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The Closed Fragment of the Interpretability Logic
of PRA with a Constant for I61

Joost J. Joosten

Abstract In this paper we carry out a comparative study of I61 and PRA.
We will in a sense fully determine what these theories have to say about each
other in terms of provability and interpretability. Our study will result in two
arithmetically complete modal logics with simple universal models.

1 Introduction

In this paper we provide a modal logic that can decide on simple questions involving
provability and interpretability over PRA and I61. One should think of questions
such as I61 ⊢? Con(PRA), PRA + Con(PRA) ⊢? I61, PRA + Con(PRA) ⊲?

PRA + Con(I61) + ¬I61, I61 ⊲? PRA + Con(PRA), I61 + Con(I61) ⊲?

PRA + Con(Con(PRA)), and so on. As we shall see, some quite interesting
questions can be formulated in the logics we give.

In Section 3 we shall first compute the closed fragment of the provability logic of
PRA with a constant for I61. The full provability logic of PRA with a constant for
I61 actually has already been determined in Beklemishev [1]. We give an elemen-
tary proof here so that we can extend it when computing the closed fragment of the
interpretability logic of PRA with a constant for I61 in Section 4.

1.1 Interpretations Interpretations in the form we will consider them have been
around for quite a while in common mathematical practice. A good example is the
interpretation of non-Euclidean geometry in Euclidean geometry. As a metamathe-
matical tool, interpretations were first introduced in full generality in Tarski et al. [26]
where they were used to show relative consistency and undecidability of theories.

The notion of interpretability that we will study is essentially the same as in [26].
Thus, an interpretation of a theory T in a theory S is nothing more than a structure
preserving translation of formulas of T to formulas of S such that the translation
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of any theorem of T is provable in S. In case such a translation exists we say that
S interprets T or that T is interpretable in S and write S ⊲ T . As in [26] we are
interested in relative interpretability. This means that in S we have a domain function
δ(x) to which all our quantifiers are restricted/relativized. A precise and formal
definition of relative interpretability can be found in, for example, Japaridze and
de Jongh [11] or Visser [30]. In these references and especially in Visser [28] the
formalization of interpretability is studied. This gives rise to interpretability logics
with a binary modal operator ⊲ for formalized interpretability.

1.2 Collection Many of the interesting properties of interpretability are only
provable in the presence of the 61-collection principle B61. Our base theory PRA
lacks B61 and thus, for example,

(PRA ∪ {α})⊲ (PRA ∪ {β}) → (Con(PRA ∪ {α}) → Con(PRA ∪ {β}))

is not provable in PRA by the standard argument. And it is actually an open question
if this is provable at all in PRA. We will thus talk rather of smooth interpretability

as introduced in [28]. This notion of interpretability can be seen as the notion where
the needed collection has been built in by defining it accordingly. When we speak of
interpretablility we will in this paper always mean the smooth version.

In the presence of B61 the two versions of interpretability coincide. Moreover,
for finitely axiomatizable theories T we have that interpretability and smooth inter-
pretability in U coincide. We refer the reader to Hájek and Pudlák [8] and Buss [5]
for the arithmetical principles and theories that we use in this paper.

1.3 Interpretability logics Just as in the case of provability logics we have that
a modal sentence A ⊲ B is a valid principle for a theory T if for any arithmetical
realization ∗ holds T ⊢ (T ∪{A∗})⊲(T ∪{B∗}). Often T + A∗ will be written instead
of T ∪ {A∗}. Sometimes we will write A∗ ⊲T B∗ for (T + A∗)⊲ (T + B∗). We will
denote both the modal operator and the formalized notion of smooth interpretability
by the same symbol ⊲ but this will hardly lead to any confusion.

As the definition of interpretability invokes that of provability it does not come as
a surprise that interpretability and provability logics are closely related. As a matter
of fact, provability logics are literally included in the interpretability logics.

Definition 1.1 The logic IL is the smallest set of formulas being closed under the
rules of necessitation and of modus ponens that contains all tautological formulas
and all instantiations of the following axiom schemata.

L1 �(A → B) → (�A → �B)

L2 �A → ��A

L3 �(�A → A) → �A

J1 �(A → B) → A ⊲ B

J2 (A ⊲ B) ∧ (B ⊲ C) → A ⊲ C

J3 (A ⊲ C) ∧ (B ⊲ C) → A ∨ B ⊲ C

J4 A ⊲ B → (♦A → ♦B)

J5 ♦A ⊲ A
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The interpretability logic IL is a sort of basic interpretability logic. All other inter-
pretability logics we consider shall be extensions of IL by further principles. Princi-
ples we shall consider in this paper are among the following.

F := (A ⊲ ♦A) → �¬A

W := (A ⊲ B) → (A ⊲ (B ∧ �¬A))

M := (A ⊲ B) → ((A ∧ �C)⊲ (B ∧ �C))

P := (A ⊲ B) → �(A ⊲ B)

If X is a set of axiom schemata we will denote by ILX the logic that arises by adding
the axiom schemata in X to IL. Thus, ILX is the smallest set of formulas being closed
under the rules of modus ponens and necessitation and containing all tautologies and
all instantiations of the axiom schemata of IL (L1 – J5) and of the axiom schemata
of X.

The interpretability logic for essentially reflexive theories has been proved to be
ILM, independently in Berarducci [3] and Shavrukov [20]. Also the situation is
known for finitely axiomatized theories in which case the logic is ILP (Visser [27]).

No interpretability logic is known for a theory that is neither essentially reflexive
nor finitely axiomatizable. PRA is such a theory. Thus we find it interesting to inves-
tigate the interpretability logic of this theory. More insight into the interpretability
logic of PRA, from now on IL(PRA), can also shed some light on the question what
interpretability principles hold in any reasonable theory as studied in Joosten and
Visser [13].

In this paper we constrain ourselves to the closed fragment of IL(PRA), that is,
modal formulas without propositional variables. It is shown in Hájek and Švejdar [9]
that for any interpretability logic extending ILF, the interpretability closed fragment
coincides with the provability closed fragment. It is easily seen that IL(PRA) indeed
does extend ILF.

1.4 A comparison to other papers We have chosen to add an extra constant to our
closed fragment that denotes the sentence axiomatizing I61. By writing I61 we will
refer both to the finitely axiomatizable theory and to the finite axiom axiomatizing
it. We can thus study what these theories have to say about each other’s provability
and interpretability behavior.

