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Frege’s Other Program

Aldo Antonelli and Robert May

Abstract Frege’s logicist program requires that arithmetic be reduced to logic.

Such a program has recently been revamped by the “neologicist” approach of

Hale & Wright. Less attention has been given to Frege’s extensionalist program,

according to which arithmetic is to be reconstructed in terms of a theory of ex-

tensions of concepts. This paper deals just with such a theory. We present a

system of second-order logic augmented with a predicate representing the fact

that an object x is the extension of a concept C , together with extra-logical ax-

ioms governing such a predicate, and show that arithmetic can be obtained in

such a framework. As a philosophical payoff, we investigate the status of the

so-called Hume’s Principle and its connections to the root of the contradiction in

Frege’s system.

1 Introduction

Two distinct research strands come together in Frege’s program, as articulated in

Grundlagen and, in finer detail, in Grundgesetze. The first is the idea that arithmetic

should be reducible (in a suitable sense) to logic; the second is the idea that arith-

metic should be recoverable from a theory of extensions. Frege’s work lies at the

intersection of these two programs, and it amounts to the idea that arithmetic should

be reconstructed in terms of a logical theory of extensions. The first program is tra-

ditionally referred to as logicism, while the second could be referred to—for wont of

a better term—as extensionalism.

As we now know, if consistency is to be preserved, logicism and extensionalism

as conceived by Frege cannot be pursued simultaneously. Something has to give,

and there are a number of options available. One alternative explored by Heck [11],

Wehmeier [15], and Ferreira and Wehmeier [7] maintains the coordination of logi-

cism and extensionalism. Consistency is reestablished by weakening the comprehen-

sion principle, so that the offending predicates, for example, the Russell predicate,
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no longer fall under the principle. In effect, in the presence of a schematic version of

Frege’s Basic Law V such as Heck and Wehmeier have, this strategy ultimately lim-

its the number of predicates having value ranges. The problem with this approach is

that, as far as is currently known, it is too weak as it does not entail Peano Arithmetic,

but only weaker systems, in particular Robinson’s Q.

Alternatively, unlike the approach just described, we can break the bond of logi-

cism and extensionalism, rejecting one while maintaining the other. The most well-

known approach that arguably maintains logicism is the neologicist program of Hale

and Wright [9]. They abandon the idea that arithmetic can be obtained from a theory

of extensions; they introduce in its stead a theory of numbers based on an operator

mapping each concept F to an object x , construed as ‘the number of F’. In order

for this mapping to be interpreted as an assignment of numbers to concepts, certain

further constraints must be satisfied: not just any mapping of the concepts into the

objects will do. In particular, it is assumed that such a mapping satisfies what has

come to be known (perhaps improperly) as Hume’s Principle: concepts F and G are

mapped to the same object precisely when there is a one-to-one correspondence be-

tween the objects that fall under F and the objects that fall under G. In Grundgesetze,

Frege shows that Hume’s Principle, initially introduced in Grundlagen, is entailed by

Basic Law V. Wright and Hale, however, reject Basic Law V, and take Hume’s Prin-

ciple as basic. They then aver to the result that Peano Arithmetic can be derived

in second-order logic with the addition of Hume’s Principle (the so-called Frege’s

Theorem1). Since Hale and Wright eschew Basic Law V, the neologicist system is

consistent (more precisely, equiconsistent with second-order arithmetic). The burden

of proof that the resulting system is really logicism falls squarely on its proponents

showing that the mapping guaranteed by Hume’s Principle is purely a matter of logic

(or at least that it is constitutive of the notion of number), although the resolution of

this issue, for reasons that will become apparent, will not detain us here.2

One consequence of neologicism is that numbers are (logical) objects, a position

also compatible with the approaches of Heck and Wehmeier. There is an alternative

way to understand numbers from within a Fregean point of view, however, which

is that numbers are not objects, but concepts. To take this point of view, however,

one must have a theory of extensions, that is, we need to embrace the other half of

Frege’s program—extensionalism. This is what we aim to do in this paper, to show

in a nonlogical theory of extensions, where numbers are concepts, not objects, that

Peano Arithmetic can be derived. We will be exploring the feasibility of the exten-

sionalist program as a genuine theory of concept extensions, within the framework

of a second-order theory that deals explicitly with concepts. Within such a theory, an

object x can be regarded as the extension (or—as we will also say—the value range)

of a concept F provided it satisfies a constraint analogous to Frege’s Basic Law V: if

concepts F and G have extensions, then their extensions are the same precisely when

the same objects fall under F as fall under G. It will thus be a notable characteristic

of our theory that it is a consistent theory which incorporates both a version of Basic

Law V and an unrestricted Comprehension Principle.3

The map we have just given of the possible responses to the contradiction in

Frege’s system is exhaustive. However, each alternative places the roots of the in-

consistency in rather different lights. We know, after the paradoxes, that not every

predicate can have a value range: this is the import of Cantor’s theorem. At the same

time, we know that at least some predicates must have value ranges, if arithmetic is to
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be derived. Hence there is a tension between the existential assumptions needed for

arithmetic and the limitations imposed by Cantor’s theorem. What we would want

an analysis to provide is real insight into how these existential requirements needed

for a development of arithmetic play along with the constraints imposed by Cantor’s

result.

In regard to this matter, the neologicist approach falls short: it attains consistency,

if you will, by brute force, by expunging Basic Law V, but this hardly provides

any real insight. All it gives us is a consistent theory from which arithmetic can be

derived. Of course, this is a desirable result, but what one would like is a more subtle

account of the way in which the map taking predicates into the objects needs to be

constrained, while still satisfying the Peano-Dedekind axioms.

