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A Simple Embedding of T into Double S5

Steven Kuhn

Abstract  The system obtained by adding full propositional quantification to S5
is known to be decidable, while that obtained by doing so for T is known to be
recursively intertranslatable with full second-order logic. Recently it was shown
that the system with two S5 operators and full propositional quantification is also
recursively intertranslatable with second-order logic. This note establishes that
the map assigning [1][2]p to L p provides a validity and satisfaction preserving
translation between the T system and the double S5 system, thus providing an
easier proof of the recent result.

1 Introduction

For a natural number n, an n-modal system is a language with operators [1], .. ., [n]
interpreted by world-world relations Ry, ..., R, according to the familiar Kripke
semantics. Double S5 is the 2-modal system determined by all frames (W, Ry, R)
such that Ry and R; are equivalence relations. (The nomenclature system envisioned
here would, for example, take S5S4K to be the 3-modal system determined by frames
(W, R1, Ry, R3) where R; is an equivalence relation and R; is symmetric and tran-
sitive and it would take Double S5 to be S5S5.) In this paper we give a simple
embedding of T into Double S5 that extends to the case where both systems are sup-
plemented by propositional quantifiers ranging over all subsets of worlds. This pro-
vides a quick proof that Double S5 with such quantifiers is recursively intertranslat-
able with full second-order logic, a result that was recently obtained by more arduous
methods in Antonelli and Thomason [1]. The result is noteworthy because ordinary
S5 with full propositional quantifiers is known to be decidable. (See Fine [2].)

2 languages, Interpretations, and Systems

The formulas of L are built up in the usual way from a countable set pi, pa, ...
of propositional variables by the classical connectives — and Vv and the unary modal
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operator LJ. The formulas of £, are defined similarly using the unary modal
operators [1] and [2] in place of [J. The formulas of L7, and cﬁﬁ]m are defined
by adding to the definitions of the formulas of £ and £y the clause: if pisa
propositional variable and A is a formula then VpA is a formula.

A frame for L or LT is a pair F = (W, R) where W is a nonempty set (the
worlds of F) and R is a binary relation (accessibility) on W. A frame for &£ or
cﬁﬁ]m is a triple F = (W, Ry, Ry) where W is a nonempty set, Rj € W x W, and
Ry € W x W. A model for £ or LT is a triple M = (W, R, V) where (W, R)
is a frame for that language and V : N — 2W. V is the valuation function of
M. If V(i) = U we say that U is the proposition expressed by p; in M. A model
(W, R, V) is said to be a model on the frame (W, R). Similarly, a model for £, or
oCﬁ]m is a quadruple (W, Ry, Ry, V) where (W, Ry, R») is a frame for that language
and V is a valuation function as above.

Definition 2.1  Suppose M = (W, R, V) is a model for £ and w € W. The
notion that A is true at w in M (written M, w = A) is defined by the following
clauses:

1. M,w = p; iffw e V(i);

2. M,wEBVO)Iff M,w = Bor M, w = C (or both);

3. M, w = —B iff it is not the case that M, w = B;

4. M, w = OB iff, for all v such that wRv, M, v &= B.

To define truth for formulas of L7, we add an additional clause.
5. M,w [= Vp;B iff, forevery X C W, MJX, w = B where M/X is the model
(W, R, V*) such that V*(i) = V(i) fori # j and V(j) = X.
To define truth for formulas of £y, and L[] ,, we replace clause (4) with two similar
clauses with R; and R; playing the role of R and [1] and [2] playing the role of [.

If M is amodel with worlds W for any of these systems then A is valid in M (written
MEAIM,wikE= Aforallw € W. If F is a frame then A is valid in F (F |= A)
if A is valid in every model on F.

Definition 2.2

1. T is the set of formulas of £ valid on all frames (W, R) such that R is
reflexive.

2. Double S5 (or S5S5 or 2S5) is the set of all formulas of £y, valid on all
frames (W, R1, Ry) such that Ry and R; are equivalence relations.

3. T7 is the set of all formulas of L7, valid on all frames with reflexive accessi-
bility relations.

4. 2857 is the set of all formulas of £ﬁ][2] valid on all frames (W, R, R») such
that Ry and R; are equivalence relations.

