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THE CONSISTENCY OF THE AXIOMS OF ABSTRACTION AND
EXTENSIONALITY IN A THREE-VALUED LOGIC

ROSS T. BRADY

The Abstraction Axiom I want to consider is the following one, which
is based on the Lukasiewicz three-valued logic.

(*) (Sy)(Ax)frεy+*φ(x, zu . . . , zn))

where φ is either a propositional constant or constructed from atomic wffs
uεv by using ~, &, A. The connectives and quantifiers of the logic can be
represented as follows:

phq ~p pvq p — « q P<-*q P D q
p/q I ϊ 0 l i θ l l θ l | θ l | θ

l l I o o I I I I £ O I £ O I £ O
1 v ±- Ci ι i i l 1 1 l l 1 i 1 1 1

o o o o l l i o i i i o i o i i i

(Aή fx has the minimum value of the values of fx. (Sx) fx has the maximum
value of the values of fx.

Th. Skolem has produced models, in [1] and in [2] for an Abstraction
Axiom the same as (*) except that 0 may not be constructed using
quantifiers A and S. He shows that the Axiom of Extensionality is also
valid in his model in [2]. The procedure we use for constructing the model
roughly follows the lines of P. C. Gilmore's paper (see [3]), where he
constructed a model for his partial set theory PST f.

1. To construct the model, we need to extend the wffs used above to
express (*) by adding some terms, some of which will be used as the
domain of the model. We give the formation rules for terms and wffs as
follows:

1. If x and y are set variables, then xεy is an atomic wff.
2. Any combination of wffs using ~, —>, A are wffs.
3. A propositional constant (i.e., 1, \ or 0) is an atomic wff.
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4. A propositional constant or a wff constructed from atomic wffs using
only ~, &, A is a standard wff.

5. If P is a standard wff and A: is a set variable, then {x : P} is a term.
6. If {# : P} and {# : Q) are terms and y is a set variable, then {x : P} εy,

y ε{x : P}, {# : P } ε{x : Q} are atomic wffs.

We will use a, b, c,... for constant terms. We construct a model for (*)
with domain the set D of all constant terms {x : P } , i.e., P either has no
free variables at all or has x as its only free variable. Non-constant terms
can be d e f i n e d from these as follows: associate with any term
{x : P (x, z19..., Zk)}, for which zu . . . , Zk are the only free variables of the
term, the function which for constant terms ax,..., ak of D takes as value
the constant term {x : P (x, al9..., ak)} of D.

Let any specification of values for all the constant atomic wffs of the
form xε y, where x and y range over the domain Z), be called a structure on
D. Let F[M](P) denote the value of the constant wff P given by the
structure M on D. Also let F[M](1) = 1, F[M](0) = 0 and F[M](|) = i
Define Mι ^ M2 for two structures Mx and M2 on D if, for every constant
atomic wff P, if V[Mι)(P) = 1 then V[M2](P) = 1 and if V[Mι](P) = 0 then
V[M2](P) = 0. Define the structure Mo, such that, for all constant atomic
wffs P, V[M0](P) = | . Then Mo ^ M, for any structure M on D. Here, ***'
defines a partial ordering on the set of structures, since (i) M ^ M, (ii) if
M1 ^ M2 and M2 ^ M3 then Mx ^ M3 and (iii) if M1 ^ M2 and M2 ^ Mx then
Mi = M2 (i.e., Mx and M2 are the same structure). From now on, when
mentioning values of wffs in a structure it is automatically assumed that
the wffs are constant ones, i.e., they have no free variables.

Lemma 1 Let M and M' be two structures on D such that M ^ M'. Then,
for any standard wff P, if V[M](P) = 1 then V[M'](P) = 1 and if V[M](P) = 0
then V\M'](P) = 0.

Proof. By induction on the wff evaluation procedure. This means that we
start at the values of the substitution instances of all the atomic wffs and
build up the value of P from these values according to the connectives and
quantifiers in the Lukasiewicz logic. If P is an atomic wff or a proposi-
tional constant, the lemma holds.

(i) Let V[M](~Q) = 1, then V[M](Q) = 0. By the induction hypothesis,
V[M'](Q) = 0 and hence V[M'](~Q) = 1. Similarly, if V[M](~Q) = 0, then
V[M'](~Q) = 0.

(ii) Let F[M](Q&Λ) = 1, then V[M](Q) = V[M](R) = 1. By induction
hypothesis, V[M'](Q) =V[M'](R) = 1 and hence V[M'](Q&R) = 1. Similarly,
UV[M]{Q8ιR) = 0, then V[M'](Q& R) = 0.

