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THE DEDUCTION THEOREM IN S4, S4.2, AND S5

J. JAY ZEMAN

In a certain sense, there is no trick to merely stating the deduction
theorem for a given system (on the assumption, of course, that it holds for
that system). The general statement of the theorem might be, “If there is
a proof from the hypotheses A, . . . , A, for the formula B, then therve is a
proof from the hypotheses Ai, . .., A-1) for the formula A, O B.”” The
problem in formulating the deduction theorem lies not in simply stating it
as above, but in defining just what we mean by ‘‘proof from hypotheses’’ for
the system in question. Once we have such a definition, the statement and
proof of the theorem will ordinarily present no real problem.

The three Lewis-modal systems with which we are concerned will be
considered to be formulated on a CPC base, following, in general, Lemmon
[2]. They will contain, first of all, any basis sufficient for the complete
CPC, including the rules of substitution and detachment. Each of these
systems will also contain the rule RL: ‘“If @ is a theovem, so too is La.”’
The additional axioms are, for S4:

1. CLCpqLCLpLq
2. CLpp.

For S4.2, axioms 1. and 2. and also (see [3], p. 313):
3. CMLpLMp.

For S5, axioms 1. and 2. and aiso:
4. CNLpLNLp.

Simce these systems awe formudated on a RC base, we might suspect
that a good part of the definition of ‘‘proof from hypetheses’ for these
systems will be exactly as for the CPE. This is the case; here we shaill
make yse of Chureh’s definition of ‘“proof from hypotheses’’ for the €PC in
{t], p. 87, The clauses of the definition as e states it are easily extended
te cur modal systemms; we may thus present what will amount to most of our
detinitions:

A finite sequence of wffs By, Bz, . . . , By, is called a ‘‘proof from the
hypotheses Ay Azy . .., A, if for each i, i <m, either
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. B;is one of the A}y Az, . . ., A,, OF

. B; is a varient of an axiom (this understood as in [1]), or

. B; is inferved by the vule of detachment from B; and By, where
js k <iand B; is of form By, O B, or

4. B; is infevred by the vule of substitution from B;, wheve j < i,

and the vaviable substituted. for does not occur in the A, As,
« ey Ap.

W~

Note that there will be no difficulty in extending clause 2. above to
include the axioms of the modal systems with which we are concerned.

One thing, however, is missing from the above definition, so far as S4,
S4.2, and S5 are concerned. This is a consideration of the role of the rule
RL in a proof from hypotheses. It is obvious that this rule is analogous to
the rule of ‘‘universal generalization’’ in predicate calculi; we might, then,
expect to get a hint of how to account for RL by an examination of the way
that universal generalization is handled in statements of the deduction
theorem for predicate calculi.

In the definition of “‘proof from hypotheses’’ in the predicate calculus,
as in [1}, p. 196, the following move is permitted in the inference of a B;
from a B; by universal generalization: The inferred B; will be of form
(¢)B;, where j < { and the .variable o does not occur free in any of the
hypotheses A1, Az, . .., A,.

Our problem is now to find, for the systems S4, $4.2, and 85, an appro-
priate analog of the statement, ¢‘The variable ¢ does not occur free in any
of the hypotheses A4, Az, ..., 4,.”

Such an analog is available. Prior, in {3], p. 312, has shown that S5 is
derivable, and I have shown that S4 and S4.2 are derivable [4] by subjoining
to the CPC the following rules:

R1: If CaB is a theorem, so too is CLapB.
R2: If CaB is a theorem, so too is CaLP, provided a is completely
modalized.

The definition of ‘‘completely modalized’’ varies among these systems, and
is the factor which distinguishes them. In S4, a wif o is completely
modalized iff either

1. It is a law of the system, every propositional variable of which is in
the scope of the modal operator belonging to a, or
2. It is of the form KLOKLy . . . Lv with Lb as a limiting case.

For S4.2 we have—in addition to the above—that ¢ is completely modalized
if:

3. It is of the form NLNLy.
For S5, any wiff a is completely modalized provided every propositional
variable of @ is in the scope of a modal operator belonging to a.