There are two ways in which one can strike a balance between the existential

requirements and consistency. One is by limiting Comprehension, that is, by denying

that every predicate corresponds to a concept. This is the approach advocated by

Heck and Wehmeier, who limit Comprehension to (little more than) its predicative

instances.4 The alternative is to preserve Comprehension in its full generality, but to

make explicit existential assumptions as to what concepts have value ranges. This is

the approach that we will develop.

Of the two approaches, one maintains the purely logical character of the system,

but gives up on the generality of Comprehension; the other maintains Comprehen-

sion but assumes a partial map of the concepts into the objects governed by extra-

logical principles. But there are important differences between these approaches.

First and foremost, as we shall see, only in the latter system is Peano Arithmetic

derivable; while as noted, in the former, only Robinson’s Q is known to be deriv-

able. Second, the latter system’s explicit existential assumptions tell us something

about the mathematical universe and the objects that inhabit it, as opposed to limiting

Comprehension, which just constrains the conceptual space.

A third difference, one that will differentiate our approach both from the proposal

currently under discussion and neologicism, is that Hume’s Principle can be shown

not to follow. We show this by exhibiting a counterexample to the left-to-right di-

rection, that is, we show that there can be concepts with the same number that are

not equinumerous. Such a possibility is precluded if numbers are conceived of as

objects, and in fact our counterexample crucially depends on assumptions as to what

concepts have value ranges. The importance of this sort of counterexample is that it

goes straight to the heart of the matter as regards the origin of the contradiction, in

ways that other counterexamples to Hume’s Principle do not (as we will see).

The paper is articulated as follows. In the next section, we will present an informal

overview of the argument; in Section 3 to follow we will provide the formal details.

We will then draw out the implications of the approach for the issues we have been

elucidating with particular attention to the status of Hume’s Principle.

2 Extensionality: The Informal Development

As we set out to outline our strategy, one question naturally arises: Isn’t modern

set theory already a stunningly successful articulation of the extensionalist program?

Insofar as (presumably) consistent fragments of Grundgesetze go, Zermelo-Fraenkel

set theory goes, undeniably, a long way. But, we contend, modern set theory is

extensionalism in disguise: although it is a theory of extensions of concepts, gone

are the concepts, and only the extensions are left.
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On the other hand, we want to pursue a genuine extensionalist program in which

concepts, along with their extensions, are first-class citizens. (Many of the ideas at

work here were developed in connection with a reconstruction of Frege’s own ap-

proach to logical metatheory, his so-called New Science—see Antonelli and May

[1].) This requires a second-order language that allows explicit quantification over

predicates, relations, and so on, as well as ordinary first-order quantification. Ad-

ditionally, we will need to assume that the language contains a predicate constant

VR that relates concept variables to individual ones, with the understanding that

VR(P, x) expresses that the object x is the value range of the concept P . We will not

assume that every concept has a value range; rather, which concepts do is a matter of

independent stipulation. But before we explain what those stipulations are, we need

to go over the analysis of the concept of number.

In the framework we just outlined, arithmetical notions such as those of num-

ber and natural number can be defined. However, some design choices need to be

made, and in particular an issue arises as to the status of numbers, namely, whether

they should be identified with certain objects or with other higher-level entities. On

Frege’s general approach, numbers are identified with equivalence classes of equinu-

merous concepts. As such, numbers are third-level concepts.5 It is well known,

however, that Frege employs the injection of the concepts into the objects given by

Basic Law V in order to reduce the level of the numbers by identifying them with

the extensions of the third-level concepts.

The question, then, is whether this is a mere convenience or whether this reduc-

tion plays an essential role in Frege’s program. As will become clear, our view is that

although some injection of the concepts into the objects is necessary to get arithmetic

going, this does not necessarily take the form of an indentification of the numbers

themselves with certain particular objects or value ranges, and in particular the ob-

jects that provide the target of the map of the concepts into the objects need not be

construed as the numbers themselves. In fact, Frege himself repeatedly says that

very many uses of Basic Law V are dispensable; among them, we submit, is the one

that leads to the identification of the numbers as objects.

On our account, then, numbers are concepts, not objects.6 Like Frege, we also

make use of (a version of) Basic Law V to reduce the level of the hierarchy at which

numbers can be found. But instead of performing a complete reduction from the

third level to the first, we identify numbers with second-level concepts. As such,

numbers are concepts under which first-level objects fall, but to retain the original

Fregean account of numbers as equivalence classes of equinumerous concepts, we

constrain the objects that are allowed to fall under the numbers to be value-ranges

of equinumerous concepts. In other words, N is a number if and only if there is a

concept P such that an object x falls under N if and only if x is the value-range of a

concept equinumerous to P . Such an object x is called a witness for N .

With this characterization of numbers, basic principles such as the schema of

induction can then be proved. But more work needs to be done if Peano Arithmetic

is to be recovered. In particular, after laying down the language and its semantics,

we can formulate the three characteristic axioms of the system. These axioms are

essentially nonlogical in nature (although, arguably, to different degrees). They are

far from true in every model and are what provides the theory with it expressive

power. The axioms are also conceptually quite simple.
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The first axiom, a version of Basic Law V, establishes identity conditions for

value ranges. It is formulated in such a way as not to have existential import: it

says that if concepts P and Q have value ranges, then the value ranges are identical

precisely when P and Q are equiextensional. Nothing follows from this axiom as to

the existence of value ranges. The second axiom is a second-order comprehension

principle. It does have existential import, but only at the second level: it implies that,

for any predicate expressed by a possibly complex formula 8, there corresponds a

concept P . Comprehension is a closure condition on the collection of the subsets

of the domain. It has existential import, but not of the kind that is at work in any

derivation of arithmetic. Finally, the third axiom is the one that expresses the theory’s

characteristic existential assumptions at the first level. These assumptions require

that every concept under which only witnesses fall have a value range.

