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THE GODEL-HERBRAND THEOREMS

RICHARD L. CALL

1. Introduction. The past several years have seen a renewal of interest in
the results contained in Herbrand's thesis [1]. This is due mainly to the
work of Dreben and his colleagues. The relationship between Herbrand's
results and Godel's Completeness Theorem for elementary quantification
theory has been discussed by Dreben [2]. In particular, he shows that
Godel's theorem may be derived by combining the "finitistic" results of
Herbrand for provability with the "set-theoretic" half of GOdel's proof,
i.e., that part of Godel's proof which deals with disprovability. In this way
Dreben derives GδdeΓs theorem rather easily from Herbrand's.

To the best of my knowledge no one has observed that finitistic results,
very similar to Herbrand's, are obtainable from the proof of Godel's
theorem, as e.g., proved in [3]. In this paper, we show that this is indeed
the case. We do this by using the proof of the completeness theorem of [3]
as a basis for reformalizing quantification theory. We accomplish the
reformalization in three steps. Our first system, El9 formalizes the
logically valid closed formulas in Skolem normal form; system E2: the
logically valid closed prenex normal form formulas; and finally E3: the
logically valid formulas of elementary quantification theory. Each system
yields a normal form for proofs.

2. The System E1# The formulas of Ex are those of the usual first-order
predicate calculus built up from atomic formulas (predicates with argument
places occupied by individual variables) in customary fashion by means of
the usual elementary connectives and existential and universal quantifiers,
E and A respectively. Capital letters R, S, T, . . . are used to represent
predicates. The individual variables are symbolized by χ0, yOί χl9 yl9 etc.
Formulas are indicated by F9 G, . . . , M, N, with or without subscripts.

It is assumed that the set of ^-tuples formed from the individual
variables xθ9 xl9 . . . are ordered in the standard way, according to
increasing index sums and lexicographically for tuples with the same index
sum. The i-th &-tuple 0 ^ i9 shall be indicated by (xiv . . . , xik).

Definition 1. If F and F' are exactly alike except that each occurrence
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of a variable in F is replaced by an occurrence of another (possibly the
same) variable in F ' , then F and F* are called wild variants of one another.
If each variable occurring in F is replaced in each of its occurrences in F
by the same variable in F ' , then F and F1 are called variants of one
another. If F(xu . . . , xk; yu . . . , 3>/), the indicated variables being the
only variables occurring in F, has the variant Fr (ΛΓ ,̂ . . . , xik; #(f -!)/+ 1,
(̂ί-i)/+2> >#*'/)> the replacement having been made in the manner indi-

cated, then F' is called the i-th k-l-variant of F.

Definition 2. Let M = Mov Mxv . . . v Mw be a quantifier-free tautology
whose disjuncts are wild variants of one-another and such that the
variables occurring in Mo are x0, . . .#/ . If there is some k, k^n such
that for all i, 1 ^ i ^k we have:

(i) Some occurrences of x0 in Mo are replaced by AΓX in Mf , the other
occurrences of # 0 in Mo remaining unaltered in Mf ,
(ii) each occurrence of # 0 in Mo is replaced by an occurrence of xλ in one
and only one M{,

then M is called a pre-G-disjunction. The number & is called the E-length

of M and I is called the A-length of M.

Definition 3. Let M be a pre-G-disjunction, we define the matrix derived
from M to be the formula F constructed as follows:

(i) Fo is Mo, with xif 1 ^i ^ I, replaced by y{ in all of its occurrences;
(ii) for 1 ^ i ^ k, Fi is Fί.ι with those occurrences of x0 in Fi-ι which are
replaced by xλ in Mf , replaced by #&-(,•-!>;

and finally, F is defined to be F^.

Definition 4. Let M be a pre-G-disjunction and let F(xu ..., Xk\ yι, - - , 3>/)
be the matrix derived from M. If for each i, 0 ^i ^n, Mi is the z-th
^-Z-variant of F, then M is called a G-disjunction.

Remark: We note that it is obvious from the definitions above that there
are effective procedures for determining whether or not a quantifier-free
tautology is a pre-G-disjunction, for obtaining the matrix derived from the
disjunction and for deciding whether or not the disjunction is a G-disjunc-
tion.