In this respect our enterprise is rather akin to a certain part of Beklemishev’s pa-
per [1] on the classification of bimodal logics. As an example he gives the provability
logic (not just the closed fragment) of PRA with a constant for I61. The closed frag-
ment of this logic is just the logic PGL which we present in Section 3. We have
chosen to give explicit proofs for the correctness and completeness of PGL again, so
that we can easily extend them to the situation where interpretability is added to the
vocabulary in Section 4.

This paper also is reminiscent of Visser’s paper on exponentiation [29]. In that
paper the closed fragment of the interpretability logic of the arithmetical theory �
is presented. (The theory � is also known as I10 + �1.) The modal language is
enriched with an additional constant exp. The arithmetical translation of this constant
is the 52-formula stating the totality of the exponential function.

A fundamental difference between Visser’s [29] and our paper is that although
I61 is a proper extension of PRA, no new recursive functions are proved to be total,
as I61 is a 52-conservative extension of PRA. In this sense the gap between PRA
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and I61 is smaller than the gap between � and � + exp. This difference is also
manifested already in the corresponding logics when we just constrain ourselves to
provability. For example, we have that

PRA + Con(PRA) ⊢ Con(I61),

whereas
�+ Con(�) 0 Con(�+ exp).

Actually even�+exp+Con(�) does not prove Con(�+exp). It does hold however
that�+Con(Con(�)) ⊢ Con(�+exp) and there are more similarities. We have that
Con(PRA) is not provable in I61. Similarly, Con(�) is not provable in �+ exp. In
turn, I61 is not provable in PRA together with any iteration of consistency statements
and the same holds for exp and �.1

The interpretability logics have similarities and differences too. For example, we
have that PRA ⊲ PRA + ¬I61 and �⊲�+ ¬exp. Also PRA + Con(PRA)⊲ I61

and �+ Con(�)⊲�+ exp. On the other hand, I61 /⊲ PRA + Con(PRA) whereas
�+ exp ⊲�+ Con(�). However, we do have that I61 ⊲�+ Con(PRA). We have
that I61 /⊲ PRA + Con(PRA) but PRA itself cannot see this. PRA can only see that
I61 ⊲ PRA + Con(PRA) → ¬Con(PRA).

The differences between the pairs of theories is probably best reflected by the
corresponding universal models. The interested reader is advised to compare the
universal models from this paper to the ones from [29].

2 Preliminaries

In this section we describe the central notions that we shall study in this paper. Also
we agree on some notational conventions.

2.1 Arithmetics The base theory in this enterprise is PRA which is a system of
arithmetic that goes by many different formulations. We will briefly mention these
formulations here and then stick to one of them. In a rudimentary form, PRA was first
introduced in Skolem [22]. The emergence of PRA is best understood in the light of
Hilbert’s program and finitism (see Tait [25]) or instrumentalism as Ignjatovic calls
it in [10].

Since 51-sentences or open formulas played a prominent role in Hilbert’s pro-
gram, the first versions of PRA were formulated in a quasi-equational setting with-
out quantifiers but with a symbol for every primitive recursive function. (See, for
example, Goodstein [7] or Schwartz [18] and [19].)

Other formulations are in the full language of predicate logic and also contain a
function symbol for every primitive recursive function. The amount of induction can
either be for 10-formulas or for open formulas. Both choices yield the same set of
theorems. This definition of PRA has, for example, been used in Smoryński [23].2

In this paper we will associate to each arithmetical theory T in a uniform way a
proof predicate �T as is done in Feferman [6]. Thus, we will also have the obvious
properties of this predicate like �T+ϕψ ↔ �T (ϕ → ψ) available in any theory of
some reasonable minimal strength. We will also extensively make use of reflection
principles.

For a theory T and a class of formulasŴ we define the uniform reflection principle
for Ŵ over T to be a set of formulas in the following way:

RFNŴ(T ) := {∀x (�T γ (ẋ) → γ (x)) | γ ∈ Ŵ}.
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This set of formulas is often equivalent to a single formula also denoted by RFNŴ(T ).
For ordinals α ≤ ω we define (T )Ŵ0 := T , (T )Ŵα+1 := (T )Ŵα + RFNŴ((T )Ŵα ), and
(T )Ŵω := ∪β<ω(T )

Ŵ
β . This can be extended to transfinite ordinals provided an ele-

mentary system of ordinal notation is given. If Ŵ is just the class of 5n formulas we
write (T )nα instead of (T )5n

α .
For some purposes it is not convenient that these definitions of PRA are in a

language properly extending the language of PA. An alternative way to define PRA
is as follows. We can define PRA to be EA + 61−IR which is formulated in the
language of PA and is obtained by adding to EA the induction rule for 61 formulas.
Thus, for σ ∈ 61, the 61 induction rule allows you to conclude ∀x σ(x) from σ(0)
and ∀x (σ (x) → σ(x+1)). The theory EA is just I10 + exp. It is folklore that PRA
and 61−IR are in a sense the same theory. The theories EA + 6n−IR are defined
likewise and we denote them by I6R

n .
In Beklemishev [2] it is shown (for n≥1) that I6R

n can be axiomatized by reflec-
tion principles in the following sense, I6R

n = (EA)n+1
ω (as sets of theorems). All the

above definitions of PRA give rise to the same theory and these equivalences are all
provable in PRA itself. In our approach we will take (EA)2ω to be the definition of
PRA. It turns out that this is a very convenient formulation for us. It is also nice that
this is an axiomatic formulation in the language of PA.

Moreover, we will fix an enumeration of the axioms of PRA. It is known that EA
is finitely axiomatizable. Since we have partial truth definitions and we are talking
global reflection we have that {∀x (�EAπ(ẋ) → π(x)) | π ∈ 52} can be expressed
by a single sentence RFN52(EA). Likewise we see that (EA)2α can be expressed by
a single sentence for any α < ω. In our enumeration of PRA, the i th axiom will be
(EA)2i .

By taking this definition of PRA we get almost for free that every extension
of PRA with a 62 sentence σ is reflexive. For, reason in PRA + σ and suppose
�PRA↾n+σ⊥. Then �PRA↾n¬σ , and as ¬σ is 52 we get ¬σ by 52-reflection. But
this contradicts σ whence ¬�PRA↾n+σ⊥.