The system is sufficient to derive the Peano-Dedekind axioms. Much of the

derivation at this point is rather straightfoward, with the exception of the claim that

every number is distinct from its predecessors (Theorem 3.19). It is worth noting

that, given our definition of numbers as concepts, it can be proven on the basis of

Comprehension alone that every number has a successor; what does not follow from

comprehension, and requires the characteristic existential assumptions of the system,

is the claim that every number is distinct from its successor. This is, then, a version

of “Frege’s theorem” as embodied in our Theorem 3.19 below.

3 Extensionality: Formal Details

We can now proceed with the formal details. Our first step is to introduce a formal

system F , which will be used in articulating the extensionalist approach. The system

F is a second-order system with a standard second-order comprehension axiom, as

well as a characteristic extra-logical axiom schema ensuring the existence of certain

value ranges.

The language L of F is a standard second-order language, comprising first- and

second-order variables, predicate constants (among which at least =), connectives

→ and ⊥ (the Falsum), and first- and second-order universal quantifiers ∀x and ∀P

(the other connectives and quantifiers are to be regarded as abbreviations in the usual

way). Ordinarily, at this point one would have an unrestricted abstraction operator

assigning to each formula ϕ(x) a first-order term x̂ .ϕ(x). But the map assigning

value ranges to concepts must, as we have seen, be partial. Rather than changing the

underlying logic allowing for partial maps, we introduce a relational version of the

extensional apparatus, allowing for the possibility that concepts might or might not

have a value range. So we introduce a special predicate VR(P, x) with the intended

interpretation that x is the value range of P . Whether a given concept does indeed

have a value range needs then to be specified through specific assumptions, which

we regard as extra-logical in nature.

Next, we supply an interpretation for L. When interpreting a second-order lan-

guage one is faced with the option of giving the standard interpretation (in which

the n-ary second-order variables are taken to range over the true power set of Dn)

or the general interpretation (in which the n-ary second-order variables are taken

to range over some given collection of subsets of Dn ). As nothing we are going

to say depends on the interpretation being standard, we opt for the weaker general

alternative.
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Accordingly, we define a model M for L to comprise a nonempty first-order

domain D as well as, for each n, a nonempty collection of subsets of Dn (provid-

ing a range for the n-place second-order variables). In such a model, each n-place

predicate constant (if there are any), is assigned a particular subset of Dn , and the

characteristic nonlogical constant of L, VR, is interpreted by a function assigning

a subset of D of cardinality ≤ 1 to each predicate variable P . (The restriction on

cardinality corresponds to the intuition that concepts cannot be assigned more than

one value range.)

In practice, we will be interested in models that satisfy certain further closure

conditions, such as are needed, for instance, for the second-order domains to satisfy

comprehension. Before we can specify the axioms that will constrain the class of

models, though, we need to develop some arithmetical notions.

Notation 3.1 We have the following conventions:

1. If P and Q are n-place predicate variables and x = x1, . . . , xn , we abbreviate

∀x(Px ↔ Qx) by P = Q; ∀x(Px → Qx) by P � Q; and P � Q∧ P 6= Q

by P ≺ Q. Observe that the semantics validates the inference from 8(P)

and P = Q to 8(Q), for any formula 8.

2. If ϕ(x) is a formula, we write ϕ = P to abbreviate ∀x(Px ↔ ϕ(x)).

3. We abbreviate ∃P[∀y(P y ↔ ϕ(y)) ∧ VR(P, x)] by VR(ϕ, x).

Definition 3.2 Let P ≈ Q abbreviate the standard claim that there is a 1-1 corre-

spondence between the Ps and the Qs:

∃R
[

∀x(Px → ∃y(Qy ∧ Rxy) ∧ ∀y(Qy → ∃x(Px ∧ Rxy) ∧

∀x(Px → ∀u∀v(Qu ∧ Qv ∧ Rxu ∧ Rxv → u = v) ∧

∀y(Qy → ∀u∀v(Pu ∧ Pv ∧ Ruy ∧ Rvy → u = v)
]

.

Definition 3.3 Define N(P, Q), ‘Q is the number of Ps’, if and only if Q is the

concept ‘y is the value-range of a concept S ≈ P’:

∀y(Qy ↔ ∃S(VR(S, y) ∧ P ≈ S)).

We use second-order variables N, M, P, . . . for numbers, and by a slight abuse of

notation, we also write N(N), ‘N is a number’ as ∃P N(P, N). We also write Z(N),

‘N is zero’, if and only if ∃P(∀y¬P(y) ∧ N(P, N)), that is, N is the number of an

empty concept.

After we introduce the characteristic axioms of the system, we will be in a position

to establish the elementary properties of the natural numbers, such as existence and

uniqueness of zero:

∃N[Z(N) ∧ ∀M(Z(M) ↔ N = M)],

and many more. For now we observe that the result will allow us to introduce a

predicate constant for the number zero, also denoted by Z. Next, we define the rela-

tion of (immediate) successor for numbers. The definition follows Frege’s original

definition according to which N is the immediate successor of M if and only if M is

the number of a concept P under which an object x falls, and N is the number of the

concept ‘falling under P but other than x’.

Definition 3.4 Define Sc(M, N), ‘N is the (immediate) successor of M’, as fol-

lows:

∃P∃Q∃z[N(P, M) ∧ N(Q, N) ∧ Qz ∧ ∀w(Pw ↔ Qw ∧ w 6= z)].
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Our next task is to define the notion of a natural number. A particularly important

notion throughout will be the idea that an object x is a witness for a number N : this

will happen if x is the value range of a concept having that number. Formally we

have the following definition.

