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DECISION PROCEDURES FOR LEWIS SYSTEM SI

AND RELATED MODAL SYSTEMS

ANJAN SHUKLA

This paper* contains decision procedures for various modal logics

among which is Lewis' system SI. The decidability of these systems is

established by showing that they have the finite model property. Proofs,

general exposition, and references are given in complete detail so that fu-

ture results by the author (and others) can be easily incorporated within the

framework.

INTRODUCTION

There are several well-known decision procedures1 for the Classical

Propositional Calculus (CPC)2. The principal advantage in obtaining such

procedures for CPC lies in the fact that the connectives under consideration

have an intended interpretation, i.e., the usual two-valued truth-tables.

Kalmar's method3, for example, consists in proving that a well-formed

formula (wff) is a theorem if and only if it is a tautology. After that to

decide whether a wff is a theorem one only has to make a simple computa-

tion of truth-tables. The same technique also extends to finitely many-

valued logics where the connectives again have intended interpretations.

There is an increased complexity but the method remains essentially the

same.

However, not all propositional calculi are constructed with an interpre-

tation in mind. There are two ways in which we can set up the axioms for

such calculi. We can start with matrices—which are our intended interpre-

tation—for the various connectives and then try to formalize these

matrices, i.e., give axioms and rules such that the theorems of the system

shall coincide with the wffs that are verified by the matrix. CPC and other

*This paper is based on a thesis written under the direction of Professor
Bolesiaw Sobociήski and submitted to the Graduate School of the University of
Notre Dame, in partial fulfillment of the requirements for the degree of Doctor of
Philosophy with Mathematics as the major subject in June 1967. I am very much
indebted to Professor Sobociήski for suggesting the problem and for his consid-
erable help in the preparation of this paper.
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finitely many-valued logics fall under this category4. The other way is to
start with undefined concepts and give axioms and rules using these con-
cepts. The axioms and rules would then constitute a contextual definition
of these concepts. Of course, the undefined terms are not entirely arbi-
trary. They are often supposed to have a meaning in the real world. And
the purpose in building up the system is to elucidate this meaning.

Such are the systems of modal logic of Lewis5. The undefined concept—
besides negation and conjunction which can be given a truth-functional
interpretation—is possibility, and the purpose of these logics is to give an
exact formal description of this notion. As to be expected many perplexi-
ties arise in setting up the axioms and rules. To take just one example: If
it is possible that "p" is possible, is it possible that ί(p"? Lewis thus
constructs five systems S1-S5 in increasing degrees of strength leaving the
choice of the system which ('really'' captures the notion of possibility to
the reader. We shall, however, be unconcerned with the philosophical
aspects of these systems and approach them in a purely formal manner.

Although the modal systems of Lewis were not constructed with an in-
tended finite matrix for possibility in mind it may be conjectured that a
diligent search might reveal one. That such a search will be in vain was
shown by Dugundji6 who, using methods due to Godel7, proved that none of
the Lewis systems admit of any finite interpretation. It follows, therefore,
that we cannot hope to solve the decision problem of these systems by a
straightforward truth-table computation.

At this point the paper of McKinsey 8 appeared in which he solved the
decision problems for the systems S2 and S4 in a novel manner. The
method, in a nutshell, is as follows: first he proves, by using unpublished
methods of Lindenbaum and Tar ski, that there exists an infinite character-
istic matrix for these systems. This matrix happens to be the algebra of
formulas of the system with a very natural equivalence relation defined on
it. Next he shows that given any matrix that verifies all theorems of a
system we can find a finite matrix which mirrors in a significant way the
original matrix, i.e., the new finite matrix also verifies all theorems of the
system; in addition, it falsifies a class of formulas—whose number of sub-
formulas bear a certain relationship with the cardinality of the matrix—that
are falsified by the original matrix. Now if a wff A is a non-theorem of the
system under consideration it is, of course, falsified by the Lindenbaum -
Tarski characteristic matrix. Hence, by the above-mentioned considera-
tions, it is falsified by a certain finite matrix whose cardinality is
determined by the number of sub-formulas of A. Therefore all we have to
do to know whether a wff A is a theorem is to construct all possible
matrices whose cardinality is less than a certain pre-assigned number and
which verifies our system and then if A is verified by all these matrices it
is a theorem; if not, it is not a theorem. The method is indeed elegant in
in conception.

Nevertheless, there are two major shortcomings of the method.
Firstly, the number of matrices we have to construct to test for theorem-
hood even very simple formulas is prohibitively large. But we can ignore
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this and relegate the problem to computer-technology. The second short-
coming is more serious: we do find out whether a wff A is a theorem; but
if it is where is the proof, i.e., the deduction from the axioms and rules?
We have given no indication whatsoever how to find one. In other words, we
have solved the decision problem but not the deducibility problem9. This
limitation, however, is partly offset by two factors. Firstly, this method
gives us a structural insight into the algebra of formulas of a system as
well as into the matrices related to the system. Secondly—and this is more
important—the method shows that the system under consideration has, to
use a term due to Harrop, the finite model property10. Since Gδdel11 and
Harrop12 have constructed propositional calculi which are decidable but do
not have the finite model property something more is shown, by McKinsey's
method, besides decidability.

After McKinsey's original paper, his method has been applied to a very
large group of modal systems13. Nevertheless, the weakest of the Lewis
systems, SI, has always eluded the McKinsey-attack. Nor has the system
yielded to decision-methods subsequently invented to deal with the modal
systems, e.g., the semantical method of Kripke14, the Gentzen method of
Ohnishi15 and Matsumoto16, the normal-form method of Anderson17, etc.

Our purpose here is to give a decision procedure for SI (and some
other related systems). The pervasive spirit of this paper is that of
McKinsey. We follow the pattern set down by him. Our contribution con-
sists of a technical innovation within his framework that transforms his
method into one of greater power. By our method we can do everything that
McKinsey can; and more.

Section I introduces the systems. Besides Sl° and SI we shall intro-
duce two new systems: Tl° and Tl. We shall refer to these as the
S-systems and T-systems respectively. The precise motivation of the
introduction of the T-systems will be explained in the section. In Section II
we shall, by the Lindenbaum-Tarski method, construct characteristic
matrices for our systems. It is best to consider Section III as a lemma to
Section IV since the main result of Section III, the First Completeness
Theorem, is proved in a much stronger form in Section IV, where, finally,
we give decision procedures for our systems. Section V gives decision
procedures for Lewis' system S2 and Sobociήski's system S4°.18 We have
made the assertion that "we can do everything that McKinsey can; and
more". The "and more" part is vindicated by our decision procedure for
SI. It yet remains to show that "we can do everything that McKinsey can".
On our part this is a conviction based on intimate acquaintance with our
method. But we have no idea how to prove it since the question under con-
sideration is the applicability of a method. Yet, we can try to convince the
reader of the truth of our assertion by inviting him to watch us in action in
a special case. Hence S2, since it is known that it yields to McKinsey. We
show that it yields to us as well. The reason for including a decision pro-
cedure for S4° is simpler: it has not been done before.
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I. THE SYSTEMS

In this section we shall introduce two new modal systems: Tl and Tl°.
It is well-known that there are certain basic differences between the Lewis
systems S1(S1°) and S2(S2°)1. As to be expected these differences come out
in metalogical investigations concerning these systems. But even in the
axiomatic level there are indications of things to come e.g., it seems
impossible to avoid the actual postulation of the rule of substitutability of
strict equivalents if we want to axiomatise S1(S1°) with the Classical Prop-
ositional Calculus base2. Our motivation in introducing the T-systems is to
capture the essential uniqueness of S1(S1°). The T-systems are very
simple. Their very simplicity enables us to see clearly the structure of
S1(S1°) without the attendant inessential complications that arise if we ap-
proach S1(S1°) in a straightforward manner.

The central problem of the kind of systems we shall consider is their
decision problem. Leaving aside undecidable calculi, we may classify
logical calculi according to the methods that yield decision procedures for
these calculi. If we adopt this criterion of classification surprisingly
enough most of the modal logics except S1(S1°) and a few other systems fall
in the same class. Lemmon, for example, starts with a rather weak system
C2 and once he solves its decision problem he is able to rapidly extend it to
most standard systems with no further introduction of essential technique.3

Our T-systems serve the same kind of purpose as C2. They exemplify the
method used and once their decision problem is solved the extension to
S1(S1°) is purely routine.

There is yet another reason for introducing the systems Tl and Tl°.
The systems have a close resemblance to Lemmon's E2 and C24; and
Lemmon has shown how one can reduce the decision problem of S2 to that
of E25. We had initially hoped that we would be able to perform such a re-
duction. But our efforts in this direction have failed. However, it is not
unlikely that such a theorem may be forthcoming at a future date. If it does
our results for the T-systems will be readily available for the required
reduction.

We now construct our systems. Our primitive connectives are nega-
tion, conjunction and possibility to be denoted by '~', ' Λ ' and '<>' respec-
tively. We write '/>', 'q', V , V , for propositional variables; ζP', 'Q', 'R',
'S'9 as a syntactical denotation for a formula. We prefix ' h ' to a formula
valid in the system considered or to a scheme of formula supposed to be
valid in a rule of deduction. The rules of formation of well-formed formula
are usual.

We now make some definitions. These definitions are to be understood
as mere abbreviations.

DEFINITION I.I : Pv Q = ~ (~P Λ - Q);

DEFINITION 1.2: P D Q = - ( ? Λ - $ ) ;

DEFINITION 1.3: P = Q = (p D Q) A (Q D P);
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DE FINITION 1.4: DP = ~ O ~ P;

DEFINITION 1.5: P H Q = ~ O (p Λ ~ Q);

DEFINITION 1.6: P Ξ Q = (p β Q) Λ (Q β P).

§1. THE T-SYSTEMS. As our stock of axioms and rules we list the

following:

Al: p ^(pΛp);

A2: (p*q) Όp;

A3: (pz)q) D (~(# Λ r) =5 ~ (r * p));

A4: (D(/> Dg) Λ D ( p r ) ) D ( D ( p r ) ) ;

A5: Dp =)£.

R1: Substitution on propositional variables;

R2: If hP and if \-PZ)Q, then f-Q;

R3: Substitutability of material equivalents.

Note that we use the defined symbols: ' D ' and ' D' in our axioms and

rules. The only reason is typographical convenience and perspicuity.

Theoretically they can be entirely dispensed with.

We are now in a position to define our systems:

Tl° = {Al - A4; R1 - R3};

Tl = {Al - A5; R1 - R3}.

It is to be noted that the system {Al - A3; R1, R2} constitutes a formu-

lation of CPC6.

THEOREM I.I: The systemsΎV and Tl are absolutely consistent, i.e., not

all their wffs are theorems.

Proof: Consider the matrix:

Λ 1 2 ~ O

1 1 2 2 1

2 I 2 2 I 1 I 2
The designated value is 1. The matrix verifies T1°(T1). But it falsi-

fies ζρ\

§2. THE S-SYSTEMS. The systems Sl° and SI are well-known. We adopt

the exposition of [15]. We list the following axioms and rules:

30.11: (p Λ q)^p;

30.12: (p A q) β (q Λ p);

30.13: ((p Λ q) Λ r) β (p Λ (q Λ r));

30.14: p β (£ Λ P))
30.15: ((p^q) Λ (q ^ r)) H (/> Hr);

36.0: p^Op.

30.21: Substitution on propositional variables;

30.22: If hP and if \-Q, then \-P Λ Q;
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30.23: If KP and if \-P -3 Q, then hQ
30.24: Substitutability of strict equivalents.