2.2 Reading conventions When writing modal formulas we will omit superfluous
brackets. These omissions do not bring the unique readability of formulas to danger
due to our binding conventions. The strongest binding connectives are negation and
the modalities � and ♦. The connectives ∨ and ∧ bind less strongly but still more
strongly than the ⊲ modality which in its turn binds more strongly than →. We
will also omit outer brackets. Thus, A ⊲ B → A ∧ �¬C ⊲ B ∧ �¬C is short for
((A ⊲ B) → ((A ∧ �(¬C)) ⊲ (B ∧ �(¬C)))). Often we will use A ⊲ B ⊲ C as
short for (A ⊲ B)∧ (B ⊲ C) and we do the same for implication.

3 The Closed Fragment of the Provability Logic of PRA with a Constant for I61.

In this section we will calculate the closed fragment of the provability logic of PRA
with a constant for I61 and call it PGL. We shall prove it sound and complete with
respect to its arithmetical reading. Also we will give a universal model for PGL.

3.1 The logic PGL Inductively we define F , the formulas of PGL.

F := ⊥ | ⊤ | S | F ∧ F | F ∨ F | F → F | ¬F | �F.
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The symbol S is a constant in our language just as ⊥ is a constant. There are no
propositional variables. As always we will use ♦A as an abbreviation for ¬�¬A.
We define �0⊥ := ⊥ and �n+1⊥ := �(�n⊥). We also define �γ⊥ to be ⊤ for
limit ordinals γ .

Throughout this section we shall reserve B, B0, B1, . . . to denote Boolean com-
binations of formulas of the form �n⊥ with n ∈ ω + 1.

Definition 3.1 (The logic PGL) The formulas of the logic PGL are given by F .
The logic PGL is the smallest normal extension of GL in this language that contains
the following two axiom schemes.

S1 : �(S → B) → �B

S2 : �(¬S → B) → �B

It is good to emphasize that PGL is a variable free logic. By our notational conven-
tion both in S1 and in S2 the B is a Boolean combination of formulas of the form
�n⊥ with n ∈ ω+ 1. Immediate consequences of S1 and S2 are that both ♦(S∧ B)

and ♦(¬S ∧ B) are equivalent in PGL to ♦B .
Every sentence in F can also be seen as an arithmetical statement as follows: we

translate S to the canonical sentence I61 (the single sentence axiomatizing the theory
I61), ⊥ to, for example, 0=1, and ⊤ to 1=1. As usual we inductively extend this
translation to what is sometimes called an arithmetical interpretation by taking for
the translation of � the canonical proof predicate for PRA.

If there is no chance of confusion we will use the same letter to indicate both a
formal sentence of PGL and the arithmetical statement expressed by it. With this
convention we can formulate the main theorem of this subsection.

Theorem 3.2 For all sentences A ∈ F we have

PRA ⊢ A ⇔ PGL ⊢ A.

Proof The implication ‘⇐’ is proved in Subsection 3.2 in Corollary 3.3 and
Lemma 3.4. The other direction is proved in Subsection 3.3, in Lemma 3.5. �

3.2 Arithmetical soundness of PGL To see the arithmetical soundness of PGL,
we should check only the validity of S1 and S2. Axiom S1 can be seen as a direct
consequence of the formalization of Parsons’ theorem (Parsons [15], [16]). As is
pointed out, for example, in the first proof of Joosten [12], the proof of Parsons’
theorem essentially relies on cut elimination. The proof can thus be formalized as
soon as the totality of the superexponential function is provable.

Corollary 3.3 PRA ⊢ �PRA(I61 → B) → �PRA B for B ∈ 52 and thus certainly

whenever B is as in S1.

Lemma 3.4 EA ⊢ ∀53 B (�PRA(¬I61 → B) → �PRA B).

Proof It is well known that I6n ⊢ RFN5n+2(EA). (See, for example, Leivant [14]
or [8].) Consequently, the formalization of I61 ⊢ RFN53(EA) is a true 61-sentence
and thus provable in EA. As EA ⊢ �I61(RFN53(EA)) we also have

(∗) EA ⊢ �EA(I61 → RFN53(EA)).
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Now we reason in EA, fix some B∈53, and assume �PRA(¬I61 → B). We get

�PRA(¬I61 → B) →

�PRA(¬B → I61) →

∃π∈52 �EA(¬B ∧ π → I61) → by (∗)
∃π∈52 �EA(¬B ∧ π → RFN53(EA)) → as B ∨ ¬π ∈ 53

∃π∈52 �EA(¬B ∧ π → (�EA(B ∨ ¬π) → B ∨ ¬π)) (∗∗)

But, by simple propositional logic, we also have

�EA(¬(¬B ∧ π) → (�EA(B ∨ ¬π) → B ∨ ¬π))

which combined with (∗∗) yields �EA(�EA(B ∨ ¬π) → (B ∨ ¬π)). By Löb’s
axiom we get �EA(B ∨ ¬π) which is the same as �EA(π → B). Thus certainly we
have �PRA B , as π was just a part of PRA. �

We note that Lemma 3.4 actually holds for a wider class of formulas than just
Boolean combinations of �α⊥ formulas. For example, ¬(A ⊲ B) is always 53.
One can also isolate a set of sentences that is always 52 in PRA. (See, for example,
[30].) When we study the logic PIL it will become clear why we only need to include
these low-complexity instantiations of the above arithmetical facts in our axiomatic
systems: in the closed fragment we have simple normal forms.

3.3 Arithmetical completeness of PGL

Lemma 3.5 For all A in F we have that if PRA ⊢ A, then PGL ⊢ A.

Proof The completeness of PGL actually boils down to an exercise in normal forms
in modal logic. The only arithmetical ingredients are the soundness of PGL, the fact
that PRA ⊢ �A whenever PRA ⊢ A, and the fact that PRA 0 �α⊥ for α ∈ ω.

In Lemma 3.7 we will show that �A is always equivalent in PGL to �α⊥

for some α ∈ ω+1. Then, in Lemma 3.8, we show that if PGL ⊢ �A then
PGL ⊢ A. So, if PGL 0 A then PGL 0 �A. As PGL ⊢ �A ↔ �α⊥ for some
α ∈ ω (not ω+1 as we assumed PGL 0 �A!) and PGL is sound we also have
PRA ⊢ �A ↔ �α⊥. Hence PRA 0 �A and also PRA 0 A. �

We work out the exercise in modal normal forms. Although this is already carried
out in the literature (see, e.g., Boolos [4] or [29]) we repeat it here to obtain some
subsidiary information which we shall need later on.

Recall that we will in this subsection reserve the letters B, B0, B1, . . . for Boolean
combinations of �α⊥-formulas. Thus a sentence B can be written in conjunctive
normal form, that is,

∧∧

i (
∨∨

j ¬�ai j ⊥ ∨
∨∨

k �bik ⊥).