(iii) Let V[M]({Ax)Q) = 1, then V[M](Q(ρc)) = 1 for all x. By induction
hypothesis, V[M'](Q(x)) = 1 for all x and hence V[M']((Ax)Q) = 1. Similarly,
if V[M]((Ax)Q) = 0, then V[M']((Ax)Q) = 0.

The model is the limit of a sequence of structures Mo ^ Mx ^
M2 ^ . . . ^ Mμ ^ . . . , on D. Mo is defined above, i.e., V[M0](P) = j for all
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atomic wffs P. Assuming Mμ defined for some ordinal μ, Mμ+ι is defined
as follows. For all standard wffs P,

V[Mμ+ι](aε{x : P(x)}) = V[Mμ](P(ά)).

For a limit ordinal μ, for all atomic wffs P, if V[MU]{P) = 1 for some
v < μ, then V[Mμ](P) = 1; if V[MV](P) = 0 for some v < μ then V[Mμ](P) = 0;
and if V[MU](P) = i f o r all v < μthen V[Mμ](P) = i

In the definition of Mμ for a limit ordinal μ, it was assumed that if
V[MU](P) = 1 (or 0) for some v < μ, then V[Mr](P) = 1 (or 0) for all τ such
that v ^ T < μ. The construction of Mμ needs to be coupled with lemma 2
(below) so that when Mμ is formed the assumption above will be satisfied.
That is, lemma 2 is proved for each structure Mμ as it is constructed.

I will give some examples in Mlf M2 and M3. Since standard wffs
include the propositional c o n s t a n t s 0 and 1, by definition of M 1}

V[Mι]{aε{x : 1}) = 1 and V[Mι](aε{x : 0}) = 0. Let {x : 1} be called U and
{x : 0} be called V. Hence VfM^V ε U) = 1 and V[MX](U ε U) = 1. Using these
two we can construct wffs taking values 1 or 0 in M2. For example,

V[M2](U ε{x : V εx}) = 1 = V[M2](V ε{x : ~xε x})

V[M2](Uε{x: xεx}) = 1 = V[M2](Vε{x : ~Uεx})

Let {c} be {x : (Ay)(~yεxvyε c&.~yε cv yεx}. Then

V[M2](Vε{V}) = 1 = F[M2](Uε{U})

V[M2](Uε{V}) = 0 = F[M2](Vε{U})

Some examples in M3 are the following:

V[Mz]({V}ε{x;Vεx})= 1 = V[MZ]({U] ε{x : Uεx})
V[M3]({x: Vε*}ε{x: UεA:}) = 1 = V[M3]({V}ε{x : ~xεx))

Lemma 2 Mv < Mμ, /or αZZ v ^ μ.

Proof. By transfinite induction on μ. The induction hypothesis: Mu ^ MΓ

for all v ^ T, for all T < μ.
(i) μ = 0: Mo ^ Mo.
(ii) μ is a successor ordinal: Let V[Mu]{aε{x : P}) = 1. There is a

η < v such that V[Mη](P(a)) = 1 by the method of construction of the struc-
tures. Since η ^ μ - 1, Mη ^ Mμm.x by the induction hypothesis. Hence
F[Mμ-!](P(α)) = 1. By the construction of Λίμ, V[Mμ](aε{x : P}) = 1. Simi-
larly, if V[Mu](aε{x : P}) = 0, then V[Mμ](aε{x : P}) = 0.

(iii) μ is a limit ordinal: Let v < μ. Let V[Mu](aε{x : P}) = 1 (=0).
Then V[Mμ](aε{x : P}) = 1 (=0) by definition of Mμ. Let v = μ. Then

Lemma 3 There is an ordinal λ of the second number class such that
Mλ = M λ + 1 .

Proof. The increasing chain of structures Mo ^ Mx ^... ^ Mμ ^... can be
regarded as two increasing chains of subsets of the denumerable set of all
atomic wffs of the form aεb. One chain is of those atomic wffs taking the
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value 1 and the other is of those taking the value 0. If Mu= Mu+1, then
Mu = Λ/μ for all ordinals μ, v ^ μ, since, by the method of construction,
there is no way of changing the values of any atomic wffs. There is a
denumerable set of ordinals μ such that Mμ ΦMμ+1. But the set of all
ordinals of the second number class is non-denumerable and hence for
some λ in this class, Mλ = Mλ+1.

Theorem 1 vε{x : P)*^>P(v) is valid in Λfλ, for all standard wffs P.

