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AN ELEMENTARY CONSTRUCTION OF THE NATURAL NUMBERS

FRANCIS J. TYTUS

1. Introduction This paper presents a set-theoretic construction of the
natural numbers which employs, besides standard set-theoretic operations,
only The Axiom of Choice and the existence of an infinite set.

The following notation will be used. A set of sets will be called a
family. Set-theoretic inclusion will be represented by <, and strict inclu-
sion by c. The power-set of a set S will be represented by P(S). If fis a
function defined on a set S, then f(T) will represent the set of images under
f of the elements of T, for each subset T of S. In particular f(¢) = ¢, where
¢ is the void set. If £ is a family of subsets of a set S, then nJ will

represent the intersection of the members of . In particular, n¢ = ¢.
The difference of sets S and T will be represented by S\T.

The following definitions would be used. The pair <S,g>, where Sis a
set and g is a function on S, is called a Peano System: if the following three
conditions are satisfied:

(i) gis one-to-one,
(i) gdoes not map Sinto S,
(iii) ¥ T is a subset of S such that
T N[S\g(S)]#¢ and g(T) ST, then T =S.

We wish to construct a Peano System.

A choice function on a set S is a function which assigns to each non-
void subset T of S an element of T. The Axiom of Choice states that a
choice function may be defined on any set.

A set S will be called finite if and only if every one-to-one mapping in
S maps S onto S. S will be called infinite if it is not finite. The following
propositions give some properties of finite sets which will be used in the
sequel.

Proposition 1: If S is a finite set and T is a subset of S, then T is finite,

Proof: If f is a one-to-one function in 7, then the mapping g in S defined by:
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f(x), xin T,
g(x) =
x , xin S\T,

is one-to-one, and hence maps S onto S. Clearly f(T) =g(T) =T. Q.E.D.

Proposition 2: If S and T are sets of the same cavdinality, and S is finite,
then T is finite.

Proof: Let f be a one-to-one function from S onto T'. I % is a one-to-one
function in T, then the composite function f ' ° % ° f is a one-to-one map-
ping in S, so we have (f~* °% © f) (S) =S. Consequently:

r(T) = R( £(S))
=(feftonof)(S)
= fl(f*eohef)(9)]
= f(S)
=T. Q.E.D.

Proposition 3: If T is a finite subset of a set S, and x is in S\T, then
T U {x} is finite.

Proof: LetU=T U {x}, and suppose that f is a one-to-one mapping from U
into U. We wish to show that ¥ is in the range of f, where y is an arbitrary
element of U. Clearly U\1r y} has the same cardinality as T, and hence is
finite. If y is not in AU\{y}), then F(U\{y}) S U\{y}, and the restriction of
f to U\{y} is a one-to-one mapping in U\{y}. Consequently we have
F(W\{»}) = Uy}, since U\{y} is finite, and we must have f(y) = y, because
f is one-to-one. Q.E.D.

II. Construction of a Peano System For an arbitrary set S, let fbe a
choice function on S, by the Axiom of Choice, and let g be the function on
P(S) defined by:

T{AD)}, T#s¢,
g(T) =
b, T=9¢,
Now let T be the family of all sub-families  of P(S) such that S is in J and
g S L. P(S) is in T, so I is non-void. Finally, let % = n I'. Itis clear
that % is in T, and that if < is a sub-family of % which is also in T, then
L=7.

We wish to show that when S is infinite the pair <%,¢ |7 > is a Peano
System, where g|% is the restriction of g to %. First of all we note that if
S = ¢, then S is in %\g(%), and <%,g|% > satisfies condition (i) of the
definition of a Peano System.

Proposition 4: 7= {S} U g@).

Proof: Let A = {5} u g@). Clearly J is both a subset of % and a member
of I',so L=7. Q.E.D.