Now note that the complete quantification theory is formulable by sub-
joining to a complete CPC base the following:

RII1: If CaB is a theorem, so too is CIlx apB.
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RII2; If CaB is a theovem, so too is CallxB, provided x is not free in a.

The similarity of the above rules to R1 and R2 for ‘L’ is obvious. And this
similarity indicates to us what the analog for S4, S4.2, and S5 for the state-
ment ‘“The variable ¢ does not occur free in any of the hypotheses’’ will be.
Let us now move to a statement of the final clause in our definition of
‘‘proof from hypotheses’’ for S4, S4.2, and S5.

A finite sequence of wffs B,, Ba, . .., B, is called a ‘‘proof from the
hypotheses Aji, Az, ..., A,” if for each i, i < m, either one of the four
previously mentioned clauses (as stated for the PC in [1]) holds, or,

5. B; is inferved from Bj by RL, wheve j < i and each of the hypotheses
Ay Azy ...y Ay is completely modalized in the sense of the system
in which we ave working.

With these five clauses, then, defining ‘‘proof from hypotheses’’ in S4,
S4.2, and S5, we shall write

Ay Apy ooy An B

for ‘‘there is a proof from the hypotheses A,, 4,, ..., A, for the wif B.”’
The statement of the deduction theorem for these systems is now:

If it is the case that
Ay, Az ..., Ay + B,
it is also the case that
' Ay Azy .oy Ay H A D B,

The proof of this theorem for the first four clauses of our definition of
proof from hypotheses will be just as in [1], pp. 88-89. The only extension
of the proof needed is to cover our clause 5; this is easily accomplished.

Let each of the 4,, A,, ..., A, be completely modalized. And let B be
B;, such that if 2 <, then

Al, Az, oo ,A(n-l) = An > Bk, (1)
whenever
A1,A2,...,A,, = By. (2)

Now let B; be inferred from B;, j <i, by RL. This means that, by our
definition of proof from hypotheses and the fact that B is B;, whenever (2)
holds, then

Ay Az ...,A, +— B. 3)
With (2) and (3) holding, note that since j <3, then also j < %, and by (1),
Ay Azy. ..y, A(n_l) —A, D Bj. 4)

But then, since each of the hypotheses is completely modalized, we
have also, by RL and our definition of proof from hypotheses:

Al, AZ, o ooy A(n-l) = L(An ) B])a (5)

It is easily provable as a theorem of S4, S4.2, or S5 that, where a is com-
pletely modalized,
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CLCapCaLp. (6)
(This schema is, of course, analogous to the predicate calculus theorem
CllxCoYCollxy, where x is not free in ¢.)
But this means that we may move to
Ay Az ooy A,y + A, D LB; (7

from (5), since A,, along with all the other hypotheses, is completely
modalized. But B; was inferred from B; by RL, and so is of the form
‘LB;’, This means that whenever (2) and (3) hold, then also

Ay A2y ... Ay HA, OB (8)

is true, B being B;, From here it is a simple matter of mathematical in-
duction to complete the proof of the deduction theorem for S4, S4.2, and S5,
given our definition of ‘‘proof from hypotheses.”

As an example of a proof in these systems employing the deduction
theorem, we may quickly show that

CLCpqCLCqpCopdq 9)

is a theorem schema of S4, S4.2, and S5. (Note that we do not, strictly
speaking, employ ‘6’ as a ‘‘functor variable,”’ as is commonly done; rather,
we employ this sign as a symbol of the metalanguage, letting ‘6p’ be a
schema representing any wf function of p, including, in this case, modal
functions.)

By the rule of substitutivity of strict equivalence and our definition of
proof from hypotheses, we may write

LCpq, LCqp + Copdq. (10)

Note that the hypotheses for this case are completely modalized in any of
the three systems in question. But by the deduction theorem, the schema
(9) stands proven.

Note that we could not in the general case for these systems have
stated

Cpg, Cqp + Copbq.

This in spite of the fact that—as a rule of inference—the substitutivity of
material equivalence holds in these systems. For there is no guarantee
that the rule RL would not have to be applied in order to get the desired
results, and by our definition of proof from hypotheses this application
would not be allowed in the last case, since neither of the ‘‘hypotheses’’ is
completely modalized in any of the three systems in question.
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