Each conjunct
∨∨

j ¬�ai j ⊥ ∨
∨∨

k �bik ⊥ can be written as �αi ⊥ → �βi ⊥ where
αi := min({ai j }) and βi := max({bik}).

By convention the empty conjunction is just ⊤ and the empty disjunction is just
⊥. In order to have this convention in concordance with our normal forms we define
min(∅)=ω and max(∅)=0. In

∧∧

i (�
αi ⊥ → �βi ⊥) we can leave out the conjuncts

whenever αi ≤ βi , for in that case, PGL ⊢ �αi ⊥ → �βi ⊥.
So, if we say that some formula B is in conjunctive normal form we will in the

sequel assume that B is written as
∧∧

i (�
αi ⊥ → �βi ⊥) with αi > βi . The empty

conjunction gives ⊤ and if we take α0=ω > 0=β0, we get with one conjunct just ⊥.
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Lemma 3.6 If a formula B can be written in the form
∧∧

i (�
αi ⊥ → �βi ⊥) with

αi>βi , then we have that PGL ⊢ �B ↔ �β+1⊥ where β= min({βi }).

Proof The proof is actually carried out in GL. We have that

�B ↔ �(
∧∧

i (�
αi ⊥ → �βi ⊥)) ↔

∧∧

i �(�αi ⊥ → �βi ⊥).

We will see that �(�αi ⊥ → �βi ⊥) is equivalent to �βi+1⊥.
So we assume �B . As βi < αi we know that βi + 1 ≤ αi and thus

�βi+1⊥ → �αi ⊥. Now �(�αi ⊥ → �βi ⊥) → �(�βi+1⊥ → �βi ⊥). One
application of L3 yields �(�βi ⊥), that is, �βi+1⊥.

On the other hand, we easily see that �(�βi ⊥) → �(�αi ⊥ → �βi ⊥), hence
we have shown the equivalence. Finally we remark that (

∧∧

i �βi+1⊥) ↔ �β+1⊥

where β = min({βi}). �

Lemma 3.7 For any formula A in F we have that A is equivalent in PGL to a

Boolean combination of formulas of the form S or �β⊥. If, on top of that, A is of

the form �C, then A is equivalent in PGL to �α⊥, for some α ∈ ω + 1.

Proof By induction on the complexity of formulas in F . The base cases are triv-
ial. The only interesting case in the induction is where we consider the case that
A = �C . Note that C , by induction being a Boolean combination of �α⊥ formulas
and S, can be written as (S → B0) ∧ (¬S → B1). So, by Lemma 3.6, we have that,
for suitable indices β, β ′, β ′′,

�C ↔

�((S → B0) ∧ (¬S → B1)) ↔

�(S → B0) ∧ �(¬S → B1) ↔

�B0 ∧ �B1 ↔

�β ′+1⊥ ∧ �β ′′+1⊥ ↔

�β⊥. �

Lemma 3.8 If PGL ⊢ �A, then PGL ⊢ A.

Proof By Lemma 3.7, we can write A as a Boolean combination of formulas of
the form S or �β⊥. Thus let A ↔ (S → B0) ∧ (¬S → B1) with B0 and B1
in conjunctive normal form and assume ⊢ �A. For appropriate indices αi>βi and

α′
j>β

′
j we have B0 =

∧∧

i (�
αi ⊥ → �βi ⊥) and B1 =

∧∧

j (�
α′

j ⊥ → �
β ′

j ⊥).

Using S1, S2 and Lemma 3.6, we get that �A ↔ �β+1⊥ with β = min({βi , β
′
j }).

By assumption β = ω, thus all the βi and β ′
j were ω and hence ⊢ A. �

3.4 Modal semantics for PGL, decidability In this subsection we will provide a
modal semantics for PGL. Actually we will give a model M as depicted in Figure 1
on the next page which in some sense displays all there is to know about closed
sentences with a constant for I61 in PGL.

Definition 3.9 We define the model M as follows: M := 〈M, R,〉. Here
M := {〈n, i〉 | n ∈ ω, i ∈ {0, 1}} and 〈n, i〉R〈m, j〉 ⇔ m < n. Furthermore,
〈n, i〉  S ⇔ i = 1.

Theorem 3.10 ∀m M,m  A ⇔ PGL ⊢ A.
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〈3, 0〉

〈1, 0〉

〈0, 0〉

〈1, 1〉  S

〈2, 1〉  S

〈3, 1〉  S

〈2, 0〉

...

〈0, 1〉  S

Figure 1 The model M

Proof (⇐) This direction is obtained by induction on the complexity of proofs in
PGL. As M is a transitive and upward well-founded model, it is indeed a model of
all instantiations of the axioms L1, L2, and L3. Thus consider S1.

So suppose at some world m (= 〈m, i〉), we have that 〈m, i〉  �(S → B). Then
〈n, 1〉  B for n < m. Recall that B does not contain S. It is well known that the
forcing of B depends solely on the depth of the world, so we also have 〈n, 0〉  B .
Thus mRn yields n  B . Consequently, m  �B , which gives us the validity of S1.

The S2-case is treated completely similarly. It is also clear that this direction of the
theorem remains valid under applications of both modus ponens and the necessitation
rule.

(⇒) Suppose PGL 6⊢ A. By Lemma 3.8, PGL 6⊢ �A, thus PGL ⊢ �A ↔ �α⊥

for a certain α ∈ ω. By the first part of this proof we may conclude that
m  �A ↔ �α⊥ for any m. As 〈α, i〉 6 �α⊥, we automatically get 〈α, i〉 6 �A.
So, for some 〈β, j〉 with 〈α, i〉R〈β, j〉, we have 〈β, j〉  ¬A showing the
“nonvalidity” of A. �

The set of theorems of PGL is clearly recursively enumerable. If a formula is not
provable in PGL, then by Theorem 3.10, in some node of the model M, it is refuted.
Thus the theoremhood of PGL is actually decidable.

4 Closed Fragment of Interpretability Logic of PRA with a Constant for I61

In this section we calculate the closed fragment of the interpretability logic of PRA
with a constant for I61 and call it PIL. We shall give two different arithmetical
soundness proofs. In one of these proofs we need that I61 proves the consistency of
PRA on a definable cut. This itself will also be proven in a more general theorem.
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The logic PIL contains PGL as a sublogic, and also the universal model for PIL

that we shall give in this section is an extension of the model we defined in Subsec-
tion 3.4. We conclude this section by characterizing the always true sentences of our
language I .