It follows from Proposition 4 that <%, g|% > satisfies condition (iii) of
the definition of a Peano System: if J is a sub-family of % such that
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AN[7\g@)] # ¢ and g(L) S A, then by Proposition 4S is in <, and conse-
quently £ is in T, so {=%. Hence to show that <%, g|% > is a Peano Sys-
tem, it remains only to show that g7 is one-to-one, when S is infinite.

Theorem 1: If V, W are in ¥, then either V2 Wor gW) 2 V.
Proof: We will prove Theorem 1 in two steps:

Lemma 1: Suppose,for a fixed W in ¥, that V O W implies g(V) 2 W, for
each Vin ¥. Then V2 W org(W) 2 V, for each Vin ¥.

Proof: Let  be the family of all Vin % such that V2 Wor g(W) 2 V. We
wish to show that J is in I', and hence that { = 7. Clearly S is in . Sup-
pose that Vis in L. We wish to show that g(V) is in L. If VD W, then
gW)2 W, and g(v) is in L. Otherwise V= Wor g(W) 2 V, and in either of
these cases we have g(W)2 g(V), so g(V) is again in J. Q.E.D.

Lemma 2: If W is a fixed element of ¥,then V O W implies g(V) 2 W, for
every Vin V.

Proof: Let J be the family of all W in % such that V> Wimplies g(V) 2 W,
for each V in 7. We again wish to show that /{ is in I". S is clearly in J.
Suppose that W is in {. We need to show that g(W) is in . Suppose that
V 5g(W), where Vis in . Then g(W) XV, so, by Lemma 1, we have VO W.
If V = W, then g(V) =g(W), and if V DW we have g(V)2W2¢(W). Q.E.D.

Definition: Let Iy = {We ¥ |W 2 V}, for each Vin 7.
Corollary 1: Iy = Iy U{g(V)}, for each V in 7.
Corollary 2: The vestriction g7 \{¢} of g to v \{¢}is one-to-one.

Proof: Suppose that V, W are distinct elements of ¥ \{¢}. Then either V D
W or g(W) 2 V. In the first case we have W DV, so0 g(V) 2 W > g(W). In the
second case we have g(V') 2 Vg (V). Hence g(V) # g(W). Q.E.D.

It follows from Corollary 2 that in order to show that <7/,g|‘!/ > isa
Peano System we need only demonstrate that ¢is not in %, when S in infinite.

Proposition 5: Iy is finite, for every Vin V.

Proof: Let  be the Family of all Vin % such that Iy is finite. We wish to
show that L is in I. Sin J{, because I5 = {S}, which is finite. ¥ V isin J,
then Iy(y) = Iy U {U(V)}, and Iy, is finite, so I,(v) is finite by Proposition 3,and
gW) is in L. Q.E.D.

Corollary: If ¢is in ¥, then ¥ =1y is finite.

Proposition 6: The vestriction f |7\{¢} of 7 to ¥\{¢}is a one-to-one map-
ping.
Proof: Suppose thatf(V) =f(W), where V,W are in ¥\{¢}. From the defini-

tion of g it follows that g(V) ® W and g(W) ¥ v, so by Theorem 1 we have
W R Vand V XW. Hence v = W. Q.E.D.
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Proposition 7: If ¢ is in ¥, then f( \{¢}) = S.

Proof: We use a contrapositive argument. Suppose that there is some x in
S/F@\{o}). Let J be the family of all V in ¥ such that x is in V. Clearly S
is in J, and if V is in J it follows that g(V) is in J, since by assumption
f(V)#x when V#¢. Consequently £ is in T, so £ =%. Hence ¢ is not in
%, which is a contradiction. Q.E.D.

Theorem 2: If S is infinite, then ¢ is not in V.

Proof: We again use a contrapositive argument. Suppose that ¢ is in 7.
Then, by the corollary to Proposition 5, % is finite. Consequently % \{(1)} is
finite, by Proposition 1. Now the restriction f |7 \{¢} of f to ¥ \{¢} is a one-
to-one mapping from ¥ \{lb} onto S, by Propositions 6 and 7. Hence it
follows from Proposition 2 that S is finite, which is a contradiction. Q.E.D.
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