Definition 3.5 Wtn(N, x) if and only if ∃P(N(P, N) ∧ VR(P, x).

Notice that this definition is equivalent to N(N) ∧ N(x).

Our development of arithmetic (on the basis of the axioms given in this section)

will rely—crucially—on the fact that every natural number will turn out to have a

witness, and this in turn will require that we carefully select special witnesses for the

natural numbers.

Our definition of natural number follows the standard (higher-order) inductive

definition: N is a natural number if and only if every concept S which contains a

witness for zero and such that if it contains a witness for M then it contains wit-

nesses for any successors of M , it also contains a witness for N . (We use the plural

“successors” in the above paraphrase because we have not proved yet that successors

are unique.)

Definition 3.6 We define Nn(N), ‘N is a natural number’, as follows:

∀S[∃y(Wtn(Z, y) ∧ Sy) ∧ ∀M(N(M) ∧ ∃y(Wtn(M, y) ∧ Sy)

→ ∀M ′(Sc(M, M ′) → ∃y(Wtn(M ′, y) ∧ Sy)))

→ ∃y(Wtn(N, y) ∧ Sy)].

Notice the occurence of the constant Z in the above definition. Although the in-

troduction of Z has not been justified yet, it’s easy to see how to reformulate the

definition in such a way that Z does not occur in it.

This definition will allow us to prove a principle of induction on Nn. It will be

expedient—for the sake of readability—to introduce an abbreviation for the recurring

formula ∃y(Wtn(N, y) ∧ Sy); so let us use WTN(N, S) to mean that S contains a

witness for N . With this abbreviation, the definition of Nn becomes:

∀S

[

[WTN(Z, S) ∧

∀M(N(M) ∧ WTN(M, S) → ∀M ′(Sc(M, M ′) → WTN(M ′, S)))]

→ WTN(N, S)

]

.

Theorem 3.7 The following induction principle is valid:

∀S

[

[WTN(Z, S) ∧

∀M(N(M) ∧ WTN(M, S) → ∀M ′(Sc(M, M ′) → WTN(M ′, S)))]

→ ∀N(Nn(N) → WTN(N, S))

]

.

The above induction principle follows analytically from the definitions. This does

not tell us anything about what natural numbers there are, a question that will in turn

depend on which concepts have value ranges.

We now present the three characteristic axioms of the theory F .

F1 A version of Frege’s Basic Law V (BLV):

∀P∀Q∀x∀y[VR(P, x)∧VR(Q, y) → (∀z(Pz ↔ Qz) ↔ x = y)];
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F2 A comprehension principle for any formula ϕ (with occurrences of the

constant VR and free parameters other than P allowed in ϕ):

∃P∀x [Px ↔ ϕ(x)];

F3 Special existential axioms providing for the existence of value ranges:

for any formula ϕ,

∀x(ϕ(x) → ∃M(Nn(M) ∧ Wtn(M, x))) → ∃x VR(ϕ, x).

This last axiom is the crucial one: it guarantees that any (possibly complex) predi-

cates that only apply to witnesses of natural numbers have value ranges. Also, notice

that F1 implies that any concept has at most one VR:

∀P∀x∀y[VR(P, x) ∧ VR(P, y) → x = y].

As a first example of how these axioms can be used in the derivation of arithmetical

principles, we make good on our promise on the uniqueness of the number zero.

Theorem 3.8 ∃N(Z(N) ∧ ∀M(Z(M) ↔ N = M)).

Proof By Comprehension, there is a P such that ∀x¬Px ; then (vacuously)

Px → ∃M(Nn(M) ∧ Wtn(M, x)). Then, by the special axiom, P has a value

range, denoted (here and henceforth) z. Moreover, z is also the value range of any

other empty predicate: if y is such that

∃Q[∀x¬Qx ∧ VR(Q, y)],

then y = z by BLV. By comprehension again let Nx hold if and only if x = z; then

N(P, N). This shows ∃N Z(N). For uniqueness,

Z(M) ↔ ∃P[∀x¬Px ∧ N(M, P)]

↔ ∃P[∀x¬Px ∧ ∀y(My ↔ ∃S(S ≈ P ∧ VR(S, y)))]

↔ ∀y(My ↔ ∃S(∀x¬Sx ∧ VR(S, y)))]

↔ ∀y[My ↔ y = z]

↔ M = N. �

In view of the above proof, from now on we introduce the predicate constant Z to

denote the unique Q such that Z(Q).

Similarly, we can now define a relation ≤ between numbers, as usual, by appeal

to the ancestral of Sc.

Definition 3.9 M ≤ N holds if and only if every set which contains a witness for

M and is closed under witnesses of successors, contains a witness for N :

∀S[∃y(Wtn(M, y) ∧ Sy) ∧ ∀M ′(∃y(Wtn(M ′, y) ∧ Sy)

→ ∀M ′′(Sc(M ′, M ′′) → ∃y(Wtn(M ′′, y) ∧ Sy)))

→ ∃y(Wtn(N, y) ∧ Sy)].

Theorem 3.10 If M ≤ N and N ≤ M then M = N.

Proof Double induction on M, N . �

We now introduce the Peano-Dedekind axioms for first-order arithmetic, and show

that they can be derived on the basis of the proposed framework. The proof will also

make clear exactly how the characteristics axiom F3 is to be used. Especially the
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argument for Theorem 3.19 is particularly representative of how the kind of recursive

“feedback loop” that the assumption on witnesses engenders.

