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FOUR TYPES OF GENERAL RECURSIVE WELL-ORDERINGS

SHIH-CHAO LIU

In this paper the term 'g.r. (general recursive) well-ordering' refers to

g.r. well-orderings of the set of all the natural numbers. Markwald in [ l ,

Satz 5] gave an example showing that some of his recursively enumerable

well-orderings can exhibit non-constructive character in an important as-

pect. In this paper we shall give more examples of similar kind; they are

all g.r. well-orderings and are more or less non-constructive.

The examples suggest a classification of g.r. well-orderings into four

types, which is based on the following three conditions:

α) There are two g.r. functions H (ή) and G(n) such that H (n) = 0, 2 or

2 according as n is the first element, a successor or a limit and G(n)

= 0 or 1 according as n is the last element or not.

β) There is an effective method for finding the successor of any element

which is not the last one.

y) There is an effective method for finding the limit of any g.r. increas-

ing bounded sequence \a>\.

Here the term 'effective' is used in the sense that, given a set of en-

tities, each of which is associated with a unique number in some specified

manner, then a method for finding the associated number for each such en-

tity is effective if, for any effectively given sequence of such entities { £ } ,

the number associated with each E- can be found by that method and me

number found is a g.r. function of /.

The four types of g.r. well-orderings are characterized by the condi-

tions as shown in the following.

Types of g.r. well-ordering I II III IV

Conditions satisfied a ot, β α , β, γ

Conditions not satisfied a , β, γ β, γ γ

In view of the nature of the conditions ce, β, γ, g.r. well-orderings of

each of the types II, III, IV can be considered as 'more constructive' than
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those of the preceding type. Examples of g.r. well-ordering for each of the
four types are given in this note. Theorem 1 shows that g.r. well-orderings
of type IV give only order types ^ ω + ω.

The author has used the term f constructively given g.r. well-ordering'
elsewhere [2] informally. Now we find two plausible definitions for this
term. We may define it as to refer to g.r. well-orderings of type IV or let it
to refer to those that satisfy the following condition.

δ) There is an effective method for finding the first element of any non-
empty g.r. set.

The latter definition seems more natural. However, constructively given
g.r. well-orderings under this definition give still smaller ordinal. In fact
they give only the order type ω as is asserted by Theorem 3. Thus, strictly
speaking, there is no constructive theory of ordinal numbers unless it is
limited to a very narrow field. From Theorem 3 and Example of Type IV it
can be easily seen that for any g.r. well-ordering «ξ, δ implies a & β & γ
but not vice versa.

In connection with the notations for constructive ordinals [3] we need
consider two more conditions as follows:

β%) There is an effective method for finding the predecessor of any ele-
ment which is a successor.

y1) There is an effective method for finding, for any element which is a
limit, a g.r. increasing bounded sequence which has the element as
limit.

By using a suggestion made by Markwald in [ l , Satz 9] it can be shown
that unlike y, y1 is satisfied by every g.r. well-ordering. Further we have
(i) α and β imply β* and (ii) α and β% imply β. Thus with respect to any
one of the g.r. well-orderings of type III or IV the natural numbers form a
system S3 of notations for a segment of the constructive ordinals. (See [3] )

The g.r. well-orderings of type III, though not wholly free from non-
constructive characters, give much more order types than those of Type IV.
In fact, their order types include all the constructive ordinals. (See [4,
Theorem A, p. 410].) They also include all the order types of the g.r. well-
orderings in general. (See [ l , Satz 9]-)

Theorem 1. The order types of the g.r. well-orderings of type IV do not
exceed ω + α>.