Proof. Let V[Mλ]{aε{x : P}) = 1. Let v be the least ordinal such that
V[Mu](aε{x :P}) = 1. ι̂  is a successor ordinal. Hence F[M^-i](P(α)) = 1.
Since v - 1 ^ λ, Mv.x ^ Mλ, by lemma 2. Hence V[Mλ](P(a)) = 1 since P is
standard, by lemma 1. Similarly, if V[Mλ](aε{x : P}) = 0, then we have
that V[Mλ](P(a)) = 0. Let V[Mλ](P(a)) = 1, then V[Mλ+1](a ε {x :P}) = 1.
Since Mλ = Mλ+1, V[Mλ](aε{x : P}) = 1. Similarly, if V[Mλ](P(a)) = 0, then
V[Mλ](aε{x :P}) = 0.

Theorem 2 The Abstraction Axiom (*) is valid in M\.

Proof. By Theorem 1, for any standard wff P, vε{x : P}<-*P(v) is valid in
Mλ. Hence, (Sy)(Ax)(xεy<r*P(x, zl9..., zn)) is valid in Mλ, for all wffs P
which are propositional constants or constructed from atomic wffs of the
form xεy by using only ~, &, A.

2. The next task is to prove that the Axiom of Extensionality is valid in M\.
Let P be a standard wff such that V[Mλ](P) = 1 or 0. Let v(P) be the

least ordinal such that V[MU(P)](P) = 1 or 0. Form the set of all substitution
instances of all the atomic wffs of P which take the value 1 or 0 in M^ P ) .
Call this the dependent set of P, D(P).

Lemma 4 Let P(a) be a standard wff such that V[M\](P(a)) = 1 or 0. If t for
each Q(a)ε D(P(a)\ V[Mκ](Q(b)) = V[Mλ](Q(a))> then F[Mλ](P(6)) = V[Mχ\(P(a)).

Proof. By induction on the wff evaluation procedure. Let P(a) be an atomic
wff such that V[Mχ]{P{a)) = 1 or 0. Then D(P(α))= {P(a)}. Hence V[Mλ](P(b)) =
V[Mλ](P{a)).

(i) Let P(a) be ~fl(α). Since D(~R(a)) = D(fl(α)), for each Q(a)ε D(R(a)),
V[Mx](Q(b)) = V[Mλ](Q(a)). By the induction hypothesis, V[Mλ](R(b)) =
V[Mλ}(R(a)). Hence V[Mλ](P(b)) = F[Mλ](P(α)).

(ii) Let P(a) be β(α) & S(a) and F[Mλ](β(α) & S(a)) = 1. Then F[Mλ](β(α)) =
1 and V[Mλ](S(a)) = 1. Since v(R(a)) ^ v(R(a) & S(a)), D(β(α)) c D(fl(α)& S(α)).
Hence, for each Q{a)εD(R(a)), V[Mλ](Q(b)) = F[Mλ](Q(α)). By the induction
hypothesis, F[Mλ](fl(δ)) = F[Mλ](β(α)). Similarly, V[Mλ)(S(b)) = F[Mλ](S(α)).
Hence V[Mλ](P(b)) = F[Mλ](P(α)).

(iii) Let P(a) be β(α) & S(α) and V[Mλ]{R(a) & S(α)) = 0. Then, as above,
V[Mλ](P(b)) = V[Mλ]{P(a)).

(iv) Let P(α) be (Az) R(a, z) and V[Mλ]((Az) R(a, z)) = 1. Then
V[Mλ](R(a, z)) = 1, for all z. Since y(β(α,*)) ^ v((Az) R(a, z)) for all z, then
D(β(fl,2»CD((A2)β(α,2)) for all z. Hence, for each Q(a) ε D(R(a, z)),
V[Mλ](Q(b)) = V[Mλ](Q(a)). By the induction hypothesis, F[Mλ](β(δ,2)) =
F[Mλ](Λ(α, 2)). Since this holds for all z, V[Mλ](P(b)) = F[Mλ](P(α)).
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(v) Let P(a) be (Az)R(a9z) and V[Mλ]((Az) R(a,z)) = 0. Then, as above,
V[Mλ](P(b)) = V[Mκ](P(a)).

Let P be an atomic wff (not 1 or 0) such that V[Mλ](P) = 1 or 0. Define
the corresponding standard wff of P, C(P), as follows: Let P have the form
aε{x : Q(x)}. Then C(P) is Q(a).

Let P be a standard wff such that V[Mk](P) = 1 or 0. Let P have
dependent set, D(P). We define a general dependent set of P, GD(P), as
follows:

(i) The dependent set D(P) of P is a GD(P).
(ii) If V[Λ/A](ft) = 1 or 0 and R is an atomic wff (not 1 or 0), then

D(C(β)) is a GD(ft).