Our systems are as follows:

Sl° = {30.11 - 30.15; 30.21 - 30.24}
SI = {30.11 - 30.15, 36.0; 30.21 - 30.24}

The reader is advised to have [15] in hand. In subsequent chapters we
shall need theorems of Sl° and SI. We shall prove them only if they are not
proved in [15]. Otherwise we shall present them with a number from [15].

A crucial difference between the systems of §2 and those of §1 is that
in §1 we postulated the substitutability of material equivalents whereas here
we postulate the substitutability of strict equivalents. This fact will be of
much importance later.

II. ALGEBRAS AND MATRICES

Very well-known is the notion of closure algebras1 which may be de-
fined as follows (What follows is an informal introduction. We shall
presently make all our notions precise.):

DEFINITION II. 1: A structure β = <M, n , -, P> is & closure algebra if
and only if M is a set of elements closed under the operations n , -, and P
such that

(i) β is a Boolean algebra with respect to π , -
(ii) for x,y e M, P(x u y) = Px u ?y

(iii) for x e M, x % Px;

(iv) P 0 = 0;

(v) for x € M9 P Px = Px.

Closure algebras have proved to be a very powerful device in the in-
vestigation of Lewis system S42 and intuitionist logic3 as well as othej
branches of mathematics, notably topology4. In fact, closure algebra bears
the same kind of relation to topological spaces as does Boolean algebra to
fields of sets5. Closure algebras have undergone a process of generaliza-
tion. These generalized algebras have an elegance all their own and have
the perfect right to be studied for their own sake6. However, the chief
motivation in their construction has been to get decision procedures for
modal logics analogous to that obtained for S4 with the help of closure
algebras7. The weakest of these generalized algebras are called modal
algebras8:

DEFINITION IL2: A structure fi = <M, n , -, P> is a modal algebra if
and only if M is a set of elements closed under operations π , -, and P
such that

(i) β is a Boolean algebra with respect to n, -
(ii) for x,y e M, P(x u y) = Px u Py.

The connection between the modal system C2 of Lemmon and modal
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algebras is similar to that between S4 and closure algebras9. The various

other algebras: extension, deontic, epistemic, normal, normal deontic,

normal epistemic etc., have an intermediate position between modal and

closure algebras; and they correspond to various intermediate logics be-

tween C2 and S410. We shall consider here a further generalization of

modal algebras, called weak modal algebra, to be used in our study of Tl°.

Before we define weak modal algebras we shall make a digression to make

the notion of an algebra precise and also introduce the notion of matrices11.

DEFINITION II.3. An algebra is a structure β = <M, n, -, P> such that

n is dyadic; -, P monadic operations on M class-closing onM.

DEFINITION II.4: x u y = -(-x n -y).

DEFINITION II.5: x - y = -{x n -y).

DEFINITION II.6: x ^ y = (x -» y) n (y -» x).

DEFINITION II.7: Hx = - ?-x.

DEFINITION II.8: x => y = -P(x n -y).

DEFINITION II.9: x <=> y = (x => y) n (y => x).

DEFINITION 11.10: We say x ^ y if and only if x n y = x .

DEFINITIONII.il: A structure β = <M, D, n ? -, p> is said to be a

matrix if and only if <M, n , -, p > is an algebra and D c M.

DEFINITION 11.12: If β = <M, D, n , -, P> is a matrix then D is said to

be the set of designated elements of β.

DEFINITION 11.13: A matrix β = <M, D, n ? - ? p> is said to be regular if

and only if

(i) D is a non-empty proper subset of M;

(iiϊ if x e D and (x -* y) e D and y e M, then y e D;

(iii) if x e M and y e M and (# ̂  3;) € D, then x = y.

DEFINITION 11.14: A matrix ί̂t = <M, D, π , -, P> is said to be σ-regular

if and only if

(i) D is a non-empty proper subset of M;

(ii) if # e D and (x => y) e Ό and >» e M, then y e D\

(iii) if x e D and y e D, then ΛΓ n 3; eD;

(iv) if x e M and 3; € M and (̂  <=» y) e D, then # = 3̂ .

DEFINITION 11.15: Let f̂ = < M, D, - , n , P>be a matrix. We say D is an
additive ideal of M if and only if

(i) Z> is a non-empty proper subset of M;
(ii) if x e D and y e D, then ΛΓ n y e D;

(iii) if x e D and 3? e M, then # u y e D.

In the three definitions that follow | |S| | denotes the system under con-
sideration.
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DEFINITION 11.16: A matrix β = < M, D, n , -, P> is said to verify a wff
A of | | s | | if and only if every way of evaluating A on the basis of ^H, using
n , -, P in place of Λ, ~, O leads to an element of D.

DEFINITION 11.17: M is called an \\s\\-matrix if and only if it verifies
every provable formula of || S| |.

DEFINITION 11.17: By an IIS||-characteristic matrix is meant a matrix
which verifies every provable formula of | | s | | and which is such, con-
versely, that every formula which is verified by it is provable in II S||.

We now introduce our new notion, that of weak modal algebra:

DEFINITION 11.19: An algebra β = <M, n , -, P> is said to be a weak
modal algebra if and only if

(i) ^tf i s a B o o l e a n a l g e b r a w i t h r e s p e c t t o n , - ;
(ii) for x,y,z eM, ?(x n y) s ?{pc n z) u ?(y π -z).

THEOREM II.1: All modal algebras are weak modal.

Proof. At this point we mention that in this paper we shall constantly use
properties of Boolean algebra—without proof. When we do so we shall
simply say: "By BA". We also adopt all the usual symbolism of Boolean
algebras including '0' and ' 1 ' .

Let β = <M, n , -, P> be a modal algebra. Then β is a Boolean
algebra. Letx,y,z eM. Then, by BA,

(1) (x n 3;) < (x n z) u (y π -z)

From (1), by BA again,

(2) (pc n 3;) u ((x n z) u (y n -z)) = (x n z) u (y n -z)

Hence,

(3) P [(v n y) u {{x n z) KJ (y ^ .z))] = ?[(x n z) u (3; n -^)]

By Df. Π.2(ii), we have

(4) P"[(ΛΓ n 3;) u ((x n z) u (y π -z))] = P(Λ: n 3;) u ?((x n ^)

u (3; n -^))

Then, from (3) and (4),

(5) P(Λ: n 3;) u ?((x n z) u (3; n -^)) = P((# n ^) u (3; n -^))

It follows immediately from (5) by BA,

(6) ?{x n y)z ?{{χ n z) u (3; n -^))

Again by Df. Π.2(ii),

(7) P((ΛΓ n )̂ u (3; n -^)) = ?(χ n z) u ?(y n -^)

And, therefore from (6) and (7),

(8) ?{x n y) ^ ?{χ n z ) u P(y n - ^ )
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This completes the proof. The converse of Theorem II.1. is, however,

not true. This is shown by a counterexample. Consider the algebraic sys-

tem with four distinct elements: xl9 Λ ,̂ X3, x±- The operations n, -, P are

defined by the following tables12:

n x
1
 x

2
 x

3
 X4 P

X \ X \ X \ X \ *™ \ "™ 4 X 3

X2 X i X2 % 1 %2 % 3 X 2

χ
3
 X

1
 X

1
 X

3
 X

3
 X

2
 X

 4

X ̂  1 "̂ 2 3 4 1 4

It can be verified that the above system is a weak modal algebra. But it is

not a modal algebra: ?(xχ u x2) = P(-(-#i n -#2)) = P(-(#4 ^ #3)) = P(-#3) =

?x2 =X2', but PΛΓ! U ?X2 =X3 u x2 = -(-X3 ^ -X2) = -bc2

 n #3) = -Xi = %4- It

shows that P f e u i a l / P ^ i ^ P^

Theorem II. 1 and the remarks that follow show that a weak modal

algebra is strictly weaker than a modal algebra. We have mentioned

earlier that there are various algebras between modal and closure algebras

i.e., all these algebras are obtained by adding certain axiom (or axioms) to

modal algebras. We may now by adding the corresponding axiom (or

axioms) to weak modal algebras get weak versions of all these algebras.

But we shall not indulge in such a proliferation. We only define:

DEFINITION 11.20: An algebra is weak epistemic if and only if, in addition

to being a weak modal algebra it satisfies the postulate:

(iii)ΛΓ ^ P # 1 3 .

We shall use weak epistemic algebras in connection with our study of

Tl. That all weak epistemic algebras are weak modal is immediate. We

proceed to show, by counterexample, that the converse is not true. Con-

sider the algebraic system with four distinct elements: xl7 x2,^3, #4- The

operations n, -, P are defined by the following tables:14

n 1 xx x2 x3 # 4 1 - 1 P
X\ 1 X 2 3 4 4 1

ΛΓ2 #2 %2 *^4 "^4 ^3 ^3

X3 X3 X^ X 3 ΛΓ4 X2 X±

Λ4 Ί 4 4 4 1 3

It can be verified that the above system is a weak modal algebra. How-

ever, PX2 = x3 and x2 n x3 = x± ̂  x3 which means that x2 | X3, i.e., x2 $ ?x2.

It is, therefore, not weak epistemic. Thus weak epistemic algebras are

strictly stronger than weak modal algebras.

Before we proceed to prove theorems about matrices, we shall prove a

theorem about weak modal algebras which will be useful later.

THEOREM II.2: Let β = <M, n, -, P> be a weak modal algebra. Let

xe M. Then P(x) ύ P (1) u P(0).

Proof. Let x,y,z e M. Substituting x for y in Definition II. 19(ii),
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(1) ?{x n x) ^ ?(x n z) u P(x n -z)

From (1), by BA,

(2) Pipe) i P(# n )̂ U .P(AΓ n -*)

Substituting £ for 3> and -£ for £ in Definition Π.19(ii),

(3) ?{x rλ z) ̂  ?(x n - * ) u ?{z n --2:)

From (3), by BA,

(4) P(# n z) ii ?(x n -z) u ?{z)

Due to BA, (4) implies

(5) ?{x n z) u P(x n -z) ^ p(x n -z) u ?{z)

From (2) and (5) we get, by BA,

(6) ?{x) ̂  ?{x n -z) u P(z)

Substituting 1 for z in (6),

(7) P(#)i P(ΛΓ n -1) u P(l)

Thus, due to (7) and BA, we obtain

(8) P(x) ί P(0) u P(l)

§1. THE T-SYSTEMS.

THEOREM II.3: There exist characteristic matrices for Tl° and T l .

Proof. The following fundamental theorem due to Lindenbaum is well-
known: "Let L be a propositional logic, let WL be the set of its wffs (in
terms of connectives cl9..., cn), and let TL be the subset of its theorems.
Suppose further that TL is closed under substitution on propositional vari-
ables. Then there exists a characteristic matrix βL for L" 1 5 . Theorem 3
is an immediate consequence thereof. It is to be noted that the elements of
$HL are the elements of WL and the designated elements are the members
of TL.

THEOREM II.4: There exist regular characteristic matrices for Tl° and
T l .

Proof. Let β = <M,D, π , - ? p> be the Lindenbaum matrix of Theorem
II.3 for T1°(T1). Define, following McKinsey16, a relation < = ' on the ele-
ments of M as follows: x = y if and only if x <-> y e D. We show first

(A) ' = ' is an equivalence relation.