Proof. Suppose that a g.r. well-ordering ^ is of type IV and that its order
type is > ω + ω. We shall show that these two suppositions are incompati-
ble. By the condition oe, we can effectively find the first element in the
ordering «̂ . Let S(x) mean the successor of x. Let aQ be the first element
and dN+ι = S(<zχ.); bQ be the limit of {a^\ and b± = S(&z) and cQ be the limit
of \bj\. Since ^ is a linear ordering of all the natural numbers and its order
type is > ω + ω, then by β and y, the values #., &. and cQ can all be effec-
tively found. In particular, [a^] and {b^ are both g.r. increasing bounded
sequences with bQ and cQ as limits respectively.
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Let T (n, y) be an abbreviation for the predicate Tχ (n7 n, y) of Kleene
[5, p. 283] so that (Ey) T (n7 y) is not a g.r. predicate. Let, for each n
fixed, \kn λ be a sequence defined by kn . = a. if (z)z £ T (n, i) and &w . «
6. if (Ez)z <. T(w, z). Evidently {&n .} is g.r., increasing and bounded and
it has as limit bQ or CQ according as (y) T (n, y) or (Ey) T(w, y). Since
(Ey) T(w, y) is not g.r., the limit L (n) of {kn \ is not a g.r. function of w.
This contradicts γ. Hence the theorem is proved.

Example of Type III. Every g.r. well-ordering which satisfies ot and β
and has an order type > ω + ω is one of Type III. It does not satisfy γ be-
cause of Theorem 1.

Example of Type IV. A g.r. well-ordering ^ of this type is defined by
0 < 2 - < 4 < , . . . , < l < 3 < 5 < , . . . . That < satisfies γ can be seen
from the fact that every g.r. increasing bounded sequence in the ordering
•̂  has 1 as limit.

Example of Type II. Using Markwald's result [ l , Satz 5] we can easily
find a g.r. well-ordering -^, of order type ω, which does not satisfy j8. Let
^ be a g.r. well-ordering of type III which does not satisfy y. Then a g.r.
well-ordering < ot fype II is defined by

x < y 4—• (x is even & y is odd) v

(x is even & y is even & x/2 % y/2) v

(x is odd & y is odd & (x-D/2 < (y-2)/2).

Theorem 2. There is a g.r. well-ordering -^ which does not satisfy α .

Proof* Let T(rc, y) have the same meaning as in the proof of Theorem 1.
The ordering -ζ is defined by

x < y^,«Ez)z±σiM T(σt(x), *) & U ) ^ ( y ) T(σt(y), z)) v

^Ez^4σtlx) T ( σ i ( x ) ' z ) & (Ez)zύσ2(y) T ( σi W' z ) & κ < y) v

( ( z )

Z < σ 2 ( x ) T (tTi M> Z) & ( z )

Z ^ ( y ) T ( σ i W' Z ) &

(σt (x) < σt (y) v {σι (x) = σι (y) & σ2 (x) < σ2 (y)))).
1 2

Example of Type I. Let < stand for the ordering of Theorem 2 and «(
for the ordering of the example of Type II. Then a < is defined by

x^ y » (x is even & y is odd) v

(x is even & y is even & x/2 ^ y/2) v

(x is odd & y is odd & (x-l)/2 < (y-l)/2).

Theorem 3. Given any g.r. well-ordering < , if there is an effective
method for finding the first element of any non-empty g.r. set, then the order
type of < does not exceed ω.

Proof. It suffices to show that no number is a limit in the ordering-< , for
the numbers are then either the first element or the successors and ^ must
have order type ω.
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Suppose there is a number p which is a limit. Since < satisfies y1, we
can find a g.r. increasing sequence \a^ with p as limit. Let, for each n, a
g.r. set kn be defined by

x € kn-++~(p ^ x v p = x) v (Ey) y £ μ ί T (72, y)

where Ί (n, y) is the same predicate as in thet proof of Theorem 1 and μt is
the least number t such that (p ^ x v f = % v x -< fl^ f). We can see that
if (y) T(w, y), then x € kn * » p < x v p = x. Thus (y) T(n, y) implies that
£ is the first element of kn. On the other hand, if (Ey) T (n, y), then some
at (where T (w, /)) belong to kn. In this case, the first element of kn is -<
p. Thus, for each n, (y) T («, y) or not according as p is the first element
of k or not. Since (y) T (n7 y) is not g.r. then the first element of kn is not
a g.r. function of n. This contradicts the supposition that there is an effec-
tive method for finding them. Hence there is no number which is a limit in
the ordering -<. This completes the proof.
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