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SUPERINDUCTIVE CLASSES IN CLASS-SET THEORY

ROBERT H. COWEN

1. Introduction® Many definitions of the (von Neumann) ordinals have been
given in set theory, but the one which seems most natural to us is that
which parallels Frege’s definition of the natural numbers, as the intersec-
tion of all inductive classes. This definition of ordinals as the intersection
of all ‘superinductive’ classes has been proposed and its virtues discussed
by Sion and Wilmot [3] and Smullyan [4]. In [4] a more general process of
superinduction is discussed and the resulting minimally superinductive
classes play a key role in particularly elegant proofs of Zorn’s lemma, the
Well -ordering theorem, and the Transfinite recursion theorem. Methods of
establishing the existence of this minimally superinductive class in ver-
sions of Class-Set theory such as Gd&del’s [2], where we cannot assert the
existence of classes defined by formulas containing bound class variables,
have been briefly described in [4]. In Smullyan [5]a proof is given of the
existence of the minimally superinductive class in Godel’s Class-Set theory
which though proving a slightly more general theorem than the one we
present here, requires both the axiom of substitution and the axiom of
choice. In section 2, we present a new proof which avoids using the axiom
of substitution and the axiom of choice. In addition as a by-product of our
proof we obtain yet another definition of ordinal and a new definition of con-
structible set. In section 4, we present a proof that the minimally super-
inductive class under an arbitrary progressing function is well-ordered
under inclusion. This theorem is given in [4]for slowly progressing func-
tions. Again our proofs avoid using the axiom of substitution.

2. Existence of Minimally Supevinductive Classes

Definition. A function g is called progressing if xC g(x) for all x in the
domain of g.

Definition. A function g is slowly progrvessing if g is progressing and g(x)
contains at most one more element than x.

1, The results presented here are contained in the first chapter of the author’s
thesis [1], written under the supervision of Professor Raymond Smullyan at
Yeshiva University.
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Definition. A set B is called a chain if x, ye B implies xCy or yCx.

Definition., Let A, B be classes and g a function. Then the class S is
supervinductive with respect to (A,g, B) if

(i) AcCScB
(ii) x€S and g(x) e B implies g(x)e S
(iii) D a chain of Sand UDe B implies UD¢€S, where UD is the union of
all sets in D.

Definition, S is supevinductive undev g if Sis superinductive with respect
to ({A}, g, V), where A and V are the empty and universal class, respec-
tively.

Definition. M is minimally superinductive with vespect to (4, g, B) if M is
the intersection of all classes which are superinductive with respect to
@,z B).

Remark. Clearly M is superinductive with respect to (4, g, B).

Definition. M is minimally superinductive under g if M is minimally super-
inductive with respect to ({A}, g, V).

Remark. In general it is not true that the minimally superinductive class
with respect to (4, g, B) is the same as the union of all the minimally
superinductive classes with respect to ({a}, g, B), where aeA. However for
finite classes, 4, it is true, for one can easily prove (by ‘superinduction’)
that the minimally superinductive class with respect to (U§=1Ai, g, B) is the
union of the minimally superinductive classes with respect to (4;, g, B),
i = 1,000,k

For the remainder of this section, we shall only be concerned with pro-
gressing functions, so we shall assume that all functions, unless otherwise
noted, are progressing (the proof of the existence of the minimally super-
inductive class in [5], though using the axioms of choice and substitution
holds for arbitrary functions). This should not be thought of as being an
arbitrary restriction; in fact condition (iii) in the definition of superinduc-
tive class seems unnatural unless we assume g is progressing. Assume,
then, that g is a fixed progressing function, A and B fixed classes and that
all superinductive classes mentioned are superinductive with respect to
@A, g B.

The definition of the minimally superinductive class involves quantify-
ing over classes, so its existence is not immediately apparent if we
restrict our comprehension axioms to formulas without bound class vari-
ables. The next definitions serve to define the minimally superinductive
class without bound class variables; we then prove the definitions equiva-
lent.

Definition. Given a set x, we call S(x) (or equivalently, S,) a superinductive
set for x if
(i) ANP(x)CS,SBNP(x), where P(x) is the power set of x
(ii) yeSyand g(y) e BNP(x) implies g(y) e Sy
(iii) D a chain of S, and UDe B implies UDeS,.
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Remark. If S is a superinductive class, then SNBNP(x) is a superinductive
set for x; in particular BNP(x) is a superinductive set for x.

Definition. Given a set x, we define M(x) (or equivalently, M,), the mini-
mally superinductive set for x,as the intersection of all superinductive sets
forx.

Remark. Since the S, are sets (S,C P(x)) this definition involves only bound
set variables. Also it is clear that M, is a superinductive set for x.

Definition, M' is the union of all the minimally superinductive sets for x,
M.

Note. When the definition for M’ is written out as a formula of set theory,
the definition formula contains only set variables.

We now show M' is the minimally superinductive class. The proof
depends on the following three lemmas.

LEMMA 1. If xSy, then M. < M,.

Proof. We will show MyNBNP(x) is a superinductive set for x, by verifying
conditions (i)-(iii) of the definition. This will imply M,S MyNBNP(x), a
fortiori, MyC My.