4.1 The logic PIL Inductively we define I , the formulas of PIL.

I := ⊥ | ⊤ | S | I ∧ I | I ∨ I | I → I | ¬I | �I | I ⊲ I.

Again the constants of the language are ⊥,⊤, and S, and we will reserve the symbols,
B, B0, B1, . . . to denote Boolean combinations of �α⊥ formulas. We will write
C ≡ D as short for (C ⊲ D) ∧ (D ⊲ C) and we say that they are equi-interpretable.

Definition 4.1 (The logic PIL) The formulas of the logic PIL are given by I . The
logic PIL is the smallest normal extension of ILW in this language that contains the
following four axiom schemes.

S1 : �(S → B) → �B

S2 : �(¬S → B) → �B

S3 : ¬S ∧ B ≡ B

S4 : (B ⊲ S ∧ B) → �¬B

It is good to stress that PIL is a variable free logic too. As the interpretability logic
ILW is a part of PIL we have access to all known reasoning in IL and ILW. In this
section, unless mentioned otherwise, ⊢ refers to provability in PIL.

Fact 4.2

1. ⊢ �A ↔ ¬A ⊲ ⊥;
2. ⊢ �α+1⊥ → ♦β⊤ ⊲ A if α ≤ β;
3. ⊢ A ≡ A ∨ ♦A;
4. ⊢ A ⊲ ♦A → �¬A.

As an example we prove (2). We reason in PIL and use our notational conventions.
It is sufficient to prove the case when α = β. Thus,

�α+1⊥ → �(�α⊥) → �(¬A → �α⊥) → �(♦α⊤ → A) → ♦α⊤ ⊲ A.

Fact (4) is Feferman’s principle and can be seen as a “coordinate-free” version of
Gödel’s second incompleteness theorem. It follows immediately from W realizing
that A ⊲ ⊥ is by (1) nothing but �¬A.

Again we can see any sentence in I as an arithmetical statement translating ⊲ as
the intended arithmetization of smooth interpretability over PRA and � as an arith-
metization of provability in PRA and propagating this inductively along the structure
of the formulas as usual. With this convention we can formulate the arithmetical
completeness theorem for PIL.

Theorem 4.3 For all sentences A ∈ I we have PRA ⊢ A ⇔ PIL ⊢ A.

Proof The implication “⇐” is proved in the next subsection in Lemma 4.4 and
Lemma 4.5. The other direction is proved in Subsection 4.4, in Lemma 4.10. �
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4.2 Arithmetical soundness of PIL In [28] it has been shown that ILW is sound
for any reasonably formulated theory extending I10+�1. So to check for soundness
of PIL with respect to PRA we only need to see that all translations of S3 and S4 are
provable in PRA.

We shall give two soundness proofs for S3 and S4. The first proof, consisting of
Lemmas 4.4 and 4.5, uses finite approximations of theories. The second proof makes
use of reflection principles and definable cuts.

Lemma 4.4 PRA ⊢ B ⊲PRA B ∧ ¬I61 for B∈62, so certainly for B as in S3.

Proof We want to show inside PRA that PRA + B ⊲ PRA + B + ¬I61. For
reflexive theories U , we know that interpretability in U can be characterized in terms
of provability and consistency. This characterization is known as the Orey-Hájek
characterization of interpretability and reads as follows.

⊢ U ⊲ V ↔ ∀n �U Con(V ↾n).

From [28] it follows that for reflexive U , the Orey-Hájek characterization is actually
a characterization of smooth interpretability. To prove our lemma, we need to see
inside PRA that PRA + B ⊲ PRA + B + ¬I61. As we know (inside PRA) every
finite 62-extension of PRA is reflexive; we are by the Orey-Hájek characterization
done if we can prove3

PRA ⊢ ∀n �PRA+B(♦PRA[n]+B+¬I61⊤). (1)

We will set out to prove that

(i) EA ⊢ ∀n �PRA+B(�PRA[n]+B+¬I61⊥ → �PRA[n]+B⊥),
(ii) EA ⊢ ∀n �PRA+B(�PRA[n]+B⊥ → ⊥),

from which (1) immediately follows.
The proof of (i) is just a slight modification of the proof of Lemma 3.4. We reason

in EA and fix some n:

�PRA+B ( �PRA[n]+B+¬I61⊥

→ �PRA[n]+BI61

→ �PRA[n]+BRFN53(EA)
→ �EA(PRA[n] ∧ B → RFN53(EA))
→ �EA(PRA[n] ∧ B → (�EA¬(PRA[n] ∧ B) → ¬(PRA[n] ∧ B)))

→ �EA(�EA¬(PRA[n] ∧ B) → ¬(PRA[n] ∧ B))

→ �EA¬(PRA[n] ∧ B)

→ �EA(PRA[n] → ¬B)

→ �PRA[n]¬B

→ �PRA[n]+B⊥ ).

The proof of (ii) is just a formalization of the fact that every finite 62-extension of
PRA is reflexive. So again we reason in EA. Recall that we have PRA[n]=(EA)2n
in our axiomatization of PRA. Thus, by definition, �PRA[n+1](�PRA[n]π → π) for
π∈52. Consequently, for our ¬B∈52, we get �PRA[n+1](�PRA[n]¬B → ¬B).

Obviously we also have �PRA[n+1]+B B . Combining, we get a proof of (ii):

�PRA[n+1]+B ( �PRA[n]+B⊥

→ �PRA[n]¬B

→ ¬B

→ ⊥ ). �



138 Joost J. Joosten

Lemma 4.5 PRA ⊢ B ⊲PRA B ∧ I61 → �PRA¬B for B∈62, so certainly for B

as in S4.

Proof The theory PRA + B + I61 is, verifiably in PRA, equivalent to the finitely
axiomatizable theory I61 + B . Now we will reason in PRA.

We suppose that PRA+B⊲PRA+B+I61. As PRA+B+I61 is finitely axiomati-
zable we have that PRA[k]+B⊲PRA+B+I61 for some natural number k. PRA+B

is reflexive as it is a finite62-extension of PRA and thus �PRA+BCon(PRA[k] + B).
So, certainly �PRA+B+I61Con(PRA[k] + B) and thus,

PRA + B + I61 ⊲ PRA[k] + B + Con(PRA[k] + B).