(iii) Let S c GD(P), then (GD(P) Π S) U U GD(Q) is a GD(P).

This assumes Γ[Λ/λ](Q) = 1 or 0, for all QεS. Note that lemma 5
(below) should be coupled with the definition of a general dependent set so
that the assumption can be made before the construction of the general
dependent sets GD(Q).

Lemma 5 Let P be a standard wff such that V[Mλ](P) = 1 or 0. If Q ε GD(P),
then, V[Mk](Q) = 1 or 0.

Proof. By induction on the stages of construction of GD(P) for all standard
wffs such that V[Mλ](P) = 1 or 0.

(i) By definition of D(P), if Qε D(P) then V[Mλ](Q) = 1 or 0.
(ii) If Qε D(C(H)), where R is an atomic wff (not 1 or 0) and V[Mλ](R) =

1 or 0, then V[MA](Q) = 1 or 0.

(iii) Let S c GD(P) and Γε(GD(P) ΠS) u U GD(Q). If Γε GD(Q),for
QεS

some QεS, then by the induction hypothesis for GD(Q), V[Mλ](Γ) = 1 or 0.
If Γε GD(P) n S, then, by the induction hypothesis for GD(P), V[Mλ](T) = 1
or 0.

Lemma 6 Let P be an atomic wff such that V[Mk]{P) = 1 or 0. // GD(P)is
not D(P) then, for each Qε GD(P), VlM^p^iQ) = 1 or 0.

Proof. By transfinite induction on the ordinals v(P). The induction
hypothesis is that the lemma holds for all atomic wffs Q such that
v(Q) < v(P).

(i) v(P) = 0: P is 1 or 0. The only GD(P) is of the form D(P). Hence
the lemma holds vacuously.

(ii) v{P) is a successor ordinal: Use induction on the stages of
construction of GD(P).

(ia) D(P) is not used as a general dependent set in this lemma.
(iia) If V[Mλ](R) = 1 or 0, fi is an atomic wff (not 1 or 0) and if

QεD(C(β)), then FfM^^.^jίQ) = 1 or 0. In the process of construction of
general dependent sets of P, R is either P itself or is a member of a
GD(P). If R is P itself, then ^[Λf^p.oKQ) = 1 or 0. If R is a member of a
GD(P), then, by the induction hypothesis, FfM^p-^JίΛ) = 1 or 0 or
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V[MU(P)](R) = 1 or 0, the latter being the case when R is a member of
GD(P). Hence v(R) *? v(P) and if Qε D(C(Λ)) then ^ [ M ^ P . D ] ^ ) = 1 or 0.

(iii) Let S c G D ( P ) . By the i n d u c t i o n hypothesis for GD(P),
VlMvίP-i^iQ) = 1 or 0, for all QεS. By the induction hypothesis for the
ordinals, the lemma holds for any GD(Q) except for D(Q). Let Γε(GD(P) Π

S)u L J G D ( Q ) . If Γε GD(Q)(GD(Q)*D(Q)), for some Q εS, then F[M^p- l )](Γj =
QεS

1 or 0. If Γε GD(Q), where GD(Q) is D(Q), for some QεS, then, since D(Q)
is {(?}, Γε GD(P). By the induction hypothesis for GD(P), the lemma holds.
If Γ ε GD(P) Π S, then, again, the lemma holds.

Lemma 7 Ie£ P(α) be a standard wff such that V[Mλ](P(a)) = 1 or 0.
Consider any general dependent set Df of P(a), such that, in the process of
construction, (ii) is not applied to any atomic u ff of form cεa. If, for all
Q(a)εD', V[Mλ](Q(b)) = V[Mλ](Q(a)), then V [MA](P(b)) =V\Mλ](P(a)).

Proof. By induction on the stages of construction of general dependent sets
of all standard wffs P(a) such that V[Mλ](P(a)) = 1 or 0, and such that (ii) is
not applied to any atomic wff of form c εa.

(i) Let Dr = D(P(a)). Then, by lemma 4, the lemma holds.
(ii) Let D' - D(C(P(a))), where P(a) is an atomic wff. We need only

consider P(a) in the form aε{x : Q}. Hence C(P(a)) is Q(a). V[Mκ](Q(a)) = 1
or 0. By the lemma condition, if R(a) ε D(C(P(a))) then V[Mλ](R(b)) =
V[Mλ](R(a)). Hence, by lemma 4, V[Mλ](Q(b)) = V[Mλ](Q(a)). Therefore,
V[Mλ](bε{x : Q}) = V[Mκ](aε{x : (?}). Hence F[Mλ](P(6)) = F[Mλ](P(α)).

