D . is committed to following the strategy described above, we consider how it is possible for the S . to 'force' the D . to play a pebble so that there is a pair a, b of correspondingly pebbled elements in A_{p}, B_{p} such that $a \in S_{i 1}$ if and only if $b \notin S_{i 1}$, for some $i<k$. If the S . plays in P_{1}, this is easy, since there are no elements in $P_{1} \wedge S_{11}$ in B_{p}. He simply plays on an element $a \in A_{p}$ in $P_{1} \wedge S_{11}$. On the other hand, in order to accomplish this for elements of height $i+1>1$ (assume $i+1$ even), there must be a pair of correspondingly pebbled n_{i}-tuples \bar{a}, \bar{b} in A_{p}, B_{p} such that $S_{\text {in }_{i}} \bar{a}$ and $\neg S_{i n_{i}} \bar{b}$. In this case, the S. can pebble a $b^{\prime} \in B_{p}$ such that $S_{(i+1) 1} b \wedge R_{i}\left(\bar{b}, b^{\prime}\right)$. In A_{p}, there is no a^{\prime} such that $S_{(i+1) 1} a \wedge R_{i}\left(\bar{a}, a^{\prime}\right)$ (see Observation 3.9(c)), so the D . will choose some a^{\prime} such that $\neg S_{(i+1) 1} a \wedge R_{i}\left(\bar{a}, a^{\prime}\right)$.

But by Conditions (i) and (ii) of the D.'s strategy (and Case B above), at no point during level $j \leq i$ of the game is there a pair of correspondingly pebbled n_{i}-tuples \bar{a}, \bar{b} in A_{p}, B_{p} such that $S_{i n_{i}} \bar{a}$ and $\neg S_{i n_{i}} \bar{b}$. Thus, the D. cannot be compelled to 'break' \bar{S}_{i}-types, $i>j$, during level j of the game.

Part II—Round \boldsymbol{r} occurs in level $\boldsymbol{k} \quad$ This part is also divided into a number of cases. We assume, without loss of generality, that k is odd. Note that Condition (iii) of the strategy ensures the following property of a play of the game. For each $m, 0 \leq m \leq n_{k}-1$, after rounds $\langle k, 2 m\rangle$ and $\langle k, 2 m+1\rangle$, there are at most m distinguished pairs (a, b) of pebbled P_{k}-elements in A_{p} and B_{p}. (Recall the definition of a distinguished pair given in the description of Condition (iii) of the D.'s strategy.)

Let $\bar{a}=\left(a_{0}, \ldots, a_{t}\right), \bar{b}=\left(b_{0}, \ldots, b_{t}\right)$, be the (corresponding) tuples of currently pebbled elements in $A_{p} \upharpoonright\left(P_{k-1} \vee P_{k}\right)$ and $B_{p} \upharpoonright\left(P_{k-1} \vee P_{k}\right)$, respectively. Let g be the bijective mapping from \bar{a} to \bar{b} that takes a pebbled element $a_{s}, s \leq t$, in \bar{a} to the element $b_{s}, s \leq t$, in \bar{b} on which the corresponding pebble is located.

Case A S. plays in P_{k}.
A(i) S. plays on an element a^{\prime} in A_{p} in an (\exists) round $\langle k, 2 m\rangle, m \leq n_{k}-1$.
By the induction hypothesis, there are less than $n_{k}-1$ distinguished pairs of pebbled elements in \bar{a}, \bar{b} at the end of round $\langle k, 2 m\rangle$. In particular, $\bar{a} \cup\left\{a^{\prime}\right\}$ does not contain a switched n_{k-1}-tuple \bar{a}_{0} and an n_{k}-tuple \bar{a}_{1}, each $a \in \bar{a}_{1}$ distinguished, such that \bar{a}_{0} arrows \bar{a}_{1}. (This is the crucial point.)

Let $\theta\left(\bar{x}, x^{\prime}\right)$ be the complete atomic $\{E\} \cup \bar{P}$-type of $\left(\bar{a}, a^{\prime}\right)$ in A_{p}^{+}. Let h be the map that takes x^{\prime} to a^{\prime} and each $x_{s} \in \bar{x}, s \leq t$, to the naturally corresponding element $a_{s} \in \bar{a}$ which 'instantiates it'. Let $\psi_{1}\left(\bar{x}, x^{\prime}\right)$ be the conjunction of all atomic R_{k-1} formulas $R_{k-1}\left(\bar{y}, x^{\prime}\right), \bar{y} \subset \bar{x}$ such that the $n_{k-1}+1$-tuple $\left(\bar{a}_{0}, a^{\prime}\right)$ of A_{p} elements instantiating $\left(\bar{y}, x^{\prime}\right),\left(=h(\bar{y}) \cup\left\{a^{\prime}\right\}\right)$, satisfies $R_{k-1}\left(\bar{a}_{0}, \bar{a}\right)$, and \bar{a}_{0} is not a switched tuple. Let $\psi_{2}(\bar{x})$ be the complete σ_{p}-type of \bar{b} in B_{p}. Finally, let $\theta^{\prime}\left(\bar{x}, x^{\prime}\right)$ be the unique complete σ_{p}-type extending $\theta \wedge \psi_{1} \wedge \psi_{2} \wedge S_{k} x^{\prime}$ such that every conjunct of θ^{\prime} that is an atomic formula either is $S_{k} x^{\prime}$ or occurs as a conjunct in θ, ψ_{1}, or ψ_{2}. (It is easy to check that this is well defined.)