(1) Since T1°(T1) contains CPC, l τ l o ( τ l ) p =p- Since β is a characteristic
matrix for TΓ(Tl) we get, for x e M, x «-> x e D i.e., x = x. So f = ' is re-
flexive.
(2) Next suppose that for x,y e M, x = y, i.e., x <-> y e D. Hence, since β
is the Lindenbaum matrix for Tl° (Tl), we have l τ l o ( τ l ) x = y. Also, by
CPC, l τ l o ( τ l ) x = oc By the substitutivity of material equivalents, rule R3 ,
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lT1o(T1) y = x. Hence y ^^ x e D, i.e., y = x. So ' —' is symmetric.
(3) Finally, for x,y,z e M, suppose x = y and y = z. Then x <r> y e D and
y <•-> z e D. Hence l τ l o ( τ l ) x = y and lT 1o ( T 1 ) :y =^£. By the substitutivity of
material equivalents, lτi°(τi) χ - z Hence x <-> z e D, i.e., x— z. Thus
6 —' is transitive.

(1), (2) and (3) show that ' = ' is an equivalence relation and hence M is
partitioned into disjoint classes by this relation. If x e M we denote the
class that contains x by E(x). We now show that

(B) If x e D and y e E(x), then y e D.

Since x e D9 we have 4Ί°(T7) X Since ye E(x), we have x — y, i.e.,
x ^> y e D. Hence l τ l o ( τ l ) x = y. Hence, by CPC, i τ l o ( τ l ) x 3 y. By the
rule of detachment, H τ lo ( τ l ) y. Thus j> e Z>.

Now let Mx be the set of equivalence classes of M. Let D1 be those
elements of M1 which contain elements of D. We define operations π 1 ? - 1 ?

and Pi on Mi as follows:

E(#) n x E(y) = E(ΛΓ n y)
-1EW = E(-^)

P 1 ( E M ) = E ( P M )

(C) We shall show that the definitions made above are independent of the
choice of representatives.

(1) We have to show that if xλ e E(x) and yx e E(y), then Xγ π ^ e E(x n 3;) .
Since xx e E(x) we have xx =x, i.e., xx «-> x e D. It follows l τ l o ( τ l ) xx =x.
Similarly, we show that l τ l o ( τ l ) yx =y. Whence, by CPC, l τ l o ( τ l ) (xx Λ 3;^ =
(x Λ y). Hence (xλ π yt) ^ (x n y) e D. Hence (xλ n yj = (x n y). Hence
xλ π yλ e E(x π 3;).
(2) Next we show that if xλ e E(x) then -# x e E(-ΛΓ). Since xx e EW we get
'τr(τi) xγ =x. Hence l τ l o ( τ l ) ~ xλ =~ x. Hence -xλ e E(-Λ ) .
(3) Finally, let xλ e E(x). Then l τ l o ( τ l ) Xi =X Also, clearly, l τ l o ( τ l ) θ W =
O(x). By the substitutivity of material equivalents, rule R3, we get
l τ l o ( τ l ) θ ( * i ) = O W . Hence P W e E(?(x)).

This completes the demonstration of (C). We are therefore justified in
considering the structure βλ = <Mi, Dly π 1 ? -l9 Pλ> as a matrix. We now
show:

(D) Λ I is a regular characteristic matrix for T1°(T1).

To show <iflffi is a characteristic matrix for T1°(T1) let Ύϊ°(τϊ)^ ^-'e^
Pi, , Pn be the distinct variables in A. Let E ^ ) , . . ., E{xn) be an assign-
ment from βι to />!,...,/>». Since l τ l o ( τ l ) A and β is a characteristic
matrix for T1°(T1), the assignment xu . . . ,xn to pu . . . , pn leads to an ele-
ment of D. Hence it is easy to show by (C) that the assignment
Efe), . . , E W leads to an element E(y) where y e D. Hence E(^) e D^
Hence A is verified by ^ 1 . Conversely, suppose a wff -A is a non-theorem
of T1°(T1). Then there exists an assignment xl9...,xn of elements of β
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such that if we evaluated on this basis it does not lead to an element of D.
Then if we evaluate A on the basis of E ^ ) , . . . , E(xn) it will lead to an ele-
ment E(y) where y i D. From (B) it follows that every element of E(y) is an
element of M - D. Hence E(y) i A So A is not verified by βλ. It follows
thsitβ! is a characteristic matrix for T1°(T1).

We next show that the matrix is regular. We verify the three condi-
tions of Definition 11.13.

(1) Obviously, at least one theorem can be proved in T1°(T1). So D and
hence A is non-empty. Again by Theorem I.I. there is at least one wff
which is not a theorem of T1°(T1). So D is a proper subset of M. It follows
that A is a proper subset of Mlm Thus A is a non-empty proper subset of

(2) Now suppose E(x) e A and Ί{E{X) nΓlE(3/)) e A Hence E(-fc n -3;)) e
A> i e., E(x -* y) e A Then x e D and x -» y e D. Hence )Ti°(τi) % and
l τ l o ( τ l ) x D y. Hence l τ l o ( τ l ) y. Hence y e D. Thus E(y) e A
(3) Suppose that -χ(E(x) n^Eiy)) n r i (E(j;) n ^ E M ) e A It follows that
E(-(x n -3;) n -(3; n -#)) e A? i e., E(# <H> 3;) e A? so that x <-> y e D, i.e.,
x— y. Now if £ is an element of E(x) we have z = x and hence z— y and,
therefore, £ e E(y). So E(x) is a subset of E(^). In a similar way we see
that E(y) is a subset of E(x). Hence E(#) = E(^).

Hence our characteristic matrix βλ = <Mly Du nl9 -1 ? p x> is regular.

This completes the proof.

THEOREM II.5: There exist regular characteristic 7natrices for Tl° and
Tl swc/z ί/ία/ only one element is designated.

Proof. Let βλ = <MU Dl9 π l 5 - 1 ? p 1> be the regular characteristic matrix
of Theorem Π.4. We know that A consists of those elements of Mx which
contain elements of D. By Theorem Π.4(B) it follows that A consists of
elements of M1 which only contain elements of D. Let x,y e D. Then
l τ l o ( τ l ) # and lτlo(T1) y. From the theorem (p D (q Ώp)9 of CPC it follows
easily that l τ l o ( τ l ) ^ = y. So x= y. From this it follows immediately that
A has only one member. This completes the proof.

§2. THE S-SYSTEMS. We now desire theorems for the S-systems analo-
gous to those obtained in §1 for the T-systems (cf. Theorems II.3. - II.5).
We are able to prove the analogues of Theorem II.3 and Theorem II.4. but
not that of Theorem II.5. Since substitutability of material equivalents was
a rule of the T-systems we were able to form the matrix of Theorem Π.4
by identifying materially equivalent elements in the Lindenbaum matrix of
Theorem II.3. But our rule for the S-systems is the substitutability of
strict equivalents and so to construct the desirable kind of matrix we shall
have to identify strictly equivalent elements in the Lindenbaum matrix.
Also in this article we shall construct σ-regular matrices instead of regular
matrices. These factors do not permit us to make a straightforward imita-
tion of the proofs of §1. However, the structure of the proofs remain
essentially the same. For this reason our proofs of this article will be
somewhat abbreviated and we shall make frequent reference to §1.
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THEOREM II.6: There exist characteristic matrices for Sl° and SI.

Proof. Completely analogous to the "proof" of Theorem Π.3.

THEOREM II.7: There exist σ-regular characteristic matrices for Sl° and

SI.

Proof. Let β = <M, D, <">,-, P> be the Lindenbaum matrix of Theorem

Π.6. (cf. Th. Π.3.) for S1°(S1). Define a relation '=' on the elements of M

as follows: x = y if and only if x <=> y e D. We show that

(A) ' —' is an equivalence relation

To prove (A) we first note that ^ΓΪsϊ) P EP (cf- 3 1 1 3 [ 1 5D N e x t o b "

serve that substitutability of strict equivalents is a rule of S1°(S1). Now cf.

Th. Π.4. The proof is clear.

Thus M is partitioned into disjoint classes. If x e M we denote the class

that contains x by E(x). We now show that

(B) if x e D and y e E(x), then y e D.

Since x e D, we have l s l o ( s l ) ^ . Since y e E(x), we have x= y, i.e.,

x <=> y e D. Hence l s l o ( s l ) ^ = y. Hence by 31.16 [15], l s l o ( s l ) ^ ^y. By

30.23[l5], l s l o ( s l ) ^ . Hence y e D.

We now define M1} Dl9 nl9 - x and ?1 as in Th. Π.4.

(C) We shall show that the definitions made above are independent of the

choice of representatives.

It is easy to see {cf. proof of Th. II.4) that in order to demonstrate (C)

we must prove the following rule for our systems Sl° and SI.

If \-P = Q and if y-R i S, then h(P Λ R) Ξ (Q Λ S).

We prove it as follows:

(1) P = Q by Hp.

(2) (PΛR) = (P AR) by 31.12 [15]

(3) (P_Λ R) i (Q A R) by (1), (2), 30.24 [15]

(4) R = S _ by Hp.

(5) (PΛR) = (Q Λ S) by (3), (4), 30.24 [15]

We now show:

(D) β1 is a σ-regular characteristic matrix for S1°(S1)

That β! is a characteristic matrix for S1°(S1) is easily seen (cf. Th.

II.4). We show that the matrix is σ-regular. > We verify the four conditions

of Definition Π.14.

(i) cf. Th. Π.4. The proof is exactly similar.

(ii) cf. Th. II.4. The proof is analogous: use strict detachment in place of

material detachment.

(iii) Suppose E{x) e D1 and E( y) e Dx. Then x e D and y e D. Hence IS 1 O ( S 1 ) x

and l s lo ( s l );y. By 30.22 [15], l s l o ( s l ) x Λ y. Hence x n y e D. Hence

E(x π 3;) eDv Hence, E(x) nx E(y) e Dλ.
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(iv) cf. Th. Π.4. The proof is analogous.

Hence our characteristic matrix is σ-regular. This completes the
proof.

We conclude this section by remarking that the reason we are unable to
prove the analogue of Theorem II.5. for our S-systems is that any two
theorems of the T-systems are materially equivalent whereas the corre-
sponding statement about the S-systems, i.e., any two theorems are strictly
equivalent is not true. We demonstrate this by an example:

Both ζp-Dp and (Π{pZ)pY are theorems of S1°(S1): cf 34.1 and
34.3 [15]. But (pz) p) Ξ π(p D p) is not a theorem:

Consider the matrix17:

Λ 1 1 2 3 4 1 - 1 O
1 1 2 3 4 4 1
2 2 2 4 4 3 2
3 3 4 3 4 2 1
4 I 4 4 4 4 1 1 I 3

The designated values are 1 and 2. The matrix verifies S1°(S1). But
(1 D 1) = D(l D 1) = ~ (1 Λ ~ 1) = ~ O ~ ~ (1 Λ ~ 1) = 1 = 2 = 4.

IΠ. FIRST COMPLETENESS THEOREM

We shall now establish certain correlations between our systems and
the appropriate kind of algebras (or matrices). The theorem which does
this we shall call: First Completeness Theorem. Although the theorems
themselves are not entirely devoid of interest, it is more appropriate to
consider them as a prelude to the stronger completeness theorems of the
next chapter which, finally, will lead to decision procedures for the systems
concerned.

§1. THE T-SYSTEMS.

THEOREM III. 1. Let β = <M,D, n, -, P> be a regular Ύ1°(T1)-matrix.
Let x,y eM. Then x^yif and only ifx~>yeD.

Proof. In this and subsequent sections we shall have frequent occasion to
prove theorems about matrices like Theorem ΠI.l. We shall give detailed
analysis of the proof of Theorem IΠ.l to make the spirit of such proofs
clear. After that we shall present the proofs as is usually done in logical
calculi, i.e., we shall state the reasons for each step to its right enclosing
them with parentheses. We now proceed with our proof.

I. First suppose that:

(Dχ*y

From (1), by Definition II. 10,

(2) x n y =χ
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Now CPC gives,

(3) x -*χ eD

From (2) and (3),

(4) x -> (x n y) eD

Again from CPC,

(5) (x - (x n y)) - (x - y) e D

Thus by Definition II.13(ii), from (4) and (5),

(6) x -> y e D.

