FOUR TYPES OF GENERAL RECURSIVE WELL-ORDERINGS

SHIH-CHAO LIU

In this paper the term 'g.r. (general recursive) well-ordering' refers to g.r. well-orderings of the set of all the natural numbers. Markwald in [1, Satz 5] gave an example showing that some of his recursively enumerable well-orderings can exhibit non-constructive character in an important aspect. In this paper we shall give more examples of similar kind; they are all g.r. well-orderings and are more or less non-constructive.

The examples suggest a classification of g.r. well-orderings into four types, which is based on the following three conditions:

- (a) There are two g.r. functions $\mathbf{H}(n)$ and $\mathbf{G}(n)$ such that $\mathbf{H}(n) = 0$, 1 or 2 according as n is the first element, a successor or a limit and $\mathbf{G}(n) = 0$ or 1 according as n is the last element or not.
- β) There is an effective method for finding the successor of any element which is not the last one.
- γ) There is an effective method for finding the limit of any g.r. increasing bounded sequence $\{a_i\}$.

Here the term 'effective' is used in the sense that, given a set of entities, each of which is associated with a unique number in some specified manner, then a method for finding the associated number for each such entity is effective if, for any effectively given sequence of such entities $\{E_j\}$, the number associated with each E_j can be found by that method and the number found is a g.r. function of j.

The four types of g.r. well-orderings are characterized by the conditions as shown in the following.

Types of g.r. well-ordering	I	II	III	IV
Conditions satisfied		α	α,β	α, β, γ
Conditions not satisfied	α, β, γ	β, γ	γ	

In view of the nature of the conditions α , β , γ , g.r. well-orderings of each of the types II, III, IV can be considered as 'more constructive' than

those of the preceding type. Examples of g.r. well-ordering for each of the four types are given in this note. Theorem 1 shows that g.r. well-orderings of type IV give only order types $\leq \omega + \omega$.

The author has used the term 'constructively given g.r. well-ordering' elsewhere [2] informally. Now we find two plausible definitions for this term. We may define it as to refer to g.r. well-orderings of type IV or let it to refer to those that satisfy the following condition.

 δ) There is an effective method for finding the first element of any non-empty g.r. set.

The latter definition seems more natural. However, constructively given g.r. well-orderings under this definition give still smaller ordinal. In fact they give only the order type ω as is asserted by Theorem 3. Thus, strictly speaking, there is no constructive theory of ordinal numbers unless it is limited to a very narrow field. From Theorem 3 and Example of Type IV it can be easily seen that for any g.r. well-ordering \blacktriangleleft , δ implies $\alpha \& \beta \& \gamma$ but not vice versa.

In connection with the notations for constructive ordinals [3] we need consider two more conditions as follows:

- β) There is an effective method for finding the predecessor of any element which is a successor.
- y*) There is an effective method for finding, for any element which is a limit, a g.r. increasing bounded sequence which has the element as limit.

By using a suggestion made by Markwald in [1, Satz 9] it can be shown that unlike γ , γ' is satisfied by every g.r. well-ordering. Further we have (i) α and β imply β' and (ii) α and β' imply β . Thus with respect to any one of the g.r. well-orderings of type III or IV the natural numbers form a system S_3 of notations for a segment of the constructive ordinals. (See [3].)

The g.r. well-orderings of type III, though not wholly free from non-constructive characters, give much more order types than those of Type IV. In fact, their order types include all the constructive ordinals. (See [4, Theorem A, p. 410].) They also include all the order types of the g.r. well-orderings in general. (See [1, Satz 9].)

Theorem 1. The order types of the g.r. well-orderings of type IV do not exceed $\omega + \omega$.

Proof. Suppose that a g.r. well-ordering \prec is of type IV and that its order type is $> \omega + \omega$. We shall show that these two suppositions are incompatible. By the condition α , we can effectively find the first element in the ordering \prec . Let $\mathbf{S}(x)$ mean the successor of x. Let a_o be the first element and $a_{i+1} = \mathbf{S}(a_i)$; b_o be the limit of $\{a_i\}$ and $b_{i+1} = \mathbf{S}(b_i)$ and c_o be the limit of $\{b_i\}$. Since \prec is a linear ordering of all the natural numbers and its order type is $> \omega + \omega$, then by β and γ , the values a_i , b_i and c_o can all be effectively found. In particular, $\{a_i\}$ and $\{b_i\}$ are both g.r. increasing bounded sequences with b_o and c_o as limits respectively.

Let T(n, y) be an abbreviation for the predicate $T_1(n, n, y)$ of Kleene [5, p. 283] so that (Ey) T(n, y) is not a g.r. predicate. Let, for each n fixed, $\{k_{n,j}\}$ be a sequence defined by $k_{n,j} = a_j$ if $(i)_i \leq j \overline{T}(n, i)$ and $k_{n,j} = b_j$ if $(Ei)_i \leq j \overline{T}(n, i)$. Evidently $\{k_{n,j}\}$ is g.r., increasing and bounded and it has as $limit\ b_o$ or c_o according as (y) $\overline{T}(n, y)$ or (Ey) T(n, y). Since (Ey) T(n, y) is not g.r., the limit L(n) of $\{k_{n,j}\}$ is not a g.r. function of n. This contradicts y. Hence the theorem is proved.

Example of Type III. Every g.r. well-ordering which satisfies α and β and has an order type $> \omega + \omega$ is one of Type III. It does not satisfy γ because of Theorem 1.