Consider the following axiomatization of arithmetic (analogous, for instance, to

the one in Boolos and Heck [5]) :

1. ∃N(Z(N) ∧ Nn(N));

2. ∀N∀M(Nn(N) ∧ Sc(N, M) → Nn(M));

3. ∀M∀N1∀N2(Nn(M) ∧ Sc(M, N1) ∧ Sc(M, N2) → N1 = N2);

4. ∀N(Nn(N) → ∃M(Sc(N, M) ∧ N 6= M));

5. ∀N∀M(Nn(N) ∧ Z(M) → ¬ Sc(N, M));

6. ∀M∀N1∀N2(Nn(N1) ∧ Nn(N2) ∧ Sc(N1, M) ∧ Sc(N2, M) → N1 = N2);

7. For every formula 8(X) with the free second-order variable X :

8(Z) ∧ ∀N(Nn(N) ∧ 8(N)→∀M(Sc(N, M)→8(M)))→∀N(Nn(N)→8(N)).

Notice that this last is an axiom schema. Equivalently (in the presence of the com-

prehension and the special existential axioms) we could have the single axiom that

every P containing a witness for Z and closed under witnesses of successors, con-

tains a witness for every natural number. We begin our verification that the axioms

hold from this last one.

Theorem 3.11 The following induction principle holds, for any formula 8(P):

8(Z) ∧ ∀N(Nn(N) ∧ 8(N)→∀M(Sc(N, M)→8(M)))→∀N(Nn(N)→8(N)).

Proof Recall Nn(N) holds if every predicate S which contains a witness for Z and

such that if it contains a witness for M then it contains a witness for any successors

of M , contains a witness for N . To show the validity of the above principle, use

comprehension (F3) to obtain a predicate S such that

∀x[Sx ↔ ∃M(Nn(M) ∧ Wtn(M, x) ∧ 8(M))],

and apply the form of induction of Theorem 3.7. �

Next, we take up all the remaining axioms, leaving for last the crucial fourth axiom,

asserting that every number has a successor (other than itself).

Theorem 3.12 ∃N(Z(N) ∧ Nn(N)).

Proof We already know from Theorem 3.8 that there exists a unique N which is

the number of the empty predicate. Obviously, this N is a natural number since its

witness z belongs to every S which contains a witness for N and is closed under

witnesses of successors. �

Theorem 3.13 The following arithmetical axioms hold in F :

1. ∀N∀M(Nn(N) ∧ Sc(N, M) → Nn(M));

2. ∀M∀N1∀N2(Nn(M) ∧ Sc(M, N1) ∧ Sc(M, N2) → M = N);

3. ∀N∀M(Nn(N) ∧ Z(M) → ¬ Sc(N, M));

4. ∀M∀N1∀N2(Nn(N1) ∧ Nn(N2) ∧ Sc(N1, M) ∧ Sc(N2, M) → N1 = N2).

Proof See [5] for details of similar proofs. �

As long as the first-order domain of the model is actually infinite, it will be possible

to prove that every number has a successor; however, if there are not enough value

ranges around, it won’t necessarily follow that Sc(N, M) implies N 6= M .
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In the development of arithmetic the crucial axiom is axiom 4, which guarantees

that every number has a successor (other than itself). Recall that we introduced z as

the value range of the empty predicate; we also have the following lemma.

Lemma 3.14 Wtn(Z, z).

Our next task is to select, for each number N , a special witness for N . The series

of witnesses will very much resemble the von Neumann (finite) ordinals in that each

one will be the value range of the concept that applies to all previous witnesses.

Definition 3.15 Let N be the smallest predicate P containing z and satisfying the

closure condition:

∀Q∀x∀S∀y[Px ∧ VR(Q, x) ∧ ∀z(Sz ↔ (Qz ∨ z = x)) ∧ VR(S, y) → Py].

Here is an intuitive picture of what N looks like. The concept N will be a sequence

of witnesses n0, n1, n2, . . . , where nk is the value range of the predicate ‘x = ni ,

for some i < k’. More precisely (where VR is now—by abuse of language—an

operator, λ-notation is used to denote predicates):

n0 = VR(λy.y 6= y) = z

n1 = VR(λy.y 6= y ∨ y = n0) = VR(λy.y = n0)

n2 = VR(λy.y = n0 ∨ y = n1)

...

nk+1 = VR(λy.y = n0 ∨ · · · ∨ y = nk).

Lemma 3.16 ∀x(Nx → ∃N(Nn(N) ∧ Wtn(N, x))).

Proof By induction on the generation of N (which is provable). As observed, z is a

witness for Z. If x is in N, where VR(Q, x), and Q is a predicate of witnesses having

number N , then the predicate λy.Qy ∨ y = x has number ≤ N + 1 (where the

inequality could be strict if already Qx—although we will prove that this is not the

case; the idea here is if n0, . . . , nk are witnesses, then λy.y = n0 ∨ · · · ∨ y = nk

has number ≤ k + 1). But then λy.Qy ∨ y = x also applies only witnesses, and

hence by the special existential axiom has a value range y in N, witnessing a number

≤ N + 1. �

Next, we prove that nk+1 /∈ {n0, . . . , nk}. This will show that N is indeed infinite

and hence that every natural number has a witness. From the infinity of N we get that

every number has a successor; and from the fact that every number has a witness, we

obtain that every number is distinct from its successor.

Definition 3.17 It is possible to extend the ordering ≺ between predicates to mem-

bers of N, by putting for x, y in N: x ≺ y if and only if VR(P, x), VR(Q, y) and

P ≺ Q (this is well defined by BLV).

Lemma 3.18 The ordering ≺ over N is total.