II. Next suppose that:

(7) x -*y eD

By CPC,

(8) (x -* y) -» (x <-> (x π 3;)) e D

From (7) and (8), by Definition Π.13(ii),

(9) x <H> (x n 3;) e D

So Definition II.13(iii) gives, from (9),

(10) x =x π y

By Definition 11.10,

(11) xύy

This completes the proof.

THEOREM III.2. Let β = < M, D, n, -, p> be a regular T1°(T1)-matrix.
Then < M, n, -> is a Boolean algebra.

Proof. For the purpose of demonstrating that <M, n , -> is a Boolean
algebra we shall show that each of the axioms of the following well-known1

axiom system for Boolean algebras is satisfied:
A structure <M, n, -> is a Boolean algebra if and only if

P I : M contains at least two elements;
P2: if x,y e M, then x n y = y n χ;
P3: if x,y,z e M, then (x n y) n z = x n (y n z);
P4: if x,y,z e M, then (x n -3;) = (z n -z) if and only if ΛΓ Π y = X.

P I : By Definition II. 13(i), D is a non-empty proper subset of M. So M
contains at least two elements.

P2: Let#,;y,£ e M.

Then,

(1) (x n y) ^ (y n x) eD [CPC]
(2) x n y =y n x [(D Df. Π.13(iii)]
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P3: Let x,y,ze M.

Then,

(3) (x n y) n z <-> x n (y n z) eD [CPC]

(4) (x n y) n z =x n (y n z) [(3);Df.Π.13(iii)]

P4: Letx,y,z e M.

I. First suppose that (x π -3;) = (z n -z). Then,

(5) (x n -3;) = (z n -z) [Hp.]

(6) fy; n -y)^(x n -3;) eD [CPC]

(7) (x n -y) ->(* n -z) eD [(5),(6)]

(8) {(x n -y)-> (z n -z)}-{x++ (x n y)}eD [CPC]

(9) x ^ x n y eD [(7),(8);Df.Π.13(ii)]

(10) x =x π y [(9);Df.Π.13(iii)]

II. Next suppose that x- x n y. Then,

(11) x =x n y [Hp.]

(12) x -x eD [CPC]

(13) x ~>(x n y)eD [(11),(12)]

(14) (x - (x n 3;)) - ((ΛΓ n -3;) ̂  (^ n -2)) e D [CPC]

(15) (# π -3;) o ( 2 n ^ ) e 2 ) [(13),(14);Df.Π.13(ii)]

(16) Λ: n -3;= ^ n - ^ [(15);Df.Π.13(iii)]

This completes the proof of Theorem III.2.

THEOREM III.3: β = < M, {d}, n, -, P> is a regular TV-matrix if and

only if < M, n 5 Ί p> isα weak modal algebra and d = 1.

Proof. Let ̂ ί = <M, {ί?}, n , -, p> be a regular Tl°-matrix. By Theorem

III.2, < M, n9 -> is a Boolean algebra. It remains to show that condition

(ii) of Definition 11.19 is satisfied. Substituting ~ q for r and ~ r for q in A4

(section I) (cf rule R1), we get,

(1) bjΓΐo (Ώ(p D ~ r) Λ D(~ r D ~ ?)) D (α(/> D - ̂ ))

From (1), by Definition 1.2 and Definition 1.4,

(2) hfίo(~<>~(~(/>Λ~~r)) A ~ O - H - r Λ - # D ( - O - e ( / ) Λ - #

By CPC, (2) andR3,

(3) \ψ[o(~O(p A r) Λ ~O(q Λ - r)) D (~O(/> Λ ^))

It follows from (3) and CPC,

(4) \ψioθ(p Λ q) D (O(/> Λ r) v θ ( # Λ - r))

Hence, since ^ is a Tl°-matrix, (4) shows that for x,y,z e M,

(5) P(x n y) -* {p(χ n z) v p(y n -z)} e {d}

So, by Theorem III.l, we obtain from (5):

(6) P(x n y) s p(x n z) u P(3; n -^)
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Thus <M, π , -, P> is a weak modal algebra. Next observe that
bjTjo /> v ~ p. Hence iί x e M, x u -x e {d}, i.e., x u -x = d. But in a Boolean
algebra # u -x = 1. Hence d = 1.

Conversely, let β = <M, n , -, p> be a weak modal algebra. Consider
the structure <M, {1}, n , -, P>. That < M, {1}, n , -, p> is a matrix is
immediate. We observe that β being a weak modal algebra, <M, π , -> is
a Boolean algebra. We first show that the matrix is regular by verifying
the three conditions of Definition 11.13.

(i) < M, π , -> being a Boolean algebra, M contains at least two elements.
Hence clearly {1} is a non-empty proper subset of M.
(ii) LetΛ;,;y eM. Let x = 1 and* -* y = 1. By Definition II. 5, -(AT n -3) = 1.
Hence x π -3; = 0. It follows Λ I J ; . But ΛΓ = 1. Therefore 3> = 1.
(iii) Finally suppose that x,y e M and x <=-> 3; = 1. By Definition II.6, (x -* 3;)
π (3, -> ΛΓ) = 1. Hence ΛΓ -• 3; = 1 a n d j -• Λ: = 1. By Definition Π.5, -(# n -3;)
= 1 and -(3; π -^) = 1. Hence x n -3; = 0 and 3; n -Λ; = 0. Therefore Λ;^ 3;
and y = x. Thus # = 3̂ .

Thus our matrix is regular.

We next show that our matrix verifies the axioms of Tl°. The axioms
Al, A2, A3 written in primitive notation are:

Al: ~(p*~(pAp))

A2: ~ {{ρ*q) Λ ~p)

A3: - (- (p Λ ~q) Λ — (~ (^ Λ r) A ~ ~ ( r Λ />)))

Let Λ : , 3 ; , ^€M. Then,

A l : -(x π -(ΛΓ n ΛΓ)) = -(x n -ΛΓ) = -0 = 1

A2: -((ΛΓ Π 3;) n _ΛΓ) = -((# n -ΛΓ) n 31) = .(0 n 3;) = -0 = 1

A3: -{-(# n -3;) n --(-(3; n z) n --(2 n Λ:))}
= -{ -(A: n -3;) n (-(3; n ^) n (^ n x))}
= -{(-ΛΓ u 3;) n (-3; u -^) n (^ n Λ)}

= -{(-# u 3̂) n ((-3; n z n Λ:) U (->e n z n x))}
= -{('X u 3>) π (-3; n >ε n Λ;)}

= -{(-# n -3; n >e n Λ;) U (3; π -3; n z n Λ:)}

= -0
= 1

Thus Al, A2, A3 are verified. Before proceeding to show A4 is verified
we make the following observation about weak modal algebras. Let
x,y,z e M. Then we have,

(7) ?{x n ^ P(x n z) u P(3; n -^)

Substituting -z for 3; and -y for >ε in (71,

(8) ?{x n -«) ^ P(ΛΓ n -3;) u P(-^ π —3;)

It follows immediately from (8),

(9) -{?{x n -3;) u P(3; n - ^ ) } ^ - P ( Λ ; n -^)
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whence,

(10) -P(x Π -y) π -p(y n -*) < - p ( # n -z)

Hence,

(11) -P(# n -3;) n -p(y n -z) r\ --p(# n -z) = 0

And, therefore,

(12) -p(ar π -3;) n - p ^ n -z) n P(x n -2) = 0

Now we write A4 in primitive notation:

A4: - [{-P--U n -3;) n - P - - ^ n -2)} n --p--(^ n -z)]
= -[-P(x π -3;) n -P(y n -^) n p(# n -^)]
= -0 (c/. (12))
= 1

Thus <M, {1}, n, -, P> is a matrix that verifies the axioms of Tl°
and, in addition, is regular. Note that the conditions of regularity: Defini-
tion Π.13(i), (ii), (iii) correspond respectively to the consistency of Tl°, the
rule R2 and the rule R3. Note also that the rule R1 corresponds to the rule
of substitution in algebras of which we have made no explicit mention.
Consequently our matrix verifies all the provable formulas of Tl°, i.e., it
is a Tl°-matrix. This completes the proof.

We have introduced the concept of verifiability in Section II in connec-
tion with matrices (cf. Df.II.16). We shall now extend it to algebras that are
at least Boolean, i.e., the algebra has one binary and one unary operation:
n and -, it satisfies the axioms for Boolean algebras; it may also have
other operations and other axioms.

DEFINITION III.l. An algebra (that is at least Boolean) is said to verify a
wff A of a system llsll if and only if the matrix which can be constructed
from the algebra by taking 1 as the sole designated element verifies A.

THEOREM III.4. β = <M, {d}, n, -, p> is a regular Tl -matrix ifa?ιdonly
if "CM, n, -, p> is a weak epistemic algebra and d = 1.

Proof. Let β = <M, {d}9 n, -, P> be a regular Tl-matrix. A fortiori, it
is a regular Tl°-matrix. By Theorem III. 3, <M, n, -, P> is a weak
modal algebra and d = 1. It remains to show that x ^ ? x {cf. Df. 11.20). We
have,by A5, hfjUp Dp, i.e., ϊγι~O~p D p. It is easy to deduce \γιp D Op.
Hence for x e M, x -> Px e {d}, i.e., x -> Px = 1. By Theorem III.l, x ^ Px.
Conversely suppose β = < M, π, -, P> is a weak epistemic algebra. As in
Theorem ΠI.3, <M, {1}, π , -, p> is a regular Tl°-matrix. It remains to
show that it verifies A5. We observe: Nx -* x = -P-x -* x = -(-?-x π ~χ) =
P -x u x ^ -x u x (Since -x^ P-x). So Nx -*x = 1. Hence Nx -*x = 1. This
completes the proof.

We are now in a position to state and prove our First Completeness
Theorem.
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THEOREM III.5. (First Completeness Theorem). l τ l o ( τ l ) A if and only if A
is verified by all weak modal [weak epistemic) algebras.

Proof. First suppose that \γγ>A. Let ffi = <M, π ? _? p> be a weak modal
algebra. By Theorem III.3 < M, {1}, n , -, P> is a regular Tl°-matrix, i.e.,
A is verified by β. Conversely, let A be any non-theorem of Tl°. It is
therefore not verified by the regular characteristic matrix of Theorem Π.5
which we recall has only one designated element. By Theorem III.3, the
regular characteristic matrix is a weak modal algebra and the designated
element is 1. So A is not verified by a certain weak modal algebra. Con-
sequently, if A is verified by all weak modal algebras, then fγpA

The case of Tl similarly uses Theorem II.5 and Theorem IΠ.4.

§2. THE S-SYSTEMS. In this article we shall prove completeness
theorems for the S-systems similar to those obtained for the T-systems in
the previous article. However, we shall not be able to dispense with the
notion of matrices—more appropriately, matrices with more than one
designated element—and reduce our discussion to algebras as we have done
for the T-systems. As will be revealed in the proofs of theorems that
follow, this stems from the fact that we could not prove the existence of a
characteristic matrix for the S-systems with only one designated element.
In proofs that follow we shall make frequent use of theorems of [15]. To
avoid repetition, we shall not refer to [15] when we use a theorem from
[15]: we shall simply state the number of the theorem as in [15].

THEOREM III.6. Let β = < M, D, n , -, P> be a σ-regular Sl°(SI)-matrix.
Then x =y if and only if x => y e D.