Suppose aeA and ae P (x),then aeP(y) and so aeM,(since My is a super-
inductive set for y). Therefore aeMyNBNP(x) (since AC B), that is,
ANP(x)SMyNBNP(x). Also MyNBNP(x)SBNP(x). Thus we have verified
condition (i).

Suppose weMyNBNP(x) and gw)e BNP(x). Then gw)eP(y). But weM,
and g(w)e BNP(y) implies gw)eM,. Therefore glw)eMyNBNP (x)verifying
condition (ii).

Assume D is a chain of M, N BNP(x) and UDeB. Then D is a chain of
both P(x) and My, and UDeM,NBNP(x), verifying condition (iii) and com-
pleting the proof.

LEMMA 2. If xeM,, then x ¢ My.

Proof. We can assume Y Dx; for if not let y* = yUx and then y*2y and so,
by Lemma 1, xeMy*, y*Dx. We shall show that there exists a superin-
ductive set for y, Sy, such that SyNBNP(x) = M, and this will imply x e M,,
since x € BNP (x) and x € Sy because x e My.

Let Sy=BNP(y -(BNP()-My). Then since BNPx)SBNP(),
SyNBNP(x) = My. We now show Sy is superinductive for . Surely
SySBNP(y). LetaeAnP(y). If ae BNP(y) and ae BNP(x), then aeM, (since
M, is superinductive for x), that is ae BNP(y) -(BNP(x) ~M,). Therefore
ANP(y) CSy. Thus Sy satisfies condition (i).

For (ii) let weS, and gw)e BNP(y). I gw)e BNP(x), then w e BNP(x),
since g is progressing, and hence, by the definition of Sy, w e M,; thus
g(w) eM,. Therefore gw)eS,, as required.

Let D be a chain of Sy and UDeBNP(y). Assume UDeBNP(x); then
weD implies we BNP (x) which together with weSy implies weM,. Thus D is
a chain of My, and UDeM,. Hence UDeS,, verifying (iii) and completing the
proof.
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LEMMA 3. Ifa €A, then aeMa.

Proof. Since M, is a superinductive set for a and since aeA and {a}e P(a),
we have aeM,.

THEOREM 1. M' is a superinductive class.

Proof. Surely M'C B. Also, by Lemma 3, ACM’'. Thus ASM'C B. As-
sume x€M' and g(x)e B. Then xeM,,for some y. Let z = yug(x); then x e M.,
by Lemma 1. Since M, is a superinductive set for z and g(x)e BNP(z), we
have g(x) e M.C M'.

Let D be a chain of elements of M’ with UDeB. We shall show
UDeM(UD). ¥ yeD, then y eM,, by Lemma 2, and hence yeM(UD), by
Lemma 1. Therefore D is a chain of M(UD) and hence UDeM(UD) < M'.

THEOREM 2. M' is the minimally superinductive class.

Proof. Let S be superinductive. Then xe M’ implies x eM,, for some y,
which in turn implies xeSNBNP(y) (since, as we have remarked SNBNP(y)
is a superinductive set for y). Therefore x ¢S and the theorem now follows
from Theorem 1.

Remark. The only place we really needed the hypothesis that g is pro-
gressing was in the verification of condition (iii) in Lemma 2. It remains
an open question whether the hypothesis can be eliminated entirely.

3. Examples The class of ordinals can now be defined as follows:

Definition. The class of ovdinals is the minimally superinductive class
under o, where o(x) = xU {x}.

The various other definitions can now be proved equivalent to the above
(see Sion and Wilmot [3]).

We can also define many important classes in Class-Set theory,
directly, without resorting to the transfinite recursion theorem. For
example, if S(x) is the set of subsets of x, which are first order definable
over x, then the class of constructible sets, is the union of the minimally
superinductive class under g(x) = xUS(x). If g(x) = xUP(x), where P(x) is
the power set of x, then the union of the minimally superinductive class
under g is just V, the universal class—if we assume the axiom of regularity.

Because of Lemma 2, we can also define the ordinals or the elements
of any minimally superinductive class by the formula ‘xeM,’. In the case
of the constructible sets this condition, when written out in primitive terms,
is more easily proved absolute than the usual transfinite recursion condi-

tion.

4. Well-ordering The most important theorem about minimally super-
inductive classes under progressing functions, is that they are well-ordered
by C. This result is proved in [4] for slowly progressing g. In this section
we prove this result for arbitrary progressing functions and the proof does
not require the axiom of substitution. Throughout this section let M be a
fixed minimally superinductive class under g, progressing.
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Definition. An element m of M is called regular if there is a chain C(m)
(or equivalently, C,,) of elements of M, satisfying:

(i) meCn and if zeCy, then 2SS m

(ii) if x€eC, and x# m then glx)e Cn
(iii) if B is a chain of C, then UB¢€C,
(iv) if 2 eM then either z eC, or z Dm.

THEOREM 3. All elements of M are regular.

The proof of the theorem consists of the following three lemmas.
LEMMA 1. The empty set, A, is regular.
Proof. 1t is easily checked that C,= {A} satisfies conditions (i) - (iv).
LEMMA 2. Ify is vegular then g(y) is regular.