Proof By induction on the generation of N. �

Theorem 3.19 If Nx, then ∀y(Ny ∧ y ≺ x → y 6= x).
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Proof Here is the informal argument. Clearly, n0 6= n1. Suppose for contradiction

that for j, k > 0 and j < k, n j = nk . Then

VR(λy.y = n0 ∨ · · · ∨ y = n j−1) = VR(λy.y = n0 ∨ · · · ∨ y = nk−1).

By BLV,

∀y(y = n0 ∨ · · · ∨ y = n j−1 ↔ y = n0 ∨ · · · ∨ y = nk−1).

By first-order logic, in particular,

∀y(y = nk → y = n0 ∨ · · · ∨ y = n j−1),

that is, nk = n0 ∨ · · · ∨ nk = n j , against the inductive hypothesis. �

Theorem 3.20 Nn(M) ∧ Sc(M, N) → M 6= N.

Proof By induction on N , using the fact that ∀M¬ Sc(M, Z) and the previous the-

orem. �

4 The Consistency of F

The issue to be considered in this section is the consistency of F , which will be

established by exhibiting a model, whose construction is due to Øystein Linnebo.

Linnebo first observes that every witness of a natural number is the value range of a

finite concept. Therefore, in order to satisfy axiom F3, it suffices to exhibit a model

in which every concept of extensions of finite concepts has—in turn—an extension.

Consider the (standard) model whose first-order domain is given by Vω+1 and in

which for every α ≤ ω, each concept F ⊆ Vα is assigned as its extension the

corresponding set in Vα+1.

Clearly, in such a model, each finite concept F is a subset of some Vk , and its

extension therefore lies at the next level Vk+1. It follows that if C is a concept of

extensions of finite concepts, two cases are possible: either (a) the concept C is it-

self finite, in which case it will have an extension in some Vk+1; or (b) the concept

C is infinite, in which case its extension lies in Vω+1. It follows that any concept

of extensions of finite concepts has itself an extension. This is enough to satisfy

F3. Moreover, axiom F2 is satisfied by the extensionality of sets, and axiom F1 is

satisfied because the model is standard. Our theory F is therefore consistent, in-

deed, equiconsistent (as one can easily see), with third-order arithmetic. It is perhaps

worth noting—as Burgess pointed out to us—that the system of Fine [8] is likewise

equiconsistent with third-order arithmetic.

We mention here that there is a weaker theory F0, in which the existential axiom

F3 is weakened to require only finite concepts of witnesses to have value ranges. In

particular, given a concept S, let Fin(S), abbreviate the second-order claim that S is

Dedekind finite, that is, ¬∃F[F is a proper injection of S into S]. Then F0 replaces

F3 by the axiom,

Fin(ϕ) ∧ ∀x(ϕ(x) → ∃M(Nn(M) ∧ Wtn(M, x))) → ∃x VR(ϕ, x).

F0 is of interest because it is strong enough to derive arithmetic. The derivation

of the Dedekind-Peano axioms given above goes through almost verbatim for F0,

with only modifications necessary in the proof of Lemma 3.16 (where one needs to

observe that if x is in N, where VR(Q, x), and Q is a Dedekind-finite predicate of

witnesses having number N , then the predicate λy.Qy ∨ y = x is still Dedekind

finite, and has number ≤ N + 1; but then λy.Qy ∨ y = x also applies to finitely



12 Aldo Antonelli and Robert May

many witnesses, and hence by the special existential axiom has a value range y in N,

witnessing a number ≤ M + 1).

Moreover, F0 is easily seen to be consistent. In fact, if we content ourselves with

a rough-and-ready interpretation, it becomes apparent that F0 can be embedded in

a second-order version of PA, where the VR relation maps each finite set of natu-

ral numbers to (say) its standard code. This gives an interpretation of F0 relative

to second-order arithmetic. On this interpretation, comprehension holds (F2), and,

moreover, it is immediate that equiextensional predicates have the same value-ranges

(F1). (In particular, it follows that value ranges are unique.) Finally one proves by

metatheoretic induction on cardinality that every finite set of natural numbers has a

value range, because every finite set of natural numbers is a finite set of witnesses

(F3).

F0, we think, is of some independent interest largely because it is a system ade-

quate for the derivation of arithmetic whose consistency strength is not any higher

than that of the neologicist system of Hale and Wright. One might be tempted to

think that since F0 builds the notion of finiteness into the axiom system, it is after

all no surprise that arithmetic can be recovered. If this were the case, F0 would be

yet another derivation of arithemetic from a theory of finite sets, of the kind surveyed

(and criticized) by Parsons [13]. Such a criticism would be only partially warranted.

The finiteness assumption certainly carries weight, as it is apparent upon inspection

of the consistency argument for F0 given above, where every finite set (of witnesses

or otherwise) has an extension. But the finiteness assumption itself—being at the

second-order—plays no role in the derivation of arithmetic, as again becomes clear

upon inspection of the proof.

It is worth mentioning some other systems that one might consider. First, there is

a whole hierarchy of existential principles strictly between the characteristic axiom

of F0 and that of F . It is clear that some transfinite cardinals can be characterized

in the second-order framework under consideration: for instance, ‘S is denumerably

infinite’ can be expressed in second-order logic, and if ‘S has cardinality κ’ can be

expressed, then so can ‘S has cardinality κ+’. One can then envisage, for any such

κ characterizable in second-order logic, an axiom to the effect that sets of witnesses

of cardinality κ have value ranges.7 Models for such intermediate systems have also

been identified by Linnebo: these are models of cardinality 2κ in which every set

of cardinality κ has a value range. Such a model has at most (2κ)κ = 2κ subsets

of cardinality κ , and using the axiom of choice one can obtain an injection of such

subsets into the first-order objects of the model. The injection provides the needed

interpretation for VR.