Proof. First suppose that x ^ y. Then,

(1) x^y [Hp.]
(2) x n y =χ [(l) Df.Π.lO]
(3) x => x eD [31.11]
{ϊ) x=> {x n y)eD [(2), (3)]
(5) he n y) => y eD [31.23]
(6) [(x => (x n y)) n ((x n y) => y)} e D [(4),(5);Df.Π.14(iii)]
(7) [(x => (x n y)) n ((x n y) => 3,)] = * (x => 3,) e D [30.15]
(8) x => y eD [(6),(7);Df.II.14(ii)]

Conversely suppose thatx ==> y eD. Then

(9) x=^y eD [Hp.]
(10) x => x eD [31.11]
(11) (x=>x) n (x=>y)eD [(9),(10);Df.Π.14(iii)]
(12) (x n y) => fr n y) eD [31.11]
(13) [((pc n y) => (x n y)) n ((x => x) n (x =» y))]eD

[(ll),(12);Df.Π.14(iii)]
(14) [((x n y) => (x n y)) n (x => x) n (x => 3;)] =Φ (X => (x n y)) e D

[35.22]
(15) x => (x n y) e D [(13),(14);Df.Π.14(ii)]
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(16) (x n y)=> x eD [30.11]
(17) (x => (x n y)) n ((x n y ) = > χ ) e D [(15),(16);Df.Π.14(iii)]
(18) x <=> (x n y) e D [17 Df .11.9]
(19) x=x ny [(18);Df.Π.14(iv)]
(20) x ύy [(19);Df.II.10]

THEOREM III.7. Let β =<M, D, n , -, P> be a σ-regular Sl°(SI)-matrix.
Then < M, n , -> is a Boolean algebra.

Proof. Let x,y,z e M. We have stated the axioms for Boolean algebra in §1.
We shall verify them below.

P I : By Definition Π.14(i), D is a non-empty proper subset of M. So M con-
tains at least two elements.

P2:

(1) (x n y)<=> (y n x) eD [31.21]

(2) x n y =y n x [(l);Df.Π.14(iv)]

P3:

(3) (x n {y n z)) <=> ((x n 3;) n z) e D [31.24]

(4) x n (y n z) = (x n y) n z [(3);Df.Π.14(iv)]

P4: Suppose first that x n -y = z n -z. Then,

(5) x n -y = z n -z [Hp.]

(6) (x n -y) = > ( m -y)€ D [31.11]
(7) (x n -y) => (z n -z) e D [(5),(6)]
(8) [(x n -y) => {z n -z)] <=> [-(z n -z) => -{x n -3;)] e D [31.34]
(9) (x n -y) => (z n -z) = -{z n -z) => -(x n -3;) [(8);Df.Π.14(iv)]
(10) -(z n -z) => -(x n -y) e D [(7),(9)]
(11) N[-(z n -z)]eD [34.1]
(12) [-U n -2) ==> -(ΛΓ n -3;)] n N[-U n -^)] e 2) [(10),(ll);Df.Π.14(iii)]
(13) {[-(^ n -z) => -(x n -3;)] n N[-U π -^)]}=> N[-(Λ? n -3;)] ei)

[33.31]
(14) N[-U π -y)]€Z) [(12),(13);Df.II.14(ii)]
(15) -P-[-(* n -3>)]eD [(14);Df.IL7]
(16) — (ΛΓ n -3;) <=> (ΛΓ n -3;) e D [31.32]
(17) . .(Λ; n -3;) = (ΛΓ n -3;) [(16);Df.Π.14(iv)]
(18) -?{x n -y)eD [(15),(17)]
(19) x=>y eD [(18);Df.IL8]
(20) (y n x) => (y n x) e D [31.11]
(21) [{(y n ΛΓ) => (y n x)} n (x ==> 3;)] e i) [(19),(20);Df.Π.14(iii)]
(22) [{(3; n Λ:) => (y n ^)} n (x ==> 3;)] = ^ [(Λ; n X) =Φ (X n y)] e D [35.21]
(23) (ΛΓ n AT) => U n 3;) e £> [(21),(22);Df.II.14(ii)]
(24) ΛΓ <=> U n AT) e D [31.22]
(25) Λ; =Λ n ΛΓ [(24);Df.II.14(iv)]
(26) ^ M ^ D [(23),(25)]
(27) (x n y) => xe D [30.11]
(28) (x =Φ (x n 3;)) n ((Λ: n 3;) = Φ A:) e 2) [(26),(27);Df.Π.14(iii)]
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(29) x <=> (pc n y) eD [(28);Df.IL9]

(30) x = x n y [(29);Df.Π.14(iv)]

So we have shown that if (pc n -y) = (z π -2), then x n y ~ x. Con-

versely suppose that x n 3; = #. Then

(31) * n 3,= * [Hp.]

(32) x =^ xe D [31.11]

(33) x => (x n y) e D [(31),(32)]

(34) ( x n y) = > y e D [31.23]

(35) (# => (ΛΓ n 3;)) π ( ( m ^ | ) e ΰ [(33),(34);Df.Π.14(iii)]

(36) ((x => (x n 3;)) n ((# 0 3 ; ) = ^ 3;)) = > ( ^ ^ ) ) ) e i ) [30.15]

(37) x => ye D [(35),(36);Df.II.14(ii)]

(38) (x n -{z n -z)) => x e D [30.11]

(39) {(x n -(* n -z)) => x) n (x => y) e D [(37),(38);Df.Π.14(iii)]

(40) [((x n -(2 n -^)) => x) n (A: ==> 3;)] => [(^ n -(2 n -z)) =s> y] e D

[30.15]

(41) (x n -(^ n -*)) =» 3; € D [(39),(40);Df.Π.14(ii)]

(42) -~y<=>yeD [31.32]

(43) —y = y [(42);Df.Π.14(iv)]

(44) (x n -(z n -z)) => ~y e D [(41),(43)]

(45) [(x n -y) ==> (z n -z)} ^=> [(x n - U π -^)) = > --3;] e D [32.11]

(46) (# n -3;) = > (^ n -2) = ( ^ n - ( ^ n -z)) => ~y [(45);Df.Π.14(iv)]

(47) (x n -3;) => (z n -z) e D [(44),(46)]

(48) (z n -(ΛΓ n -3̂ )) => z e D [30.11]

(49) ((2 n -(# n -3;)) =ί> ^) <=> (^ n -*) => — (Λ: n -3;)) € i) [32.11]

(50) (^ n -U π -3;)) ==> z = (z n -z) =Φ —{x n -y) [(49);Df.Π.14(iv)]

(51) (z n -z) => — (x n -y) e D [(48),(50)]

(52) --{x π -3;) <=> (x n -y) e Z) [31.32]

(53) --(Λ: n -3;) = (JC n -3;) [(52);Df.Π.14(iv)]

(54) (z n -z) => (x n -y) e D [(51),(53)]

(55) [(x n -3;) => (z n -^)] n [ U n -2) => (Λ; n -3;)] e Z)
[(47),(54);Df.II.14(iii)]

(56) (x n -3;) o k n . 2 ) e D [(55);Df.IL9]

(57) x n -y= z n -z [(56);Df.Π.14(iv)]

Thus we have also shown that if x n y = x, then x π -3; = 2 n -^. This

completes the proof.

In subsequent proofs we shall make constant use of the fact that a

σ-regular Sl°(Sl)-matrix is a Boolean algebra.

THEOREM III.8. Let β = < M, D, n, -, P> be a v-regular Sl°(SI)-matrix.

Letx,y,z e M. Then,

(A) -P(0) eD;

(B) If-P(x) e D, thenx= 0;

(C) If x e D and x % y, then y e D;

(D) 0 J D;

(E) 1 e D;

(F) P(AΓ n y) i P(ΛΓ n ^) u ?(y n -z).
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Proof. A:

(1) 0 => 0 eD [31.11]
(2) -P(0 π -0) e £> [d);Df.IL8]
(3) -P(0)eD [(2);BA]

B: Suppose that - P (x) e D. Then,

(4) -PW eD [Hp.]
(5) -P(x n -0) eD [(4);BA]
(6) ΛΓ=> 0 eD [(5);Df.IL8]

(7) x^O [(6);Th.ΠL6]
(8) x = 0 [(7);BA]

C: Suppose that x eD and x =y. Then,

(9) xeD [Hp.]
(10) xύy [Hp.]
(11) x => y eD [(10);Th.ΠL6]

(12) yeD [(9),(ll);Df.Π.14(ii)]

D: Let us assume that

(13) 0 e D.

Then, if x e M,

(14) Oίx [BA]

(15) x e D [(13),(14);Th.IΠ.8(C)]

Thus M<Ξ D. But by Definition II. 11, D QM. Hence D = M. This vio-
lates Definition II. 14(i) which says that D is a proper subset of M. So our
assumption (13) is false. Therefore,

(16) 0 iD.

E:

(17) 0 u -0 e D [34.3]

(18) 1 eD [(17);BA]

F:

(19) [(x => -z) n (-z => -y)] => (x => -y) e D [30.15]

(20) [(Λ => -z) n (-^ => -3;)] <{x => -y) [(19);Th.IIL6]
(21) -{x => -y) * -[(x => -z) n (-z => -y)] [(20);BA]
(22) — ?{x n —y) ύ-[-P(x n — z) n -?{-z n —3;)] [(21);Df.Π.8]
(23) ?{x n y) % P(x n z) u P(j> n -^) [(22);BA]

This completes the proof of Theorem III.8.

THEOREM III.9. β = < M, Z), n 3 -, p> is α σ-regular Slo-matrix if and
only if

(A) <M, n, -, p> is α weak modal algebra;

(B) D is an additive ideal of M;

(C) x = 0 ijfαwrf 0/2Z3; z/ - P W e D.
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Proof.

I. First suppose that β = < M, D, n, -, p> is a σ-regular Sl°-matrix.

Then,

(A): By Theorem III.6 it is a Boolean algebra. Hence condition (i) of Defi-

nition 11.19 is satisfied. By Theorem ΠI.8(F) condition (ii) of Definition

11.19 is satisfied. Thus < M, n, - ? p> is a weak modal algebra.

(B): We verify the three conditions of Definition 11.15. Let x,y e M.

(i) By Definition Π.14(i), D is a non-empty proper subset of M.

(ii) By Definition Π.14(iii), if x e D and y e D, then x n y e D.

(iii) Let

(1) xeD.

Then,

(2) x ί x u y [BA]

{3) x u ye D [(l),(2);Th.ΠI.8(C)]

(C): This follows immediately from Theorem III. 8(A) and Theorem III. 8(B).

II. Conversely suppose β = < M, D, π, -, p> is a matrix satisfying condi-

tions (A), (B) and (C).

We first show that |Jft is σ-regular (cf. Df. 11.14).

(i) By Definition II. 15(i), D is a non-empty proper subset of M.

(ii) Let#,3> eM. Suppose

(4) xeD,

and

(5) x => y eD.

Then,

(6) -P(x n -y) e D [(5);Df.IL8]

(Ί) x n -y = 0 [(6);(C)]

(8) xίy [(7);BA]

(9) y=xuy [(8);BA]
(10) x uyeD [(4);Df.Π.15(iii);j;€M]

(11) y eD [(9),(10)]

(iii) This is immediate from Definition 11.15.

(iv) Let x,y eM.

Suppose

(12) x <=> y eD.