It is easy to see that the D . will satisfy the conditions of her strategy if she can choose an element b^{\prime} in B_{p} such that $\theta^{\prime}\left[\bar{b}, b^{\prime}\right]$. Again, it suffices to show that the unique σ_{p}-structure C with universe $\left(\bar{c}, c^{\prime}\right)$ satisfying $\theta^{\prime}\left[\bar{c}, c^{\prime}\right]$ does not embed any constraint in $\mathscr{\mathscr { F }}_{p}^{B}$. By previous ideas, the only constraints for which it is nontrivial to verify this are M_{k-1}^{p} and the structure with universe $\left(\bar{d}, \bar{d}^{\prime}\right)$ such that \bar{d} is a tuple of P_{k-1}-elements, \bar{d}^{\prime} is a tuple of P_{k}-elements, and $\operatorname{Ar}\left(\bar{d} ; \bar{d}^{\prime}\right)$. The argument that neither structure embeds in C is by now straightforward.

A(ii) S. plays on an element b^{\prime} in B_{p} in an $\left(\forall^{*}\right)$ round.
Let $\theta\left(\bar{x}, x^{\prime}\right)$ be the complete atomic $\{E\} \cup \bar{P}$-type of $\left(\bar{b}, b^{\prime}\right)$ in B_{p}. Let $\psi_{1}\left(\bar{x}, x^{\prime}\right)$ be the conjunction of all atomic R_{k-1}-formulas $R_{k-1}\left(\bar{y}, x^{\prime}\right), \bar{y} \subset \bar{x}$ such that the $\left(n_{k-1}+1\right)$-tuple (\bar{b}_{0}, b^{\prime}) of B_{p} elements instantiating $\left(\bar{y}, x^{\prime}\right)$ satisfies $R_{k-1}\left(\bar{b}_{0}, \bar{b}\right)$. Let $\psi_{2}(\bar{x})$ be the complete σ_{p}-type of \bar{a} in A_{p}. As before, we define $\theta^{\prime}\left(\bar{x}, x^{\prime}\right)$ to be the unique complete σ_{p}-type extending $\theta \wedge \psi_{1} \wedge \psi_{2}$ such that every conjunct of θ^{\prime} that is an atomic formula occurs as a conjunct in θ, ψ_{1}, or ψ_{2}.

The argument proceeds as in the previous cases. Once again, it suffices for the D. to choose an element a^{\prime} in A_{p} such that $A_{P}^{+} \models \theta^{\prime}\left[\bar{a}, a^{\prime}\right]$. It is easy to show that
this is possible. We only make the following observation. Suppose that $\bar{a}^{\prime}, \bar{b}^{\prime}$ is a switched pair of corresponding n_{k-1}-tuples of pebbled P_{k-1}-elements; by definition, $\neg S_{(k-1) n_{k}} \bar{a}^{\prime}$ and $S_{(k-1) n_{k}} \bar{b}^{\prime}$. Recall that the relevant difference between \bar{a}^{\prime} and \bar{b}^{\prime} is that there is no b_{0} in B_{p} such that $R_{k-1}\left(\bar{b}^{\prime}, b_{0}\right)$, though there is an a_{0} in A_{p}, $R_{k-1}\left(\bar{a}^{\prime}, a_{0}\right)$. Informally, this means that, when the S. plays on b^{\prime} in P_{k}, he in fact has a more limited choice of moves than the D., so the D . will have no trouble adequately answering him. (Again observe that $\left(a^{\prime}, b^{\prime}\right)$ will not be a distinguished pair-this explains the bound on the number of distinguished pairs mentioned at the beginning of Part II.)
Case B S. plays in P_{k-1}.
The argument is straightforward, following the pattern of earlier cases. We only note that it is easy to check that if the S . does play in P_{k-1}, he cannot, by doing so, transform a previously pebbled nondistinguished pair of elements $a \in A_{p}, b \in B_{p}$, into a distinguished pair. (This is a consequence of the D.'s strategy of 'respecting' R_{k-1} when the S . plays in P_{k-1}.)
Case C S. plays in $P_{j}, j \leq k-2$.
In this case, the argument is exactly that of Part I.
This completes the proof of the theorem.

References

[1] Grädel, E., and G. L. McColm, "Hierarchies in transitive closure logic, stratified Datalog and infinitary logic," Annals of Pure and Applied Logic, vol. 77 (1996), pp. 169-99. Zbl 0925.03161. MR 98f:03038. 147, 149, 150
[2] Hodges, W., Model Theory, vol. 42 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1993. Zbl 0789.03031. MR 94e:03002. 151
[3] Keisler, H. J., and W. Walkoe, Jr., "The diversity of quantifier prefixes," The Journal of Symbolic Logic, vol. 38 (1973), pp. 79-85. Zbl 0259.02007. MR 51:12472. 147
[4] Walkoe, W. J., Jr., "Finite partially-ordered quantification," The Journal of Symbolic Logic, vol. 35 (1970), pp. 535-55. Zbl 0219.02008. MR 43:4646. 147

Acknowledgments

I am grateful to the referee for a very careful reading of the paper.

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
Chicago IL 60607
erosen@math.uic.edu