We now describe the systems E1? E2, and E3 and prove (or indicate the
proofs of) some theorems about them. Note that the axioms and rules of
inference of our systems are recursive in each case.

Axioms ofEλ:
The axioms of Ex are the quantifier free tautologies.

Rule of inference of Ex:
(R1) If M is a G-disjunction, and F(xλ, . . . , xk; yί9 . . . , y/) is the matrix
derived from M, them-E% . . . E^A^ . . . A.yiF{x1 . . . xk; yί9 . . . , yt).

Completeness Theorem 1. Every logically valid closed E-A formula is
derivable from an axiom by one use of the rule of inference (RΊ).
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Proof: In [3] it is shown that every logically valid closed E-A formula has
a matrix which expands, by a certain substitution procedure on its
variables, into a G-dis junction. Our rule (R1) simply allows the immediate
inference from the G-disjunction of a formula to the formula.

3. The System E2. The system E2 yields the prenex normal forms of the
logically valid formulas of the predicate calculus. We obtain E2 by adding
the following rule of inference to Ex:

(R2) If \-G where G has been derived from an axiom by means of (R1), then
\-H where H is any prenex formula of which G is its Skolem normal form.

Completeness Theorem 2. Every logically valid closed prenex formula of
the first order predicate calculus is provable in E2.

Proof: It is well known that there is an effective process for reducing a
formula to its Skolem normal form and that a formula is logically valid if
and only if its Skolem normal form is. The result thus follows from
completeness theorem 1.

4. The system E3. The system E3 yields the logically valid closed
formulas of the predicate calculus. To obtain E3 we add the following group
of rules to E2.

(R3) These rules are just the usual rules for moving quantifiers in and out
of formulas.

Completeness Theorem 3. Every logically valid closed formula of the first
order predicate calculus is derivable in E3.

Proof: Every logically valid formula is equivalent to its prenex normal
form which is derivable in E3 by completeness theorem 2. The rules of
(R3) yield A from the prenex form of A.

5. Concluding Remarks.
(1) The preceding systems possess certain features which differ from

the usual formulations of the first order predicate calculus. It has long
been a tradition, in formulating axiom systems, to utilize axioms and rules
which can be called "simple" or "elementary" in some sense. The
preceding systems do not possess these characteristics. These systems
are not put forward, however, as having any practical value, but solely for
the purpose of demonstrating that G'όdel's proof of completeness is even
more akin to Herbrand's work than had previously been thought. That the
relationship between their theorems is not immediately obvious stems
from (a) their differing conceptions of what constituted a meaningful
metamathematical question (as pointed out by Dreben [2]), (b) the differ-
ences in the technique employed by each to prove his theorem, and (c) the
difficulty, which persisted until only recently, that logicians encountered in
attempting to follow Herbrand's arguments.

(2) Certain other features of the systems Ex - E3 should be pointed
out, for we can draw even stronger conclusions than have been indicated
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above. First of all we have the result that each system possesses a normal
form for proofs. In fact, any proof in the systems E2 and E2 must be given
in this normal form. This feature, combined with the reversibility of the
rules of inference yields results similar to the Herbrand-Gentzen results
on the eliminability of "modus-ponens" and "cut" rules, thus yielding a
proof-search procedure.

(3) We could, of course, have considered the system whose axioms are
the quantifier-free tautologies and which possesses the one rule of
inference:

(R4) If C is a closed formula whose Skolem normal form "expands" to a
G-disjunction A, then hC.

Here "expands" refers to the method of expansion employed in the proof
of GδdeFs theorem in [3]. In this system every logically valid closed
formula of the predicate calculus is derivable from an axiom by means of a
proof which employs the single rule of inference (R4) exactly once.

(4) There is some slight similarity here between this treatment of the
predicate calculus and the treatments of the propositional and many-valued
propositional calculi of [4] and [5].

(5) The systems of this paper have been constructed by condensing
what would ordinarily be long sequences of steps into one step. This kind
of reduction often simplifies metamathematical considerations. Thus the
simplicity of the above systems enables us to see them as similar to
Herbrand's and thus the possibility of the further reformalization of
quantification theory on the basis of G'όdeFs proof of completeness to yield
Herbrand's systems.
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