Then

(13) (x =Φ y) π {y^>χ)eD [(l2);Df.IL9]

(14) {(x=>y) n (y => x)} u (x => y) e D [(13);Df.Π.15(iii);# => y eM]
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(15) {(* => y) Π (3; =>#)} U (x =>y) = x => y [BA]
(16) Λ Γ ^ j eZ) [(14),(15)]
(17) -P(x n -3;) € £> [(16);Df.Π.8]
(18) * n -3, = 0 [(17);(C)]
(19) *^:y [U8);BA]
(20) {(x => y) n (3; => #)} U (3; => x) = y => x [BA]
(21) y^xeD [(14),(20)]
(22) -?(y n -x) e D [(21);Df.II.8]
(23) y n -x = 0 [(22);(C)]
(24) yύx [(23);BA]
(25) x = y [(19),(24);BA]

This completes the demonstration of the σ-regularity of the matrix. To
prove that it is an Sl°-matrix, it now suffices to show that the axioms of Sl°
are verified. To see that 30.11 is verified, we note that:

(x n 3;) => x

= -P((#.n 3;) n -x) [Df.II.8]

= -P(0 n 3;) [BA]

= -P(O)eZ) [by (C)]

It can be similarly seen that 30.12, 30.13, 30.14 are verified. To see
30.15 is verified, we obtain from (A) (cf. Df.Π.19(ii)),

(26) ?(x n -z) ύP(x n -y) u ?{-z n --3;)
(27) -P(# n -3;) n-P(3; n-z)Z-P(x n -z) [(26);BA]
(28) (x ==> y) π (3; => z) < (x => z) [(27);Df .11.8]
(29) ί(x => y) n (y => z)} n -(x => z) = 0 [(28);BA]
(30) -p[{(* => y) n (y => z)} n -(x => z)] e D [(29);(C)]
(31) {(* =^3^) r\ {y => z)} => (x => z) e D [(30);Df.Π.8]

This completes the proof of Theorem III.9.

THEOREM III. 10. β = <M, D, n , -, P> is a σ-regular Sl-matrix if and

only if

(A) <M, π , -, P> is a weak epistemic algebra]
(B) D is an additive ideal of M\
(C) x - 0 if and only if - P (x) e D.

Proof. First suppose that β is a σ-regular Sl-matrix. A fortiori, by Defi-
nition 11.17, it is a σ-regular Sl°-matrix. By Theorem ΠI.9, conditions (B)
and (C) are satisfied. To show condition (A) is satisfied, it remains to
show, by Theorem IΠ.9, that x ^ Px. By 36.0, x => Px e D. Hence, by
Theorem III.6, x ύ Px.

Conversely suppose β = < M, D, n , -, p> satisfies conditions (A), (B),
(C). Since all weak epistemic algebras are weak modal, a fortiori, β satis-
fies conditions (A), (B), (C) of Theorem IΠ.9. Hence, by Theorem III.9, ^t
is a σ-regular Sl°-matrix. It remains to show that the matrix verifies 36.0.
By condition (A) (cf. Df.II.20)# % Px. By Theorem III.6, x => Px e D.
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THEOREM III. 11. (First Completeness Theorem). lSi°(si) A if and only if
A is verified by all matrices β = <M, D, n9 -? p> such that

(i) <M, n , -, p> is a weak modal {weak epistemic)algebra;
(ii) D is an additive ideal of M;

(iii) x = 0 if and only if - P (x) e D.

Proof. First suppose that ĥ p A. Let ̂ H satisfy the three conditions enu-
merated above, By Theorem III.9, β is aσ-regular Sl°-matrix, i.e., A is
verified by β. Conversely, let A be a non-theorem of Sl°. It is therefore
not verified by the σ-regular characteristic matrix of Theorem II.7. By
Theorem ΠI.9, the characteristic matrix satisfies the three conditions of
our theorem. So A is not verified by a certain matrix satisfying our three
conditions. Hence if A is verified by all matrices which satisfy (i), (ii),
(iii), then ^ A , The case of SI similarly employs Theorem Π.7 and
Theorem ΠI.10.

IV. SECOND COMPLETENESS THEOREM: DECISION PROCEDURES

We have now established all the necessary apparatus to prove the main
theorem (Theorem IV. 1) of our paper which, finally, will lead to decision
procedures for the systems concerned. From our point of view the theorem
is the main lemma to establish the decidability of our systems; but it has a
purely independent interest in the theory of Boolean algebras with opera-
tors. We shall call this theorem the Finite Embedding Theorem. It
should also be noted that given any propositional logic to show it is
decidable it is sufficient to establish a correlation between it and the
appropriate kind of algebras—the theorem which does this we have called
the First Completeness Theorem—and then to prove a Finite Embedding
Theorem for these algebras. This may be termed the ''algebraic method".

§1. THE T-SYSTEMS.

THEOREM IV. 1. (Finite Embedding Theorem). Let β = < M, n , -, P> be
a weak modal (weak epistemic) algebra, and let ai, a2, ,ar be a finite
sequence of elements of M. Then there is a finite weak modal (weak
epistemic) algebra βx = < Ml9 nl9 -l9 P±> with at most 2 2 f + 2 elements such
that

(i) for 1 ̂ i^r, ai e Mλ]

(ii) for x,y e M l 5 x n x y = x n y;

(iii) for x e Mu -±x = -x\
(iv) for x e Mx such that Px e Ml9 Pλx - Px.

Proof. Let Mx be the set of elements of M obtained from PO, Pi,
«!, a2,... ,ar by any finite number of applications of the operations - and n .
Then from the theory of Boolean algebras we know that < Ml9 π , -> is a
Boolean algebra and that Mi has at most 22 elements. We put nl9 - x

equal to n , - restricted to Mi. Then, trivially, <MX, π b - x > is a Boolean
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algebra with at most 22 elements. It is also immediate that (i) - (iii) of
the theorem are satisfied. We now propose to define an operation Px on Mx.

We introduce some terminology and notation. The symbols
Ai(i = 1,2, . . .) shall denote non-empty subsets (proper or improper) of Mx.
Note that since Mx is finite the number of elements in any A; is finite. If
Ai ={xi, x2, ,%n) (n^22 ) where xu x2,... 9Xn are distinct members of
Ml9 by definition we set

PAi equal to Pxί u Pχ2 u . . . u ?xn.

Observe that PAj is an element of M. We say that an element x of Mx is
covered by Ai = {xu x2, . . . , xn) if ?xl9 Px2,..., Pxn^Mι and P# ̂  PA/. It is
to be noted that if x e Mt and Ai covers x, then PAi e Mt; because it follows
from the definition of covering that if Ai = {xu x2, . . . , xn}9 then Pxl9

Px2,..., Pxn e ML; and hence PA/ = P ^ u P#2 U . . . u ?xn e M l t

Now consider the set {1,0}. Clearly {1,0} Q M1# We next notice that by
our construction P0, P i e Mx. Further, since M is a weak modal algebra
and M i ί M , by Theorem II.2, for ΛΓ e M1? we have P # ^ P 1 u P0, i.e.,
P# = P{l,0}. Hence, by the definition of the preceeding paragraph, every
element of Mx is covered by some non-empty subset of M1#

Next, let x e Mλ. Observe that M1 has only finitely many distinct sub-
sets. Let Ai, A2, . . . 9Am be those non-empty subsets of Mx that c o v e r t .
We then set

(1) ?xx = PAX n PA2 n ... n PAm

As remarked earlier, since the A* 's (ί = 1,2,..., m) cover x and x eMl9

PAi (i = 1,2, . . ., m) e Mx. Hence PAi n PA2 n ... n PAm e Mλ. Conse-
quently, from (1), PiΛΓ e Mx.

Further, since x is covered by A, (i = 1 , . . . ,m), Px= PAi (i =
1,2, . . . , m). Hence Ptf^PAi n PA2 n . . . n PAW . Therefore, from (1),

(2) PΛ: i P ^

It is important to note that (2) holds in general, i.e., we have made no
presupposition about P x: it may or may not be an element of M2.

We now wish to show that condition (iv) of our theorem is satisfied.
Let xeM1 such that PxeM^ Consider the set {x}. Clearly {x} <Ξ Ml9

Pxe Mi and Px^ P{x} = Px. So {x} covers x. Let Bu . . . , Bkbe the other
non-empty subsets of M1 which c o v e r s . Then from (1), we get,

(3) Pxx = Px n P^i n . .. n PBk

By Boolean algebra,

(4) ?λχ% Px

From (2) and (4) we conclude,

(5) Px= Pλx

Thus (iv) is satisfied. It remains to show that if β= < M, n , -, P> is
a weak modal (weak epistemic) algebra, then βx = < Ml9 nl9 -l9 P x > is a
weak modal (weak epistemic) algebra. To avoid a notation that would be
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cumbersome we cease to distinguish between π 1 ? -α and π , - since n 2

and - ! are merely the restrictions of n and - to Mx.

We begin with weak modal algebras. We have already seen that

<M1, nl9 - ! > is a Boolean algebra. We have therefore only to show that

for x,y,z e Mi,

(6) Pλ{x n y) ^ Px{x n z) u Px(;y n -z)

Let:

x n y be covered by A1} . . . , Ar

x n z be covered by Bu .. ., Bs

y π -2 be covered by C 1 ? . . . , C*

Then, by definition (c/. (1)),

(7) Pi(Λr 031) = RAi n . . . n PAr

(8) PiίΛΓ n ^ r P ^ n , , , n PBS

(9) Pi(3; n -s) = P d n . . . n PC,

From (8) and (9) it follows by the dual distributive law of Boolean

algebra that

(10) Pλ(x n z) u Pi(y π -^)

= (P^i n . .. n P5S) u ( P d π . . . n PCr)
= (PBi u Pd) n (P5X u PQs) n . . . n (P5S u Pd)

Now, let:

(11) Bi = ki,#2, . . . ,^}

(12) d = \yi,y*, ,yw)

Since ^ covers A; Π ^ and Cx covers 3̂  π -^, we get,

(13) P{x n z) ^PBX

and

(14) ?(y n -z) i P d

From (11), (12), (13) and (14) we get,

(15) P d n z l ^ P ^ υ Pi 2 u . . . υ Pxυ

and

(16) P(y π -^) ^ p ^ u Py2 u . . . u Pyw

Since f̂t is a weak modal algebra,

(17) P(x n y) ^ P(χ n z) u p(y n -Z)

We conclude, from (15), (16) and (17),

(18) P(x n y) ^ ?χλ u . . . u Pxv u P ^ u . .. u P^.

Now let zl9 . . . , Zp be the distinct elements of xl9 ... ,xv, yl9 . . . ,yw>

Then, obviously, P^x, P^2, Pzp e Mλ. And
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(19) ?(χ n ^ P 2 l υ P ^ u , , . u ?zp

We define:

(20) D = { z l 9 . . . , z p }

It follows from the foregoing remarks that D covers x n y. We there-
fore conclude that D is one of the A/s (i = 1,2,... ,r). It is then immediate
that

PAX n . .. n PAr ^PD
i.e., PAi π . .. n PAr ^ Pzx u .. . u ?zp

i.e., PAi π . .. π PAr i P ^ i u . . . u P^ u P^ u .. . u P ^
i.e., PAi π . . . n PAr ^PBλ u P d

From (7), it follows,

(21) Pifc n yJiίPBi u Pd)

It can be seen in an exactly analogous manner that

Pi(* π y) ^ ( P 5 X u PC2)
* * *

(22) * * *
* * *

Pi(# n 3;) ^ ( P 5 S u PC,)

(21) and (22) gives us

(23) ?x(x n y) ^(PBλ u P d ) n (PBλ u PC2) π . . . n (PBS u PC f)

From (10) and (23) we finally conclude,

(24) PxU n j ) ^ PXU n s) u P ^ n -^)

So < Mi, n 1 ? -1? Px> is a weak modal algebra.

For weak epistemic algebras, we need to show that, given x= ?x, then
x = ?xx. But by (2), ?x ^ ?λx, whence x = ?χX. This completes the proof.

DEFINITION IV. 1. By a subformula of a wff A we mean a wff which occurs
as a part (proper or improper) of A.