Consequently,

PRA[k] + B ⊲ PRA[k] + B + Con(PRA[k] + B),

and by Feferman’s principle we get that �PRA[k]+B⊥. Thus �PRA+B⊥ and also
�PRA(B → ⊥), that is, �PRA¬B . �

Lemma 4.5 certainly proves the correctness of axiom scheme S4. The proof also
yields the following insights.

Corollary 4.6 A consistent reflexive theory U does not interpret any finitely axiom-

atized theory extending it. In particular PRA does not interpret I61.

Corollary 4.7 PRA + ¬I61 is not finitely axiomatizable.

In the next subsection we shall give alternative proofs of Lemmas 4.4 and 4.5. A
central ingredient is that I61 proves the consistency of PRA on a definable cut.

4.3 I61 proves the consistency of PRA on a cut

Theorem 4.8 For each n∈ω with n ≥ 1, there exists some I6n-cut Jn such that for

all 6n+1-sentences σ , I6n + σ ⊢ ConJn(I6R
n + σ).

Proof From [2] it is known that I6R
n ≡ (EA)n+1

ω . Let ǫ be the arithmetical sentence
axiomatizing EA. We fix the following axiomatization {in

m}m∈ω of I6R
n :

in
0 := ǫ,

in
m+1 := in

m ∧ ∀5n+1π (�in
m
π → True5n+1(π)).

The map that sends m to the code of in
m is clearly primitive recursive. We will assume

that the context makes clear if we are talking about the formula or its code when
writing in

m . Similarly for other formulas. An I6n-cut Jn is defined in the following
way:

J ′
n(x) := ∀ y≤x True5n+1(i

n
y ).

We will now see that J ′
n defines an initial segment in I6n . Clearly I6n ⊢ J ′

n(0). It
remains to show that I6n ⊢ J ′

n(m) → J ′
n(m+1).

So we reason in I6n and assume J ′
n(m). We need to show that True5n+1(i

n
m+1),

that is,
True5n+1(i

n
m ∧ ∀5n+1π (�in

m
π → True5n+1(π))).

Our assumption gives us True5n+1(i
n
m); thus we need to show

True5n+1(∀
5n+1π (�in

m
π → True5n+1(π)))

or equivalently
∀5n+1π (�in

m
π → True5n+1(π)).
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The latter is equivalent to

∀5n+1π �EA(True5n+1(i
n
m) → True5n+1(π)) → True5n+1(π). (2)

But as True5n+1(i
n
m) → True5n+1(π) ∈ 5n+2, and as I6n ≡ RFN5n+2(EA), we get

that

∀5n+1π �EA(True5n+1(i
n
m) → True5n+1(π)) → (True5n+1(i

n
m) → True5n+1(π)).

We again use our assumption True5n+1(i
n
m) to obtain (2). Thus indeed, J ′

n(x) defines
an initial segment. By well-known techniques, J ′

n can be shortened to a definable
cut.

To finish the proof, we reason in I6n + σ and suppose �
Jn

I6R
n +σ

⊥. Thus for some

m∈Jn we have �in
m∧σ⊥, whence also �in

m
¬σ . Now m∈Jn , so also m+1∈Jn , and

thus True5n+1(i
n
m ∧ ∀5n+1π (�in

m
π → True5n+1(π))).

As ∀5n+1π (�in
m
π → True5n+1(π)) is a standard 5n+1-formula (with possibly

nonstandard parameters) we see that we have the required 5n+1-reflection whence
�in

m
¬σ yields us ¬σ . This contradicts with σ . Thus we get ConJn(I6R

n + σ). �

Corollary 4.9 There exists an I61-cut J such that for any 62 sentence σ we have

I61 + σ ⊢ ConJ (PRA + σ).

Proof Immediate from Theorem 4.8 as PRA = I6R
1 . �

Ignjatovic has shown in his dissertation [10] that I61 proves the consistency of PRA
on a cut. He used this result to show that the length of PRA-proofs can be roughly
superexponentially larger than the length of the corresponding I61 proofs.

His reasoning was based on Pudlák [17]. Pudlák showed in this paper by model-
theoretic means that GB proves the consistency of ZF on a cut. The cut that Ign-
jatovic exposes is actually an RCA0-cut. (See, for example, Simpson [21] for a
definition of RCA0.)

We now give alternative proofs of Lemmas 4.4 and 4.5.

Second Proof of Lemma 4.4 We consider B∈62 and want to show in EA that
PRA + B ⊲ PRA + B + ¬I61. We fix the I61-cut J as given by Corollary 4.9
and reason in EA. Clearly,

PRA + B ⊲ (PRA + B + (I61 ∨ ¬I61)).

So we are done if we can show that PRA + B + I61 ⊲ PRA + B + ¬I61. By
Corollary 4.9 we get that �I61+BConJ (PRA + B).

Using this cut J to relativize the identity translation, we find an interpretation that
witnesses I61 + B ⊲ S1

2 + ♦PRA B . It is well known that Buss’s S1
2 is finitely axiom-

atizable (see, e.g., [8], V, 4.36), whence also S1
2 + ♦PRA B is finitely axiomatizable.

Thus, interpretability and smooth interpretability are in this case the same. We now
get

I61 + B ⊲

S1
2 + ♦PRA B ⊲ by W

S1
2 + ♦PRA B + �I61+B⊥ ⊲

S1
2 + ♦PRA B + �PRA(B → ¬I61) ⊲

S1
2 + ♦PRA(B + ¬I61) ⊲

PRA + B + ¬I61.

�
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Second Proof of Lemma 4.5 We have B∈62 and assume in EA that
PRA + B ⊲ PRA + B + I61. We have already seen in the above proof that
PRA + B + I61 ⊲ S1

2 + ♦PRA B .
Thus, by transitivity PRA + B ⊲ S1

2 + ♦PRA B , and

PRA + B ⊲ by W

S1
2 + ♦PRA B + �PRA+B⊥ ⊲

⊥.

This is the same as �PRA+B⊥, that is, �PRA¬B . �

4.4 Arithmetical completeness of PIL This subsection is mainly dedicated to
proving the next lemma.

Lemma 4.10 For all A in I we have that if PRA ⊢ A then PIL ⊢ A.

Proof The reasoning is completely analogous to that in the proof of Lemma 3.5.
We thus need to prove a Lemma 4.17 stating that for any formula A in I we have that
�A is equivalent over PIL to a formula of the form �α⊥, and a Lemma 4.18 which
tells us that PIL ⊢ A whenever PIL ⊢ �A. �

In a series of rather technical lemmas we will work up to the required lemmata. It is
good to recall that in this paper B will always denote some Boolean combination of
formulas of the form �α⊥.