One might think that F could also be modified by strengthening the axioms. For

instance, the following version suggests itself: replace F3 with an axiom such as

Every concept of witnesses of (cardinal) numbers has a value range.

But, as observed by Burgess, such a system is inconsistent. First of all, call an

object y a set if it is the value range of a concept Y , and say that x is a member

of y if x falls under Y . It follows that every set witnesses a cardinal: if y is a

set, then comprehension gives the concept N of being the extension of a concept

equinumerous to Y . But N is a (cardinal) number and y is a witness for N . Thus

every set witnesses a cardinal, and if we assumed the strengthened axiom above it

would follow that every concept of sets has an extension (or, as we also might say,
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every concept of sets is, in turn, a set). But then the concept R, ‘being a set that is

not a self-member’, would give Russell’s paradox.

5 Hume’s Principle

Perhaps the centerpiece of the neologicist program is what is known as “Frege’s

theorem,” the result that arithmetic is derivable in second-order logic from Hume’s

Principle, the condition that the number of F equal the number of G if and only

if there is a one-to-one correspondence between the Fs and the Gs. In the most

highly developed neologicist approach, that of [9], Hume’s Principle is stipulated as

an axiom; its claimed importance is the role it plays in constituting the concept of

number. The status of Hume’s Principle in our approach is rather different: in fact

it can be shown to fail in F0, which like the Hale and Wright system is consistent

relative to second-order PA, as well as in the stronger F .

To see why this is, we need first to specify exactly what one means by Hume’s

Principle in the context of our systems. There are at least two natural readings of

“The number of Fs equals the number of Gs if and only if there is a one-to-one

correspondence between the Fs and the Gs.” It is clear how to render the right-hand

side F ≈ G of the biconditional (see Definition 3.2). The issue arises with the left-

hand side. Recall that we have defined “M numbers the Fs” (abbreviated N(F, M))

as

∀y(My ↔ ∃S(VR(S, y) ∧ S ≈ F)).

Then, “the number of F is the number of G” might taken to mean one of the follow-

ing two statements:

1. ∃M(N(F, M) ∧ N(G, M)); or

2. ∀M(N(F, M) ↔ N(G, M)).

It turns out that it does not make a big difference, for the status of Hume’s Principle,

which version we take. To make the case, consider the first version, with the existen-

tial quantifier (the other is similar, but easier). It is easy to verify that the right-to-left

direction holds. Assume F ≈ G; by comprehension, let

M = {y : ∃S(VR(S, y) ∧ S ≈ F)};

since F ≈ G we also have

M = {y : ∃S(VR(S, y) ∧ S ≈ G)};

hence, ∃M(N(F, M) ∧ N(G, M)).

The converse, however, fails. Let us go through a proof attempt so that we can

pinpoint exactly where the obstacle lies. Assume that for some M , we have both

N(F, M) and N(G, M). In particular, it follows that

∀y

[

∃S(VR(S, y) ∧ S ≈ F) ↔ ∃S′(VR(S′, y) ∧ S′ ≈ G)

]

.

For the proof to go through, we need to assume that M 6= ∅, for then there are S

and y such that VR(S, y) and S ≈ F . By the above, we also have that there is some

S′ such that VR(S′, y) and S′ ≈ G. Since y is the value-range of both S and S′, by

BLV we have S = S′, which implies F ≈ G, as desired.

However, if no S ≈ F has a value range (so that M is empty), the conclusion

fails, then Hume’s Principle no longer follows. Here is a counterexample: let A be

an uncountable set of urelements, let Vω[A] (the collection of all hereditarily finite
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sets over A) be the first-order domain, and as before let VR map finite sets of natural

numbers to their codes. Now consider the two second-order concepts N and A,

whose extensions are the natural numbers and the urelements, respectively. Since

only finite sets of natural numbers have value ranges, no S ≈ A has a value range,

and similarly no S ≈ N has a value range. If, by comprehension, we let M1 be the

number of N, and M2 be the number of A, we have M1 = ∅ = M2, and yet A 6≈ N.

This gives the counterexample for F0; a similar argument can be given for F .

Assuming GCH to simplify things, let A be a set of cardinality ℵ2 and consider the

model having Vω+1[A] as its first-order domain. As before, each concept F ⊆ Vω[A]

has an extension in Vω+1[A]. Now notice that since every F ⊆ N has an extension,

P (N) is a concept, but no G ≈ P (N) has an extension. Similarly, no G ≈ A has

an extension, whence the number of A is the same as the number of P (N), and yet

P (N) 6≈ A.

So the implication from “the number of F equals the number of G” to “F ≈ G”

fails (although, as we have seen, the converse implication holds in F0). The reason

this half of Hume’s Principle fails is in a certain sense obvious: it is because we do

not have enough value ranges around to witness the fact that F 6≈ G. Accordingly,

if we had enough value ranges of the right kind, then this half of Hume’s Principle

would hold. In contrast, the other half of Hume’s Principle does not require special

existential assumptions, as it deals only with the identity conditions of numbers.

There are two halves to Hume’s Principle, just like there are two halves to Basic

Law V. Whereas the left-to-right direction of Basic Law V expresses the injection

of concepts into objects (value ranges), and the right-to-left direction expresses the

identity conditions on those objects, Hume’s Principle expresses those relations with

respect to a restricted range of objects, that is, the numbers. In the case of Basic Law

V, it is the left-to-right direction that is responsible for the contradiction. Notice that

it is the same direction of Hume’s Principle that is subject to our counterexample.