3 Generated Models

For R a binary relation, let x R®y if and only if x = y and x R"*!y if and only if, for
some z, xRz and zR"y. The ancestral of R (written R*) is the relation that holds
between x and y if and only if x Ry for some k.

Let M = (W,R,V) be a model for £ or L7 and let w € W. The
model generated by M from w (written M") is the model (W™, R*, V") where
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WY ={x e W:wR*x}, R = RN (W" x W"), and, for every natural number i,
VY@ =Vv@Enwy
The following result is well known in £ and extends easily to £7.

Theorem 3.1 For every formula A of LT, M, w |= A if and only if M, w = A.

Proof By induction on A. We do the quantifier case.
M, w = VpjAiff M}, w = Aforall X €W (by truth definition)
iff (M jX YW, w k= Aforall X € W (by induction hypothesis)
iff (MX"™7) w = A forall X € W
(by definition of model generated from w)
iff (M}/)w, wEAforallY € WY (because X N WY C WY)
iff M” =Vp;A (by truth definition).

4 Mappings

Definition 4.1  The translation ¢ from £ to £ is defined by the following
clauses:

L. t(pi) = pi,

2. t(BvC)=t(B)Vvt(C),

3. t(—=B) = —t(B),

4. t+(OB) = [1][2]¢(B).
t extends to a map from L7 to L], with the addition of the clause,

5. t(¥pA) =Vpt(a).
For any model M = (W, Ry, R2, V) for L (or cﬁﬁ]m), the product of M (written
MP) is the model (W, R, V) for L (or L)) where W and V are as in M and
R = R Ry, thatis, wRv if and only if, for some x in W, wRx and x Rv.

Notice that if the accessibility relations in M are reflexive, the accessibility rela-
tion in M7 is also reflexive.

Theorem 4.2  Let M = (W, Ry, Ry, V) be a model for Ly or LT

ey and w € W.
Then M, w = tA if and only if MP, w = A.

Proof By induction on A. We do the [J case.
M,w = t(dB) iff M, w = [1][2]¢(B) (by definition of t)
iff, for all x, wRx implies M, x |= [2]t(B) (by truth definition)
iff, for all x, wRx implies, for all y, x Roy implies M, y = t(B)
(by truth definition)
iff, for all y, wR?y implies M, y |=t(B) (by definition of R”)
iff, for all y, wR”y implies M”, y |= B (by induction hypothesis)
iff MP, w =B (by truth definition definition).
O
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The product provides a mapping from £y or £, models to L or L, models.
Now we define a kind of inverse mapping. The idea is that whenever uRv in a
frame for the 1-modal system we insert a world x so that u Rjx and x Ryv in the
corresponding frame of the 2-modal system. More precisely, suppose F' = (W, R)
is a frame for £ or OCg and M = (W,R,V) is a frame on F. Let Wi be the
result of adding to W, a new world i (4, v) for each pair of distinct worlds # and v in
W such that uRv. (We call these infill worlds and the remaining worlds of W' the
original worlds.) For any original world u, let right(u) = {u} U {i (4, x) : uRx} and
let left(u) = {u} U {i(x,u) : xRu}. For all x and y in W', let xR,y if and only if
x = y or, for some original world w, x and y are both in right(w). Similarly, let
xRyy if and only if x = y or, for some original world w, x and y are both in left(w).
The infill of F is the frame F' = (W', Ry, Ry) (unique up to isomorphism), where
Wi, Ry, R, are as defined above. An infill of M is a model M= (Wi, R1, R, Vi)
on F' in which, for all natural numbers i, V(i) N W = V(i) (so the truth value of
propositional variables in M’ on the original worlds agrees with their truth value in
M).

Theorem 4.3 Suppose M = (W, R, V) is a model for Lty or LT, with R reflexive
and M' = (W', Ry, Ry, V') is an infill of M.

1. Ry and Ry are equivalence relations.
2. Forallu and vin W, uRv if and only if u Ry Rov.
3. Forallw e W, MY = ((M¥)")P)¥,

Proof (1) Observe first that if u # v then right(u) and right(v) are disjoint. For
suppose they had a world w in common. Since the only original world in right(u) is
u and the only original world in right(v) is v, w cannot be an original world. But if
w were an infill world it would have to be i (u, x) for some x and i (v, y) for some
y which is not possible when u # v. Since each original world u is in right(u) and
each infill world i(x, y) is in right(x), the sets right(u) partition W' into disjoint
sets containing u. It follows that R; is an equivalence relation. A similar argument
establishes that R, is an equivalence relation.