Proof. Suppose v is regular and let C, be a chain for y satisfying (i)-(iv).
We will show C(g(y) = Cy ulg(y)}, which is a chain since g is progressing,
satisfies (i)-(iv) also.

(i) Clearly g(»)eClg(y). I zeClg(y)) and z#g(y), then ze Cy and
z2CyC gly).

(ii) Suppose xe C(g(y)) and x #g(y); then xe Cy. If x#y, then g(x) e Cy,
and so g(y) e Cg(y)). If x = y, then g(x) = g(y) e Clg(y)).

(iii) Suppose B is a chain of C(g(y)). If all elementsof Bare inCy,
then UB e Cy< C(g()). If not, g(y) e Band UB = g(y) e Cg(»)).

(iv) Suppose z eM and notz Dg(y). If zeCy, then ze C(g(y)). Assume,
then, z¢C,; we shall show z =g(y)e Clg(»). Let S= CyUlweMlw> glyk. I
we can show S is superinductive, we are done, since zeS (because zeM,
minimally superinductive) and zd Cy, hence 22 g(y) which together with not
z D gly), implies z =g(y).

Surely AeS, since AeCy. Assume weS. If weCy,gw)eCyor w=y and
gw) = g(»)eS. If wDdgly), then glw) D g(y) and glw)eS.

If D is a chain of S and for some de D, d 2D g(y) then UDD g(y) and U DeS.
If not, all elements of D must be in Cy and UD eCyC S.

Hence S is superinductive and (iv) is proved.

LEMMA 3. If D is a chain of regular elements of M, then UD is regular .

Proof. Let D be a chain of regular elements. For each deD, let C; be a
chain for d, satisfying (i)-(iv). We shall show C(UD) = Uy pCs/U{UD} is a
chain for UD satisfying (i)-(iv).

We must first show C(UD) is a chain. We write ¥ comp y for x Cy or

'y Cx. I xeCyay, yeCay, with dy Cdz, then x C di Cdz, hence not x Ddz, so xeCy,
and since Cy; is a chaih, X comp y. If xeC; and y = UD, thenx Cd CUD =y
This proves C(UD) is a chain.

(i) Clearly UDeC(UD). If zeC(UD) and z# UD, then z€Cy, deD and
z2Cd<CUD.

(ii)  Suppose ¥ eC(UD) and x # UD; then x eCy, for some deD. If x#d,
gx)eC;SC(UD). I x=d, dis not the maximal element of D (for then
% = d = UD), so there exists d’eD, with d’Dx. By condition (iv) this implies
x€Cyr, and x #d'. Therefore g(x)e G € C(UD).
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(iii) Let B be a chain of C(UD). If there is a beB with b = UD, then
UB=UDeC(UD). Suppose, therefore, B is a chain of elements of UypCa.
If UBCd, for some deD, B is a chain of C;, and UBeC; S C(UD). So as-
sume that for any de D, there is a be B, with not bCd. This implies that for
any deD, there is a beB, with 8Dd. For if beCyy, letds= max (dy, d), then
bCd, Sy, so not bOd; and thus be Cy,; also de Gy, and since Gy, is a chain b
comp d; since not bCd, we have, finally, b2d. Therefore UDC UB; but
beB implies beC; and bCd for some deD, that is UB CUD. Therefore
UB=UDeC(UD).

(iv) Suppose zeM and not zDUD. If for some deD, not zDd, then
z2eC; S C(UD). If zDd for all de D, then zDUD. Since not zDUD, z =UD
and ze C(UD). This completes the proof of Lemma 3.

Proof of Theorem 3. Since the regular elements of M form a superinduc-
tive subclass S of M by the lemmas, and since M is minimally superinduc-
tive S = M, that is all elements of Mare regular.

COROLLARY 1. If xeM and yeM, then x comp y, that is xCy or yCx.

Proof. ¥ x, yeM, x is regular, so either yeC, and yCx or yDx, that is
X comp Y.

COROLLARY 2. If x, yeM, then not x CycC glx).

Proof. ¥ x, yeM and xCy, then x¢Cy and x#y. Therefore g(x)e Cy and
hence g(x)C y.

THEOREM 4. Let M be minimally supevinductive undev g, progvessing .
Then M is well-ovdered by C.

Proof. We have already shown that M is linearly ordered by < (Corollary 1
of Theorem 3).

Let M' CM, M'#A. Let L={xeM|lyeM —»xCy}. Since M'#A, L£M.
Therefore L is not superinductive. However Ae L and also it is easily
verified that L is closed under chain unions. Therefore there is an element
x€ L such that g(x) ¢ L. We assert this implies xe¢ M’ and hence x is the least
element of M'. For any yeM' either y C g(x) or g(x) C v, since M is linearly
ordered by S. Now g{x) C y cannot hold for all ye M’, since g(x)¢L, so there
is an element ye M’ with yC g(x), that is, ¥ Sy glx). But xC yC g(x) contra-
dicts Corollary 2 of Theorem 3, hence x =y e M'.
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