AN ELEMENTARY CONSTRUCTION OF THE NATURAL NUMBERS

FRANCIS J. TYTUS

I. Introduction This paper presents a set-theoretic construction of the natural numbers which employs, besides standard set-theoretic operations, only The Axiom of Choice and the existence of an infinite set.

The following notation will be used. A set of sets will be called a family. Set-theoretic inclusion will be represented by \subseteq , and strict inclusion by \subseteq . The power-set of a set S will be represented by $\mathbf{P}(S)$. If f is a function defined on a set S, then f(T) will represent the set of images under f of the elements of T, for each subset T of S. In particular $f(\phi) = \phi$, where ϕ is the void set. If $\mathscr A$ is a family of subsets of a set S, then $\bigcap \mathscr A$ will represent the intersection of the members of $\mathscr A$. In particular, $\bigcap \phi = \phi$. The difference of sets S and T will be represented by $S \setminus T$.

The following definitions would be used. The pair $\langle S,g \rangle$, where S is a set and g is a function on S, is called a *Peano System* if the following three conditions are satisfied:

- (i) g is one-to-one,
- (ii) g does not map S into S,
- (iii) If T is a subset of S such that $T \cap [S \setminus g(S)] \neq \emptyset$ and $g(T) \subseteq T$, then T = S.

We wish to construct a Peano System.

A choice function on a set S is a function which assigns to each non-void subset T of S an element of T. The Axiom of Choice states that a choice function may be defined on any set.

A set S will be called *finite* if and only if every one-to-one mapping in S maps S onto S. S will be called *infinite* if it is not finite. The following propositions give some properties of finite sets which will be used in the sequel.

Proposition 1: If S is a finite set and T is a subset of S, then T is finite.

Proof: If f is a one-to-one function in T, then the mapping g in S defined by:

$$g(x) = \begin{cases} f(x), & x \text{ in } T, \\ x, & x \text{ in } S \setminus T, \end{cases}$$

is one-to-one, and hence maps S onto S. Clearly f(T) = g(T) = T. Q.E.D.

Proposition 2: If S and T are sets of the same cardinality, and S is finite, then T is finite.

Proof: Let f be a one-to-one function from S onto T. If h is a one-to-one function in T, then the composite function $f^{-1} \circ h \circ f$ is a one-to-one mapping in S, so we have $(f^{-1} \circ h \circ f)(S) = S$. Consequently:

$$h(T) = h(f(S))$$

$$= (f \circ f^{-1} \circ h \circ f) (S)$$

$$= f[(f^{-1} \circ h \circ f) (S)]$$

$$= f(S)$$

$$= T.$$
Q.E.D.

Proposition 3: If T is a finite subset of a set S, and x is in $S\setminus T$, then $T\cup\{x\}$ is finite.

Proof: Let $U = T \cup \{x\}$, and suppose that f is a one-to-one mapping from U into U. We wish to show that y is in the range of f, where y is an arbitrary element of U. Clearly $U\setminus\{y\}$ has the same cardinality as T, and hence is finite. If y is not in $f(U\setminus\{y\})$, then $f(U\setminus\{y\})\subseteq U\setminus\{y\}$, and the restriction of f to $U\setminus\{y\}$ is a one-to-one mapping in $U\setminus\{y\}$. Consequently we have $f(U\setminus\{y\})=U\setminus\{y\}$, since $U\setminus\{y\}$ is finite, and we must have f(y)=y, because f is one-to-one. Q.E.D.

II. Construction of a Peano System For an arbitrary set S, let f be a choice function on S, by the Axiom of Choice, and let g be the function on P(S) defined by:

$$g(T) = \begin{cases} T \setminus \{f(T)\}, & T \neq \emptyset, \\ \phi, & T = \emptyset. \end{cases}$$

Now let Γ be the family of all sub-families \mathcal{A} of $\mathbf{P}(S)$ such that S is in \mathcal{A} and $g(\mathcal{A}) \subseteq \mathcal{A}$. $\mathbf{P}(S)$ is in Γ , so Γ is non-void. Finally, let $\mathcal{V} = \bigcap \Gamma$. It is clear that \mathcal{V} is in Γ , and that if \mathcal{A} is a sub-family of \mathcal{V} which is also in Γ , then $\mathcal{A} = \mathcal{V}$.

We wish to show that when S is infinite the pair $\langle \mathcal{V}, g | \mathcal{V} \rangle$ is a Peano System, where $g | \mathcal{V}$ is the restriction of g to \mathcal{V} . First of all we note that if $S = \phi$, then S is in $\mathcal{V} \setminus g(\mathcal{V})$, and $\langle \mathcal{V}, g | \mathcal{V} \rangle$ satisfies condition (ii) of the definition of a Peano System.

Proposition 4: $\mathscr{V} = \{S\} \cup g(\mathscr{V})$.

Proof: Let $\mathcal{A} = \{S\} \cup g(\mathcal{V})$. Clearly \mathcal{A} is both a subset of \mathcal{V} and a member of Γ , so $\mathcal{A} = \mathcal{V}$. Q.E.D.

It follows from Proposition 4 that $<\mathcal{V},g|\mathcal{V}>$ satisfies condition (iii) of the definition of a Peano System: if \mathcal{A} is a sub-family of \mathcal{V} such that

 $\mathcal{J} \cap [\mathcal{V} \setminus g(\mathcal{V})] \neq \phi$ and $g(\mathcal{J}) \subseteq \mathcal{J}$, then by Proposition 4S is in \mathcal{J} , and consequently \mathcal{J} is in Γ , so $\mathcal{J} = \mathcal{V}$. Hence to show that $\langle \mathcal{V}, g | \mathcal{V} \rangle$ is a Peano System, it remains only to show that $g | \mathcal{V}$ is one-to-one, when S is infinite.