The reason for this correlation is that once the implicit existential assumptions of

Basic Law V (those than run afoul of Cantor’s theorem) are drawn out and made

explicit, those existential assumptions can be suitably weakened in such a way as to

avoid the contradiction, maintaining Basic Law V in the form that we have given. But

it is this weakening which cuts down on the available value ranges that also stands

at the heart of our counterexample to Hume’s Principle. Thus what we see here is

that once we isolate the mathematical roots of the contradiction, it is also possible,

and perhaps desirable, to provide a Fregean foundation of arithmetic that does not

assume Hume’s Principle.8

We can further illustrate the characteristics of our system by comparing it to oth-

ers that are closely related. One such approach is that of Demopoulos and Bell

[6]. They consider a second-order system with an explicit mapping e of concepts

(of any order) into the objects. Russell’s paradox is avoided in the system because

the analogue of Frege’s Basic Law V is not assumed in general, but only for the

third-order numerical concepts, that is, equivalence classes of concepts under the

equinumerosity relation (Demopoulos and Bell refrain from calling such concepts

“numbers,” a name they instead reserve for the corresponding objects). Such an

assumption is similar in inspiration to our extra-logical axiom F3, but whereas for

Demopoulos and Bell numbers are tightly connected (perhaps identical) to certain

objects satisfying Basic Law V, for us only certain second-order concepts (falling

under the numbers) are witnessed among the objects. So, Demopoulos and Bell only
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assume Basic Law V for a restricted portion of the universe: in contrast, in our sys-

tem, Basic Law V holds unconditionally for any concept having value ranges. As a

result of this different approach, Demopoulos and Bell obtain the general validity of

Hume’s Principle, which is in fact entailed by Basic Law V, and they are precluded

from driving a wedge between the resources necessary to obtain arithmetic and the

further requirement expressed by Hume’s Principle.

Another system of interest in the present context is that of Boolos [2]; in this

system, like ours, a counterexample to Hume’s Principle can be generated. Boolos

considers a second-order language with a “number-of” operator defined on every

concept, which is assumed to be extensional, in that if P = Q then the number of P

is the same as the number of Q (but no further assumptions are made—in particular,

there is no requirement that equinumerous concepts be assigned the same number).

Boolos then proceeds to give a counterexample to Hume’s Principle by constructing

a model in which two equinumerous sets (viz., N and {2n : n ∈ N}) are assigned two

different objects as their “number.” The counterexample does not go through in the

present context, as value ranges (when they exist) are subject to Basic Law V. Our

counterexample to Hume’s Principle is quite different in nature: whereas in [2] it is

the right-to-left direction of the principle that fails, here it is the left-to-right one.9

Thus, Boolos’s counterexample is farther removed from the mathematical roots of

the contradiction; it only addresses, in a somewhat contrived way, the issue of the

identity conditions of the numbers.

6 Concluding Remarks

To summarize, what we have accomplished is a reduction of arithmetic to a theory

of extensions of concepts. As such, we have, in the context of a broadly Fregean

program, detached extensionalism from logicism. Our claim is that Basic Law V is

properly understood as part of the theory of extensions and not as part of logicism.

Hale and Wright, who take the logicist side, in effect agree with this, in that they

reject Basic Law V in favor of Hume’s Principle. (Hume’s Principle, by our lights

is not part of the theory of extensions.) Since both theories are consistent in the

relevant sense and in both Peano Arithmetic is derivable, we can ask after the depth

of insight provided by each system for the foundations of arithmetic. The problem

with Hale and Wright’s system, it seems to us, is that it gives no purchase on the

underlying causes of the contradiction in Frege’s system. The reason for this, we

have argued, is that it does not reveal the underlying existential assumptions that

specify the mathematical content of the system.

Notes

1. See, for instance, Heck [10] for an informal overview.

2. We will not address here the question of the extent to which this part of the neologicist

program is successful (but the interested reader can consult Wright [16] and, for an

opposing viewpoint, Boolos [3]).

3. In this paper, we take the Comprehension Principle to express the fact that each predicate

determines a concept. For present purposes, a predicate can be interpreted as whatever

corresponds (semantically) to an open formula.
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4. Whereas Heck’s system is strictly predicative, allowing only instances of Comprehen-

sion with no bound second-order variables, Wehmeier can push the result to the 11
1

fragment of Comprehension, thereby achieving an optimal result.

5. Our usage throughout will be that objects are of the first level, n-ary concepts of objects

are of the second level, n-ary concepts that take second-level concepts as arguments

are of the third-level, and so on. We diverge from Frege, for whom only concepts and

relations have an order. Thus our third-level concepts are Frege’s second-level concepts.

6. That is, numbers are concepts of the second level. This contrasts with the proposal of

Hodes [12] who proposes that numbers are concepts of one level higher; to wit, car-

dinality quantifiers that take second level concepts as arguments. While Hodes’s goals

are primarily philosophical, Rayo [14] gives a formalization incorporating this view of

numbers along with a proof of a “completeness theorem for applied arithmetic.”

7. Thanks to Sean Duggan-Ebels for suggesting this kind of intermediate axioms for con-

sideration.

8. It is of some interest to conjecture whether Frege realized that there were embedded ex-

istential assumptions in Basic Law V. We know that he was familiar with Cantor’s work,

yet since it is only Hume’s Principle that is needed for Frege’s derivation of his version

of PA, perhaps he might have thought that the existential assumptions were harmless

and did not impact the status of Basic Law V as a logical law. He certainly did not think

that existential assumptions implicit in abstraction principles undermined their explana-

tory efficacy, cf. the famous characterization of direction in terms of parallel lines in

Grundlagen.

9. Boolos’s argument is independent of the way we choose to reconstruct Hume’s Principle

with the universal or existential quantifier.
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