(2) Suppose uRv. By the definition of R, uR1i(u,v). By the definition of R»,
i(u, v)Ryv. Hence u Ry Ryv. Conversely, suppose u Ry Ryv for u and v in W. Then,
for some x, uRyx and x Rov. If x is an original world then # = x and x = v and so
u = v. By the reflexivity of R, uRv as was to be shown. If x is an infill world, then
x = i(u,y) for some y and x = i(z, v) for some z. Hence x = i(u, v) and uRv as
was to be shown.

(3) Let M' = (W', R’, V') be the model (((M™)")?)”. We must prove that each
component of M’ is identical to the corresponding component of M™. Let Q| and
Q> be the accessibility relations of (M™) and let Q be the accessibility relation of
((M™))P. Then
i) xeWwW¥ iffwR*x (by definition of W*)

iff w(RY)*x (by definition of R™)

iff w(Q102)*x (by 2 above)

iff wQ*x (by definition of the product of a model)

iff x € W’ (by the definition of W").
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(i) uRYv iffuQ;Qrv (by2 above)
iff uQu (by the definition of the product of a model)
iff uR'v since u and v are both in W* and hence in W’ by i.

(iii) Since the generation, product, and infill constructions never change the
valuation function on any world, it is clear that x € V*(i) if and only

if x € V/(i) for all natural numbers i and all x € W¥.
O

5 The Embedding Result

Theorem 5.1 (1) A € T if and only if t(A) € 285; (2) A € T” if and only if
t(A) € 2857,

Proof Suppose A ¢ 2S5. Then there is a model M = (W, Ry, R, V) with R| and
R; equivalence relations and some w € W such that M" = t(A). By Theorem 4.2,
MP,w = A. By an earlier observation, M? is reflexive. Hence A ¢ T. Conversely,
suppose A ¢ T. Then there is some model M = (W, R, V) with reflexive R and
some w € W such that M, w = A. By Theorem 3.1, M", w }~= A. By part 3 of
Theorem 4.3, (M™)))?)*  w = A. By Theorem 3.1 again, (M™)))?, w = A. By
Theorem 4.2, (M¥)! = t(A). By part | of Theorem 4.3 the relations in this model
are equivalence relations. It follows that #(A) ¢ 2SS5. This proves (1). Since all the
results appealed to carry over in the presence of full propositional quantifiers, this
proof also suffices for (2). ]

Corollary 5.2 2S57 is recursively intertranslatable with full second-order logic.

Proof Well-known methods assure that any simple n-modal system with proposi-
tional quantifiers can be recursively embedded in second-order logic. More particu-
larly, take any such system S determined by the class of all frames (W, Ry, ..., R;)
meeting some first- or second-order condition ®(Ry, ..., R,). Then we first define
a base function s from L£y1],... (4] to the formulas of second-order logic with x as the
only individual variable by a simple induction:
s(p;) = Pix (where P; is the ith one-place predicate symbol),
s(BvVv C)=s(B)Vvs(),
s(—B) = —s(B),
s([iI1B) = Vy(xR;y — (s(B))}) where y is the first individual variable that
does not occur in s(B), and Dy is the result of replacing x in D by y,

5. s(VpjB) =VP;js(B).
Now, for any formula A of cCi’“w

N

Ll let 1 (A) be the formula
VR ...VRy(®(Ri. ..., Ry) = VPi ...VP, Vxs(A)),

where p;,, ..., p;, are all the propositional variables that occur free in A and then,
by the truth definition for cCﬁ] L E= A if and only if = #(A). So to show that

such systems are recursively intertranslatable with second-order logic it is sufficient
to find a recursive embedding in the other direction, that is, from second-order logic
to the modal system. This is done for T", (among other systems) in [2]. Since
Theorem 5.1 provides a recursive embedding of T” into 2857, it follows that the
same can be done for 2857 . 1
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