Theorem 1: If V, W are in \mathcal{V} , then either $V \supseteq W$ or $g(W) \supseteq V$.

Proof: We will prove Theorem 1 in two steps:

Lemma 1: Suppose, for a fixed W in V, that $V \supset W$ implies $g(V) \supseteq W$, for each V in V. Then $V \supseteq W$ or $g(W) \supseteq V$, for each V in V.

Proof: Let \mathscr{L} be the family of all V in \mathscr{V} such that $V \supseteq W$ or $g(W) \supseteq V$. We wish to show that \mathscr{L} is in Γ , and hence that $\mathscr{L} = \mathscr{V}$. Clearly S is in \mathscr{L} . Suppose that V is in \mathscr{L} . We wish to show that g(V) is in \mathscr{L} . If $V \supset W$, then $g(V) \supseteq W$, and g(V) is in \mathscr{L} . Otherwise V = W or $g(W) \supseteq V$, and in either of these cases we have $g(W) \supseteq g(V)$, so g(V) is again in \mathscr{L} . Q.E.D.

Lemma 2: If W is a fixed element of V, then $V \supset W$ implies $g(V) \supseteq W$, for every V in V.

Proof: Let \mathcal{L} be the family of all W in \mathcal{V} such that $V \supset W$ implies $g(V) \supseteq W$, for each V in \mathcal{V} . We again wish to show that \mathcal{L} is in Γ . S is clearly in \mathcal{L} . Suppose that W is in \mathcal{L} . We need to show that g(W) is in \mathcal{L} . Suppose that $V \supset g(W)$, where V is in \mathcal{V} . Then $g(W) \supsetneq V$, so, by Lemma 1, we have $V \supseteq W$. If V = W, then g(V) = g(W), and if $V \supset W$ we have $g(V) \supseteq W \supseteq g(W)$. Q.E.D.

Definition: Let $I_V = \{W \in \mathcal{V} | W \supseteq V\}$, for each V in \mathcal{V} .

Corollary 1: $I_{g(V)} = I_V \cup \{g(V)\}$, for each V in \mathcal{V} .

Corollary 2: The restriction $g \mid \mathcal{V} \setminus \{\phi\}$ of g to $\mathcal{V} \setminus \{\phi\}$ is one-to-one.

Proof: Suppose that V, W are distinct elements of $\mathcal{V}\setminus\{\phi\}$. Then either $V\supset W$ or $g(W)\supseteq V$. In the first case we have $W\supsetneq V$, so $g(V)\supseteq W\supset g(W)$. In the second case we have $g(V)\supseteq V\supset g(V)$. Hence $g(V)\neq g(W)$. Q.E.D.

It follows from Corollary 2 that in order to show that $\langle \mathcal{V}, g | \mathcal{V} \rangle$ is a Peano System we need only demonstrate that ϕ is not in \mathcal{V} , when S in infinite.

Proposition 5: I_V is finite, for every V in V.

Proof: Let $\mathscr L$ be the Family of all V in $\mathscr V$ such that I_V is finite. We wish to show that $\mathscr L$ is in Γ . S in $\mathscr L$, because $I_S = \{S\}$, which is finite. If V is in $\mathscr L$, then $I_{g(V)} = I_V \cup \{U(V)\}$, and I_V is finite, so $I_{g(V)}$ is finite by Proposition 3, and g(V) is in $\mathscr L$. Q.E.D.

Corollary: If ϕ is in \mathcal{V} , then $\mathcal{V} = I_{\phi}$ is finite.

Proposition 6: The restriction $f \mid V \setminus \{\phi\}$ of f to $V \setminus \{\phi\}$ is a one-to-one mapping.

Proof: Suppose that f(V) = f(W), where V, W are in $\mathcal{V}\setminus \{\phi\}$. From the definition of g it follows that $g(V) \not\supseteq W$ and $g(W) \not\supseteq V$, so by Theorem 1 we have $W \not\supseteq V$ and $V \not\supseteq W$. Hence V = W.

Proposition 7: If ϕ is in \mathcal{V} , then $f(\mathcal{V}\setminus\{\phi\}) = S$.

Proof: We use a contrapositive argument. Suppose that there is some x in $S/f(V\setminus \{\phi\})$. Let $\mathcal L$ be the family of all V in $\mathcal L$ such that x is in V. Clearly S is in $\mathcal L$, and if V is in $\mathcal L$ it follows that g(V) is in $\mathcal L$, since by assumption $f(V)\neq x$ when $V\neq \phi$. Consequently $\mathcal L$ is in Γ , so $\mathcal L=\mathcal V$. Hence ϕ is not in $\mathcal L$, which is a contradiction. Q.E.D.

Theorem 2: If S is infinite, then ϕ is not in V.

Proof: We again use a contrapositive argument. Suppose that ϕ is in \mathscr{V} . Then, by the corollary to Proposition 5, \mathscr{V} is finite. Consequently $\mathscr{V}\setminus\{\phi\}$ is finite, by Proposition 1. Now the restriction $f|\mathscr{V}\setminus\{\phi\}$ of f to $\mathscr{V}\setminus\{\phi\}$ is a one-to-one mapping from $\mathscr{V}\setminus\{\phi\}$ onto S, by Propositions 6 and 7. Hence it follows from Proposition 2 that S is finite, which is a contradiction. Q.E.D.

Columbus, Ohio