Example of Type IV. A g.r. well-ordering \prec of this type is defined by $0 \prec 2 \prec 4 \prec \ldots, \prec 1 \prec 3 \prec 5 \prec \ldots$ That \prec satisfies γ can be seen from the fact that every g.r. increasing bounded sequence in the ordering \prec has 1 as limit.

Example of Type II. Using Markwald's result [1, Satz 5] we can easily find a g.r. well-ordering $\stackrel{*}{\prec}$, of order type ω , which does not satisfy β . Let $\stackrel{*}{\prec}$ be a g.r. well-ordering of type III which does not satisfy γ . Then a g.r. well-ordering $\stackrel{*}{\prec}$ of Type II is defined by

$$x \leftarrow y \longleftrightarrow (x \text{ is even & } y \text{ is odd}) \text{ v}$$

$$(x \text{ is even & } y \text{ is even & } x/2 \stackrel{*}{\rightleftharpoons} y/2) \text{ v}$$

$$(x \text{ is odd & } y \text{ is odd & } (x-1)/2 \stackrel{*}{\rightleftharpoons} (y-1)/2).$$

Theorem 2. There is a g.r. well-ordering \prec which does not satisfy α .

Proof. Let T(n, y) have the same meaning as in the proof of Theorem 1. The ordering \prec is defined by

$$\begin{array}{c} x \mathrel{\swarrow} y \mathrel{\longleftarrow} ((Ez)_{z \mathrel{\leqq} \sigma_{2}(x)} \mathsf{T} (\sigma_{1}(x), \ z) \ \& \ (z)_{z \mathrel{\leqq} \sigma_{2}(y)} \ \mathsf{\overline{T}} (\sigma_{1}(y), \ z)) \ \mathsf{v} \\ \\ ((Ez)_{z \mathrel{\leqq} \sigma_{2}(x)} \ \mathsf{T} (\sigma_{1}(x), \ z) \ \& \ (Ez)_{z \mathrel{\leqq} \sigma_{2}(y)} \ \mathsf{T} (\sigma_{1}(y), \ z) \ \& \ x < y) \ \mathsf{v} \\ \\ ((z)_{z \mathrel{\leqq} \sigma_{2}(x)} \ \mathsf{\overline{T}} (\sigma_{1}(x), \ z) \ \& \ (z)_{z \mathrel{\leqq} \sigma_{2}(y)} \ \mathsf{\overline{T}} (\sigma_{1}(y), \ z) \ \& \\ \\ (\sigma_{1}(x) < \sigma_{1}(y) \ \mathsf{v} \ (\sigma_{1}(x) = \sigma_{1}(y) \ \& \ \sigma_{2}(x) < \sigma_{2}(y)))). \end{array}$$

Example of Type I. Let \prec stand for the ordering of Theorem 2 and $\overset{2}{\prec}$ for the ordering of the example of Type II. Then $a \prec is$ defined by

$$x \leftarrow y \longrightarrow (x \text{ is even } \& y \text{ is odd}) \lor$$

$$(x \text{ is even } \& y \text{ is even } \& x/2 \ngeq y/2) \lor$$

$$(x \text{ is odd } \& y \text{ is odd } \& (x-1)/2 \trianglerighteq (y-1)/2).$$

Theorem 3. Given any g.r. well-ordering \prec , if there is an effective method for finding the first element of any non-empty g.r. set, then the order type of \prec does not exceed ω .

Proof. It suffices to show that no number is a limit in the ordering \prec , for the numbers are then either the first element or the successors and \prec must have order type ω .

Suppose there is a number p which is a limit. Since \prec satisfies γ' , we can find a g.r. increasing sequence $\{a_i\}$ with p as limit. Let, for each n, a g.r. set k_n be defined by

$$x \in k_n \longrightarrow (p \prec x \lor p = x) \lor (Ey)_{y \leq \mu t} \mathsf{T}(n, y)$$

where T(n, y) is the same predicate as in the proof of Theorem 1 and μt is the least number t such that $(p \prec x \lor p = x \lor x \prec a_t \prec p)$. We can see that if (y) $\overline{T}(n, y)$, then $x \in k_n \longrightarrow p \prec x \lor p = x$. Thus (y) $\overline{T}(n, y)$ implies that p is the first element of k_n . On the other hand, if (Ey) T(n, y), then some a_t (where T(n, t)) belong to k_n . In this case, the first element of k_n is $\prec p$. Thus, for each n, (y) T(n, y) or not according as p is the first element of k_n is not a g.r. function of n. This contradicts the supposition that there is an effective method for finding them. Hence there is no number which is a limit in the ordering \prec . This completes the proof.

REFERENCES

- [1] W. Markwald, Zur Theorie der konstruktiven Wohlordnungen, Math. Annalen, vol. 127 (1954) pp. 135-149.
- [2] S. C. Liu, Proof of a conjecture of Routledge, Proc. of Amer. Math. Soc., vol. 11 (1960) pp. 967-969.
- [3] S. C. Kleene, On notation for ordinal numbers, Journ. of Symb. Log., vol. 3 (1938), pp. 150-155.
- [4] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals (second paper), *Amer. J. Math.*, vol. 77 (1955), pp. 405-428.
- [5] S. C. Kleene, Introduction to metamathematics, New York and Toronto, Van Nostrand, 1952.

Institute of Mathematics, Academia Sinica Taipel, Taiwan, China