(iii) Let S c D1 and for each Q(a) εS, let the lemma hold for D* and the
GD(Q(Λ)) . By the condition of the lemma, for all T(a)ε(Dt Π S) u

U GD(Q(α)), V[Mκ](T(b)) = F[Mλ](Γ(α)). Since GD(Q(a)) c (Z)r Π S) u
Q(a)εS

U GD(Q(α)), for all Q(a)εS, by induction hypothesis, V\Mλ](Q(b)) =
Q(fl)εS _

V[Mλ](Q(α)), for all Q(α)εS. Also, for all T(a) εD'Γ\ S,V[Mλ](T(b)) =
V[Mχ](T{a)). Hence, if U(a) εD\ V[Mλ]{U(b)) = F[Mλ](ί7(α)). By induction
hypothesis for Z)f, V[Mλ](P(b)) = F[Mλ]P(α).

Lemma 8 If V[M\](aεc) = 1 or 0 then aεc has a general dependent set

without any wffs of the form aεb for any b, except a. The general

dependent sets so constructed are such that (ii) is not applied to any atomic

wffs of form aτεa.

Proof. Let the wff a εc be W. The proof is by transfinite induction on v(W).
The induction hypothesis is that the lemma holds for all wffs aεd (call it X)
such that v(X) < v(W).

(i) v(W) = 1: Let V[M,](a εc) = 1 or 0. Let a and c be different. Then
V[M0](C(aεc)) is 1 or 0. Hence D(C(αεc)) = {1} or {0}. This satisfies the
lemma. If a is c, then D(aεc) - {aεc} satisfies the lemma.

(ii) v(W) is a successor ordinal > 1 : Let FfM^^Jία εc) = 1 or 0. If
a is c, then D(αεc) ={aεc} satisfies the lemma. If a and c are different,
VlMviw-D^Zia)) = 1 or 0, where Z(a) is C{W). Hence, D(Z(a)) is a general
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dependent set of W and has a subsets of all atomic wffs of the form aεb,
where b is not a. For all Q, if QεS, then VlM^.^iQ) = 1 or 0. Hence, by
induction hypothesis, all these wffs Qε S have general dependent sets GD(Q)

without wffs of the above form. Form the set (D(Z(a)) OS) I U GD(Q),

which has no atomic wffs of the above form. This is a general dependent
set of W which satisfies the lemma.

Lemma 9 If aεc<^aεd has value 1 in M\, for all a, then c εc<-^>d εd has
the value 1 in M\.

Proof. Call cεc, W. Let V[Mλ](W) = 1 or 0. By lemma 8, W has a general
dependent set D' without atomic wffs of certain forms and constructed in a
certain way. For the sake of lemma 8 the right hand c of cεc is regarded
as different from the left hand c. So (ii) is applied in forming a general
dependent set of cεc, but apart from this one instance all the usual
conditions apply. By lemma 6, all members of D1 have the value 1 or 0 in
MU(w-ι), since, by lemma 8, Df can be constructed so that it is not D(W).
Hence W is not a member of D*. Hence D1 has atomic wffs containing c,
only of the form aε c or not at all. By condition of the lemma, if Q(c) ε D'
then V[Mλ](Q(d)) = V[Mλ](Q(c)). By lemma 7, V[Mλ](dε c) = V[Mλ](cεc).
Since (ii) was applied to cεc in forming the general dependent set D\ the
substitution of d for c occurs only in the left hand c oi cεc. By the
condition of the lemma, V[Mλ](dεd) = V[Mκ]{dεc) and hence V[Mλ](dεd) =
V[Mχ](cε c). Similarly by letting dεd be W and substituting c for d,
V[Mχ\{cε c) = V[Mχ](dεd). Hence the lemma is proved.

Theorem 3 The Axiom of Extensionality is valid in Mλ.

Proof. The Axiom of Extensionality is the following:

(Av)(vεx<r>vεy) 3 (Az)(xε z<r*yε z)

We will prove: if vε c<^>vεd is valid in Mλ, then cε z*->dε z is valid in Mλ.
Let V[Mλ](cεc') = 1 or 0. By lemma 8, cεc1 has a general dependent set
D1 without any wffs of the form cεb, for any b except c. Hence the only
occurrences of c in Df are of the forms aε c (a is not c) and cεc. Because
of the condition of the theorem and because of lemma 9, if Q(c)εD\ then
V[Mλ](Q(d)) = V[Mλ](Q(c)). By lemma 7, F[Mλ](rfεc') = V[Mκ](cεc'). Hence
cε z<r*dε z is valid in Mλ and the theorem is shown.
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