Lemma 4.11 PIL ⊢ S ∧ B ≡ (S ∧ ♦β⊤) ∨ ♦β+1⊤ for some β ∈ ω + 1.

Proof S ∧ B ≡ (S ∧ B)∨ ♦(S ∧ B) ≡ ¬(¬(S ∧ B) ∧ �¬(S ∧ B)), but

¬(S ∧ B)∧ �¬(S ∧ B) ↔ (S → ¬B) ∧ �(S → ¬B) ↔ (S → ¬B) ∧ �¬B.

Now we consider a conjunctive normal form of ¬B . Thus, ¬B is equivalent to
∧∧

i (�
αi ⊥ → �βi ⊥) for certain αi > βi (possibly none). So, by Lemma 3.6,

�¬B ↔
∧∧

i �βi+1⊥ ↔ �β+1⊥ for β = min({βi }). So,

(S → ¬B)∧ �¬B ↔

(S → ¬B)∧ �β+1⊥ ↔

(S → ¬B)∧ (S → �β+1⊥) ∧ �β+1⊥ ↔

(S → (
∧∧

i (�
αi ⊥ → �βi ⊥) ∧ �β+1⊥)) ∧ �β+1⊥. (3)

As αi > βi ≥ β we have β + 1 ≤ αi , whence �β+1⊥ → �αi ⊥. Thus,
∧∧

i

(�αi ⊥ → �βi ⊥) ∧ �β+1⊥ ↔
∧∧

i

�βi ⊥ ↔ �β⊥,

and (3) reduces to (S → �β⊥) ∧ �β+1⊥. Consequently,

(S ∧ B) ∨ ♦(S ∧ B) ↔

¬(¬(S ∧ B) ∧ �¬(S ∧ B)) ↔

¬((S → �β⊥) ∧ �β+1⊥) ↔

(S ∧ ♦β⊤) ∨ ♦β+1⊤.

�

By a proof similar to that of Lemma 4.11 we get the following lemma.

Lemma 4.12 PIL ⊢ B ≡ ♦γ
′
⊤ for certain γ ′ ∈ ω + 1.
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In PIL we have a substitution lemma in the sense that ⊢ F(C) ↔ F(D) whenever
⊢ C ↔ D. We do not have a substitution lemma for equi-interpretable formulas4

but we do have a restricted form of it.

Lemma 4.13 If (provably in PIL) C ≡ C ′, D ≡ D′, E ≡ E ′, and F ≡ F ′, then

PIL ⊢ C ∨ D ⊲ E ∨ F ↔ C ′ ∨ D′ ⊲ E ′ ∨ F ′.

We reason in PIL. Suppose that C ∨ D ⊲ E ∨ F . We have for any G that
C ′ ∨ D′ ⊲ G ↔ (C ′ ⊲ G)∧ (D′ ⊲ G). As C ′ ⊲ C ⊲ (C ∨ D) and D′ ⊲ D ⊲ (C ∨ D)

we have that C ′ ∨ D′ ⊲ C ∨ D. Likewise we obtain E ∨ F ⊲ E ′ ∨ F ′ thus
C ′ ∨ D′ ⊲ C ∨ D ⊲ E ∨ F ⊲ E ′ ∨ F ′. The other direction is completely analogous.

Lemma 4.14 S ∧ ♦α⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦γ⊤ is provably equivalent in PIL to
{

�ω⊥ if α ≥ min({β, γ })

�α+1⊥ if α < β, γ.

Proof The case when α ≥ min({β, γ }) is trivial as ♦α⊤ → ♦δ⊤ whenever α ≥ δ.
So we consider the case when ¬(α ≥ min({β, γ })), that is, α < β, γ . Then we have
♦β⊤⊲♦α+1⊤⊲♦(♦α⊤)⊲♦(S∧♦α⊤) and likewise for ♦γ⊤ in place of ♦β⊤. Thus,
together with our assumption, we get S∧ ♦α⊤ ⊲ (S∧ ♦β⊤)∨ ♦γ⊤ ⊲ ♦(S∧ ♦α⊤).
By Feferman’s principle we get �¬(S∧ ♦α⊤), whence �α+1⊥. The implication in
the other direction is immediate by Fact 4.2. �

Lemma 4.15 ♦α⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦γ⊤ is provably equivalent in PIL to
{

�ω⊥ if α ≥ min({β + 1, γ })

�α+1⊥ if α < β + 1, γ .

Proof The proof is completely analogous to that of Lemma 4.14 with the sole ex-
ception in the case that α = β < γ . In this case

♦γ⊤ ⊲ ♦α+1⊤ ⊲ ♦(♦α⊤)⊲ ♦(S ∧ ♦α⊤)⊲ S ∧ ♦α⊤

and thus (S ∧ ♦α⊤) ∨ ♦γ⊤ ⊲ S ∧ ♦α⊤. An application of S4 yields the desired
result, that is, �α+1⊥.

In case α ≥ β + 1 it is useful to realize that

♦α⊤ ⊲ ♦β+1⊤ ⊲ ♦(♦β⊤)⊲ ♦(S ∧ ♦β⊤)⊲ S ∧ ♦β⊤.

�

Lemma 4.16 If C and D are both Boolean combinations of S and sentences of the

form �γ⊥ then we have that PIL ⊢ (C ⊲ D) ↔ �δ⊥ for some δ ∈ ω + 1.

Proof So let C and D meet the requirements of the lemma and reason in PIL. We
get that

C ⊲ D ↔ (S ∧ B0) ∨ (¬S ∧ B1)⊲ (S ∧ B2) ∨ (¬S ∧ B3)

for some B0, B1, B2, and B3. The right-hand side of this bi-implication is equivalent
to

(∗) ((S ∧ B0)⊲ (S ∧ B2) ∨ (¬S ∧ B3)) ∧ ((¬S ∧ B1)⊲ (S ∧ B2) ∨ (¬S ∧ B3)).
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We will show that each conjunct of (∗) is equivalent to a formula of the form
�ǫ⊥. Starting with the left conjunct we get, by repeatedly applying Lemma 4.13,
that

S ∧ B0 ⊲ (S ∧ B2) ∨ (¬S ∧ B3) ↔ Lemma 4.11
(S ∧ ♦α⊤) ∨ ♦α+1⊤ ⊲ (S ∧ B2) ∨ (¬S ∧ B3) ↔ S3