THEOREM IV.2. (Second Completeness Theorem). Let A be a wff with r
subformulas. Then lT 1o ( T 1 ) A if and only if A is verified by all weak modal
[weak epistemic) algebras with at most 22r elements.

Proof. If lT 1o ( T 1 ) A, then by Theorem III.5 (First Completeness Theorem),
A is verified by all weak modal (weak epistemic) algebras. A fortiori, A is
verified by all weak modal (weak epistemic) algebras with at most 22T+2ele-
ments.

Conversely suppose that A is a non-theorem of T1°(T1) with r sub-
formulas. Then A is not verified by the appropriate regular characteristic
matrix of Theorem II.5, say β. = < M, {1}, n, -, P>. Let the propositional
variables in A be vu υ2, . . . , vn and let al9 a2,... ,an be elements of M which
form an assignment to vl9... υn which does not verify A. Suppose that for
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this assignment the values of the subformulas of A other than vi, V2, , υn

are an+1,. . . ,ar. We may assume that the last such subformula is A itself,

so that ar ^ 1. By Theorem III.3 and Theorem III.4, <M, n, -, P> is a

weak modal (weak epistemic) algebra so that by Theorem IV. 1 there is a

finite weak modal (weak epistemic) algebra βι with at most 2*r elements

satisfying the four conditions of that theorem. By condition (i), we can

consider the same assignment al9 . . . ,an to vh . . . ,vn in the matrix β±. By

conditions (ii) - (iv), it is clear that this assignment assigns the same value

to A in βι as it assigned mβ, namely ar ^ 1. Thus A is not verified by βλ.

Consequently if A is verified by all weak modal (weak epistemic) algebras

with not more than 22r elements, then l τ l o( T 1 ) A. This completes the

proof.

Theorem IV.2 gives us a decision procedure for T1°(T1): Let A be a

given wff. Then the number, r, of its subformulas can be found in a con-

structive way. Now all weak modal (weak epistemic) algebras with not

more than 22r+ elements can be constructed. Then we can determine, again

by a constructive method, whether A is verified by all these algebras. If it

is verified by all of them, then, by Theorem IV.2, it is a theorem. If not, it

is not a theorem. We thus have,

THEOREM IV.3. The systems Tl° and Tl are decidable.

§2. THE S-SYSTEMS. We shall now obtain decision procedures for the

S-systems. The method is essentially the same as that of the previous

section. So we shall use the terminology introduced in Theorem IV. 1.

However, additional complications set in because of the designated elements

in a σ-regular Sl°(Sl)-matrix.

THEOREM IV.4. {Finite Embedding Theorem). Let β = <M, D, n, -, P>

be a σ-regular Slα'(SI)-matrix, and letaly a2, . . ,ar be a finite sequence of

elements of M. Then there is a finite σ-regular S1°(S1)-matrix βλ = <Ml9

Di, n 1? -i> pi > with °>t most 22r+2 elements such that

(i) for 1 ύi ύr, ai e Mΰ

(ii) for x,y e Ml9 x n1 y = x n y;

(iii) for x e Ml9 ~χX = -x;

(iv) for x e Mx such that ?x e Ml9 ? ±x = ?x\
(v) for x e Mi, if x e Dl9 then x e D.

Proof, By Theorem III.8 and Theorem III.9, <M, n, -, P> is a weak

modal (weak epistemic) algebra. By Theorem IV. 1, there is a finite weak

modal (weak epistemic) algebra with at most 22r elements such that con-

ditions (i), (ii), (iii), (iv) are satisfied.

To avoid needless repetition we shall assume that we have made a

construction analogous to that of Theorem IV. 1. We set

(1) Dι to be equal to the intersection of D and Mlβ

Then, clearly (v) is satisfied. It remains to show that^ίi is a σ-regular

Sl°(SI)-matrix. In order to do this, we verify the three conditions of
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Theorem III.9 (Theorem III.10). We have already seen that (A) is satis-
fied.

(B): (i) By Theorem IΠ.8(E), 1 e D. Also, clearly, 1 e Mx. Hence by (1)
1 e A By Theorem ΠI.8(D), 0 d D. Hence, by (1), 0 lD±. Also, clearly,
0 e Mx. So Dλ is a non-empty proper subset of Mx.
(ii) Next, if AT e A and y e Dl9 by (1), x e D, x e Ml9 y e D and y e Mx. Hence,
since β is σ-regular (c/. Df. 11.14), x n y e D; also, clearly, x n ye M1#

By (1), # n 3> e A
(iii) Finally, if x e A and 3; e M1? then i e D and y e M. By Theorem IΠ.9
(Theorem III.10), D is an additive ideal of M. By Definition Π.15(iii),
x u y e D. Also, obviously x u y e M1# Hence, by (1), x u y e Dlt

This shows that (B) is satisfied.

(C): We first show that -iPi(O) e A We have already seen that conditions
(i) - (v) of our theorem are satisfied. Since 0 e Mt (obviously) and P(0) e M1

(by construction), by (iv), we conclude, P(0) = Pi(0). By (iii), -P(0) =
-iPi(O). By Theorem IΠ.8(A), -P(0) e D. Hence -iP^O) e D. Also P(0) e Mx

and hence -P(0)eMi. Since -P(0) = -ι?ι (0), - x Px(0) e Mi. We conclude
from (1), -iPi(O) e A Next suppose that -1P1W e A Then -iPi(ff) eD.
We know that Px^ ?λx (c/. Th.IV.l(2) and the remark that follows). Hence
-PI(AΓ) ^ -P(AΓ). Since Pi(λτ) e Ml9 -P1(x) e Mλ and therefore -IPI(AΓ) = -PI(ΛΓ).

Hence -IPI(AΓ) ^ -P(x). By Theorem III.8 (C), -P(x) e D. By Theorem
III.8 (B), x= 0. Thus (C) is satisfied.

This completes the proof of Theorem IV.4.

THEOREM IV.5. (Second Completeness Theorem). Let A be a wff with r
subformulas. Then l s lo ( s l ) A if and only if A is verified by all matrices
β = <M, D9 n, -? p> with at most 22r+2 elements such that

(i) <M, n, -, P> is a weak modal (weak episternic)algebra;
(ii) D is an additive ideal of M;

(iii) x=0ifandonlyif-P(x)eD.

Proof. First suppose that 1S1O(S1) A. Then by Theorem III.11, A is verified
by all matrices which satisfies the three conditions of our theorem. A
fortiori, it is verified by those matrices which have at most 22r elements.

Conversely, suppose A is a non-theorem of S1°(S1). Then A is not
verified by the appropriate σ-regular characteristic matrix of Theorem
III.7, say, β = < M, D, n , -, p > . Let the propositional variables in A be
vu v2,. . . , vn, and let a19... ,an be elements of M which form an assignment
to vί9... 9vn which does not verify A. Suppose that for this assignment the
values of the sub-formulas of A other than vί9..., vn are αw+1, . . . , α r .
Without loss of generality we can suppose that ar I D.

Then we see, by Theorem IV.4, that there exists a finite σ-regular
S1°(S1)-matrix βλ = < Ml9 Dl9 n 1 } -l9 P x > with at most 22r+ elements such
that

(i) f o r \ ^ i ^ r 9 aι e Mx;

(ii) for x9y e Mi, x Πi y = x n y;
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(i i i) f o r x e Mi, -χx = -χ\

(iv) f o r x e M1 s u c h t h a t Px e M1} Pλx = ?x;

(v) for x e Mu if x d D, then x I Dλ.

By condition (i), we can consider the same assignment au ck, . . . , an to

vi, . . . , vn in the matrix βi. By conditions (ii) - (iv), it is clear that this

assignment assigns the same value to A in βx as it assigned in β. i.e., ar.

By condition (v), ar k Dλ. Thus A is not verified by β±. But βλ is a

σ-regular Sl°(Sl)-matrix. By Theorem III.9 (Th. III.10), it satisfies the

three conditions of our theorem. Thus A is not verified by a certain matrix

with at most 22 elements which satisfies the three conditions of our

theorem. Hence if A is verified by all matrices with at most 2 elements

satisfying our three conditions, then >sio(si)^ This completes the proof.

It follows from Theorem IV.5 {cf. remarks following Th. IV.2) that

THEOREM IV.6. The systems Sl° and SI are decidable.

V. S2 AND S4°

§1. THE SYSTEM S2. The motivation for including a decision procedure

for S2 has been explained in the introduction. The results of this article

viewed as a whole are not new. However, in the course of our proofs, we

shall give a characterization of σ-regular S2-matrices. This characteriza-

tion, to the best of our knowledge, is new1.

THEOREM V.I. There exists a σ-regular characteristic matrix for S2.

We omit the proof of Theorem V.I. Its proof can be obtained by re-

peating, almost verbatim, the proof of Theorem II.7.

THEOREM V.2. β = <M, D, n , -, P> is a σ-regular S2-maίrix if and only

if
(A) <M, Π, -, p> is a weak epistemic algebra,

(B) D is an additive ideal of M;

(C) x = 0 if and only if - P (x) e D;

(D) PO^P*.

Proof. First suppose that ^ is a σ-regular S2-matrix. A fortiori, it is a

σ-regular SI-matrix. By Theorem III. 10., conditions (A), (B) and (C) are

satisfied. Next, by 40.1, ?(x n -x) => Px e D, i.e., P0 => Pxe D. By

Theorem III.6., P0 ^ PAT. Conversely suppose β = < M, D, n, -, P> satis-

fies conditions (A), (B), (C) and (D). It thus satisfies conditions (A), (B) and

(C) of Theorem III. 10. By Theorem III. 10., β is a σ-regular SI-matrix. It

remains to show that the matrix verifies 40.1. Let x,y e M. Then2,

(1) [((y n x) => y) n P(y n x)] => p(χ) € D [35.32]

(2) [-P((y n x) n -y) n p(y n x)] = » P(x) e Ώ [(D Df.Π.8]

(3) [-P(O) n P(χ n y)] => p(χ) e D [(2);BA]

(4) - P ( 0 ) n p(χ ny)^p(χ) [(3);Th.ΠL6]

(5) P(x n y)ύ?(0) u P(x) [(4);BA]
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(6) P(O)iPU) [(D)]
(7) P(O) u ?(x)= P(x) [(β) BA]
(8) P(x n y)z p(χ) [(5),(7)]
(9) PM^p(i)eD [(8);Th.ΠL6]

This completes the proof.

THEOREM V.3. (First Completeness Theorem). ^A if and only if A is
verified by all matrices β = <M, D, n ? -? p> such that

(A) <M9 n9 -} p> is a weak epistemic algebra;

(B) D is an additive ideal of M;
(C) x = 0 if and only if - P (x) e D;
(D) PO=iP#.

We omit the proof. The proof is similar to that of Theorem III.ll: we
employ in our case Theorem V.I and Theorem V.2.

THEOREM V.4. (Finite Embedding Theorem). Let β = <M, D, n, -, P> be
a σ-regular S2-matrix, and let al9 a2,... ,ar be a finite sequence of elements
of M. Then there is a finite σ-regular S2-matrix β± = <M 1 ? Dl9 π 1 ? - 1 ? px>
with at most 22r elements such that

(i) for 1 ^ i^r, α, e ML;
(ii) for x,y e Mu x nλ y = x n y;

(iii) for x e Mu -x x = -x;
(iv) for x e Mx such that Px e Ml9 Pλx = Px;

(v) for x e Mi, Z/ΛΓ e A, then x e D.