(S ∧ ♦α⊤) ∨ ♦α+1⊤ ⊲ (S ∧ B2) ∨ B3 ↔ Lemma 4.12
(S ∧ ♦α⊤) ∨ ♦α+1⊤ ⊲ (S ∧ B2) ∨ ♦γ

′
⊤ ↔ Lemma 4.11

(S ∧ ♦α⊤) ∨ ♦α+1⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦β+1⊤ ∨ ♦γ
′
⊤ ↔

(S ∧ ♦α⊤) ∨ ♦α+1⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦γ⊤ ↔

(S ∧ ♦α⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦γ⊤) ∧

(♦α+1⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦γ⊤) ↔ Lemma 4.14
�µ⊥ ∧ (♦α+1⊤ ⊲ (S ∧ ♦β⊤) ∨ ♦γ⊤) ↔ Lemma 4.15
�µ⊥ ∧ �λ⊥ ↔

�δ⊥

for suitable indices α, β, . . .. For the right conjunct of (∗) we get a similar reasoning.
�

Lemma 4.16 is the only new ingredient needed to prove the next two lemmas in
complete analogy to their counterparts 3.7 and 3.8 in PGL.

Lemma 4.17 For any formula A in I we have that A is equivalent in PIL to a

Boolean combination of formulas of the form S or �β⊥. If, on top of that, A is of

the form �C, then A is equivalent in PIL to �α⊥ for some α ∈ ω + 1.

Lemma 4.18 For all A in I we have that PIL ⊢ A whenever PIL ⊢ �A.

4.5 Modal semantics for PIL, decidability As in the case of PGL, we shall define
a universal model for the logic PIL. We shall use the well-known notion of Veltman
semantics for interpretability logic. A Veltman model is a pair 〈M, S〉. Here M is
just a GL-model. The S is a ternary relation on M . We shall write S as a set of
indexed binary relations. On Veltman models, for all x , the Sx is a binary relation on
all the worlds that lie above (w.r.t. the R-relation) x . It is reflexive and transitive and
extends R on the domain on which it is defined. The forcing of formulas is extended
to interpretability by the following clause:

x  A ⊲ B ⇔ ∀y (x Ry  A ⇒ ∃z (ySx z  B)).

Definition 4.19 (Universal model for PIL) The model N = 〈M, R, {Sm }m∈M ,〉

is obtained from the model M = 〈M, R,〉 as defined in Definition 3.9 as follows.
We define 〈m, 1〉Sn〈m, 0〉 for nR〈m, 1〉 and close off so as to have the Sn relations
reflexive and transitive and containing R, the amount it should.

Theorem 4.20 ∀n N ,n  A ⇔ PIL ⊢ A.

Proof The proof is completely analogous to that of Theorem 3.10. We only need to
check that all the instantiations of S3 and S4 hold in all the nodes of N .

We first show that S3 holds at any point n. So, for any B , consider any point
〈m, i〉 such that nR〈m, i〉B . As 〈m, i〉Sn〈m, 0〉, we see that n  B ⊲ B ∧ ¬S.

To see that any instantiation of S4 holds at any world n we reason as follows. If
n  ♦B we can pick the minimal m ∈ ω such that (m, 0)  B . It is clear that no
Sn-transition goes to a world where B ∧ S holds, hence n  ¬(B ⊲ B ∧ S). �
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〈3, 0〉

〈1, 0〉

〈0, 0〉

〈1, 1〉  S

〈2, 1〉  S

〈3, 1〉  S

〈2, 0〉

...

〈0, 1〉  S

Figure 2 The (simplified) model N

The modal semantics gives us the decidability of the logic PIL. In our case it is very
easy to obtain a so-called simplified Veltman model. This is a model 〈M, R, S,〉

where S now is a binary relation. Accordingly we define

x  A ⊲ B ⇔ ∀y (x Ry  A ⇒ ∃z (ySz  B)).

Our model N is transformed into a simplified Veltman model by defining
nSm ⇔ ∃k nSkm. A perspicuous picture is readily drawn. The S-relation is
depicted with a wavy arrow.

4.6 Adding reflection Just as always, if we want to go from all provable state-
ments to all true statements, we have only to add reflection. As we are in the closed
fragment and as we have good normal forms, this reflection will amount to iterated
consistency statements.

The logics PGLS and PILS are defined as follows. The axioms of PGLS (re-
spectively, PILS) are all the theorems of PGL (respectively, PILS) together with S
and {♦α⊤ | α ∈ ω}. Its sole rule of inference is modus ponens.

Theorem 4.21 PGLS ⊢ A ⇔ N |H A.

Proof By induction on the length of PGLS ⊢ A we see that PGLS ⊢ A ⇒ N |H A.
To see the converse, we reason as follows. Consider A ∈ F such that N |H A.
By Lemma 3.7 we can find an A′ which is a Boolean combination of S and ♦α⊤

(α ∈ ω+1) such that PGL ⊢ A ↔ A′. Thus PRA ⊢ A ↔ A′ and also N |H A ↔ A′.
Consequently N |H A′.

Moreover, as A′ is a Boolean combination of S and ♦α⊤ (α ∈ ω + 1), for some
m ∈ ω, S ∧

∧∧m
i=1 ♦i⊤ → A′ is a propositional logical tautology whence A′ is

provable in PGLS. Also PGLS ⊢ A ↔ A′ whence PGLS ⊢ A. �
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Clearly the theorems of PGLS are recursively enumerable. As PGLS is a complete
logic in the sense that it either refutes a formula or proves it, we see that theoremhood
of PGLS is actually decidable.

Theorem 4.22 PILS ⊢ A ⇔ N |H A.

Proof As the proof of Theorem 4.21. �

Clearly, PILS is a decidable logic too.

Notes

1. It is well known that I61 ≡ RFN53 (EA) and that I61 is not contained in any 63-
extension of EA. Consistency statements are all 51-sentences. For the case of � and
exp reason as follows. Take any nonstandard model of true arithmetic together with the
set {2c>ωk

1(c) | k∈ω}. Take the smallest set containing c being closed under the ω1
function. Consider the initial segment generated by this set. This initial segment is a
model of � and of all true 51 sentences but clearly not closed under exp.

2. Confusingly enough Smoryński later defines in [24] a version of PRA which is equiva-
lent to I61.

3. PRA[n] will denote the conjunction of the first n axioms of PRA. Here “first n axioms”
refers to the order fixed in Subsection 2.1.

4. We have that ¬S ≡ ⊤. If the substitution lemma were to hold for equi-interpretable
formulas then S ≡ ¬(¬S) ≡ ⊥ which will turn out not to be the case.
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