Proof, β is a σ-regular S2-matrix. It is then, of course, a σ-regular Si-
matrix. By Theorem IV.4., there is a finite σ-regular SI-matrix ^Hi =
<Mi9 Du nl9 -l9 p x > with at most 22r+ elements such that (i) - (v) is
satisfied. We now want to show that ^ i is a σ-regular S2-matrix. In order
to do this we shall demonstrate that conditions (A), (B), (C), (D) of Theorem
V.2 are satisfied. Since βί is a σ-regular Sl-matrix, by Theorem III.10
conditions (A), (B) and (C) of Theorem V.2 are satisfied. It thus remains to
show that (D) is satisfied, i.e., for x e Ml9 Pi(0) ^Pλ(x). Since ,111 is a
σ-regular S2-matrix, by Theorem V.2 we have, P0 ύ Px. In the course of
proving Theorem IV.4 we have seen that P(0) = Pi(0). By Theorem IV.1(2),
Pxύ Pχ(x). From these facts we conclude: Pi(0) ύ P1(x). This completes
the proof.

THEOREM V.5. (Second Completeness Theorem). Let A be a wff with r
subformulas. Then k^A if and only if A is verified by all matrices β =
< M, D, CΛ9 -, P> with at most 22r elements such that

(i) < M, π, -, p> is a weak epistemic algebra;

(ii) D is an additive ideal of M;
(iii) x = 0 if and only if - P (x) e D;
(iv) P0 ^ PΛΓ.

We omit the proof. The proof is obtained by imitating the proof of



DECISION PROCEDURES 173

Theorem IV.5. We employ here Theorem V.I, Theorem V.2, Theorem V.3,

Theorem V.4. As an immediate corollary we get,

THEOREM V.6. The system S2 is decidable.

§2. THE SYSTEM S4°. The system S4° is due to Sobociήski3. It is obtained

by adding to the system Sl° the axiom:

60.01. OOp H Op

It is well-known that S2° is a sub-system of S4°. We mention this because

we shall use theorems of S2°proved in [15] in connection with S4°-matrices.

THEOREM V.7. There exists a σ-regular characteristic matrix for S4°.

We omit the proof.

THEOREM V.8. β = < M, D, n ; _, p> i s a σ-regular S4°-matrix if and

only if

(A) <M, π, -j p> isα weak modal algebra',

(B) D is an additive ideal of M;

(C) x = 0 if and only if - P (x) e D;

(D) PPx^Px.

Observe how we have extended Theorem III.9. to Theorem III. 10. The-

orem V.8 can be obtained in a similar manner from Theorem IΠ.9. We

omit the obvious details.

THEOREM V.9. (First Completeness Theorem), hpo A if and only if A is

verified by all matrices M = <M, D, n, - ? p> such that

(A) <M, n, -, P> is a weak modal algebra;

(B) D is an additive ideal of M;

(C) x = 0 if and only if - P (x) e D;

(D) P P # ^ P # .

We omit the proof.

THEOREM V.10. (Finite Embedding Theorem). Let β = <M, D, n, - ? p> be

a σ-regular S4°'-matrix and let a1} a2,... ,ar be a finite sequence of ele-

ments of M. Then there is a finite σ-regular S4°-matrix βx = <MU Dl9 nl9

-i, Pχ> with at most 22r elements such that

(i) for I ύi^r, ai e Mx;

(ii) for x,y e Ml9 x nιy = x n y;

(iii) for x e Mu -xx = -x-}

(iv) for x e M± such that Px e Mί9 Pxx - Px;

(v) for x e Mu if x e Du then x e D.

Proof: We shall assume that we have made a construction similar to

Theorem IV. 1. supplemented by constructions similar to Theorem IV.4. It

is easy to see, by Theorem V.9, that the only thing that remains to be shown

is PiPxΛΓ^P^. Let * be covered by AlyA2,. ..,An. Then
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(1) Pxx = PAX n PA2 n . . . n PAn

Let P1x be covered by Bu B2,..., Bp Then

(2) Pj ?λx = PBX n PB2 n . . . n PBP

From (1), it follows, by BA,

(3) ?lX ύPAt

Let:

(4) Aλ = [xux2,... ,#s}

From (3) and (4) we get,

(5) ?xχ ^ ?xx u P%2 u . . . u Pxs

β is a σ-regular S4°-matrix and hence a σ-regular Sl°-matrix. Hence

from Theorem III.6.,

(6) ?yχ =̂ > (?x1 u Px2 u . . . u PΛΓS) e D.

(7) ( p l Λ : = ^ ( P ^ u . . . u PΛ:S)) <=> [P^<=> ( P ^ n ( P ^ u . . . u P^s))]eD
[45.21]

(8) ?iX => (Pxί u . . . u PΛ:S) = P ^ <=> ( P x x n ( P ^ u . . . u Pxs))

[(7);Df.II .14(iv)]

(9) P±x<=> (P,x n (PXl u . . . u PΛ:S)) e D [(6),(8)]

(10) PiΛr= PxΛΓ π (PΛΓ! U . . . U PΛ;S) [(9);Df.Π.14(iv)]

(11) P(Pi^ n (PAΓ! U . . . u P^s)) => P(P^X u . . . u P^s) e £> [41.3(3)]

(12) P P l Λ ; =ί> P(P#i u . . . u P^ s)eZ) [(10),(ll)]

(13) P(PΛΓχ u (Px2 u . . . u Pxs)) <=> (??X! u P(PΛ:2 U . . . U PΛ:5)) e Z)

[44.4]

(14) P(P#i u (Px2 u . . . u Pxs)) = PPΛ I U P(PΛΓ2 U . . . U PXS)

[(13);Df.Π.14(iv)]

Proceeding in a similar vein, we finally get,

(15) P(P#i u . . . u Pxs) = PP^i u . . . u PPΛΓS

From (12) and (15) we conclude,

(16) :PP I Λ Γ => PP*! u . . . u PPΛ;S eD

(17) PPxtf^PPtfi u . . . u PPΛ:S [(16);Th.IΠ.6]

Since f̂ί is a σ-regular S4°-matrix, by Theorem V.8(D),

(18) P P x i %PXi ( i = 1 , 2 , . . . , s )

From (17) and (18),

(19) PPiΛ:^ P ^ υ . . . u PΛ;S

From (4) and (19) we conclude,

(20) PP1x^PA1

It follows from (20) that Ax covers PjΛΓ. Then A1 is one of the B/s (i =

1, 2, . . . ,/>). Hence,
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(21) PBi n PB2 n ... n PBP ύPAλ

Hence, from (2),

(22) ?1?1x^PA1

In an exactly similar manner we deduce,

(23) ?x?lX i k P A i ( i = 2 , 3 , . . . , n )

From (1), (22) and (23),

(24) PiPitfiPj*

This completes the proof of Theorem V.10.

THEOREM V.l l . {Second Completeness Theorem.) Let A be a wff ivith r

subformulas. Then t^A if and only if A is verified by all matrices β =

<M, D, π , -, p> with at most 22r^2 elements such that

(i) <M, π , -, p> is a weak modal algebra;

(ii) D is an additive ideal of M;

(iii) x = 0 if and only if -?(x) e D;

(iv) P P # ^ P # .

We omit the proof. As a corollary we have,

THEOREM V.12. The system S4° is decidable . 4

NOTES

INTRODUCTION

1. For an explanation of the term "decision procedure" and discussions concerning
it, cf. [10], pp. 99-100.

2. For just two of them, variants of Kalmar's method, cf. [43] and [44].

3. An exposition of the method is to be found in [10], pp. 97-99.

4. To be accurate, we should mention that sometimes we can even start with an
infinite matrix and give axioms and rules such that the theorems coincide with
the wffs verified by the matrix, cf. [12], But in order to be able to do this the
infinite matrix has to be especially " n i c e " .

5. Cf. [31].

6. Cf. [11].

7. Cf. [17].

8. Cf. [33].

9. The term '* deducibility problem" was proposed by Church in order to distinguish
it from the decision problem. Cf. [10], p. 100, n. 184.
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10. Cf. [20], p. 8. "We shall say that a calculus P has the finite model property if
there is a finite model counter-example to each non-provable formula of P, that
is, given an arbitrary unprovable formula X of P, there is a finite model of P in
which X is not valid' \ For a fascinating general survey of problems connected
with the finite model property cf. [22].

11. Cf. [16].

12. C/. [20] and [21].

13. Cf. [3], [4], [5], [6], [7], [9], [13], [18], [28], [29], and [30]. For applications to
algebra and topology cf. [34] and [35].

14. Cf. [24], [25], and [26].

15. Cf. [37], [38], and [39]. cf. also [47].

16. Cf. [32], [37], and [38].

17. Cf. [1], [2], [19], and [40].

18. Cf. [46], p. 53.

SECTION I

1. For a description of the systems SI and S2, cf. [31], pp. 122-178, 492-502. Sl°
and S2° are proper subsystems of SI and S2 respectively. They were introduced
in [14]. For a detailed account cf. [15], pp. 43-78. Also cf. [46].

2. Cf. [27], p. 180

3. Cf. [29] and [30]. Lemmon does use ''essential techniques" to extend his
results from, say, E2 to S2. But if our main interest is decidability the same
results can be obtained in a straightforward manner at the expense of elegance.

4. Cf. [29], p. 47.

5. Cf. [30], p. 200, Theorem 20(ii).

6. Cf. [42], pp. 55-56. Note, however, that we use proper axioms, not axiom schemes
as in [42].

SECTION II

1. Cf. [34], pp. 145-146, Definition 1.1, also cf. [35].

2. Cf [33].

3. Cf. [36].

4. Cf. [34].

5. Cf. [34], pp. 147-150.

6. For a study of Boolean algebra with operators with a purely algebraic motivation
cf [23].

7. Cf. [28] where extension algebras are introduced to study the system T. Cf. [29]
and [30] where there is an abundance of such algebras.

8. Cf. [29], p. 49, Definition 1.

9. Cf. [29], p. 53, Theorem 9.
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10. Cf. [29] and [30].

11. Definitions Π.3-II.18 are obvious adaptations of definitions found in the literature.
See especially [29] and [33].

12. The algebra described here is derived from the matrix of group V, p. 494, [31].
Since we are concerned with algebras and not matrices the designated elements
play no role.

13. Compare the definition of epistemic algebras in [29], p. 54.

14. The algebra described here is derived from the matrix K^ of [29], p. 64. The
remark made in note 12 above also applies here.

15. Cf. [29], p. 50, Theorem 7.

16. Cf. [33], p. 122.

17. This matrix is that of group V, p. 494, [31].

SECTION III

l . cf. [si

SECTION V

1. Compare Theorem V.2 with Theorem 3, p. 120 [33].

2. The proof that follows bears a certain resemblance to the deduction in [45] where
it is proved that {SI, O(£ Λ ~ p)^Op} ^ {S2}. Note, however, that the deduction
in [45] is logistical whereas here it is algebraic.

3. Cf. [46].

4. A GENERAL NOTE ON SECTION IV AND SECTION V

Of the systems treated in the work-Tl°, Tl, Sl°, SI, S2, S4°-the Second
Completeness Theorem can be somewhat strengthened for Tl , SI, and S2. First
note that the algebras related to the system are weak epistemic algebras; and
for such algebras we have x ^ PΛΓ. Hence 1 = Pi. Thus Pi = 1 . So in the Finite
Embedding Theorem for weak epistemic algebras we need not stipulate that P0
and Pi be included in the construction of Mλ. They were included because we
wanted to be sure that every element of M1 was covered by some non-empty
subset of Mχ; but here it is easy to see that if x e Mi, then x is covered by {l}
and, of course, {l} C Mχ. So for Tl we can replace 2s by 2 2 r . But for the
systems SI and S2 although it is true that every element of Mx is covered by {l}
it is necessary to include P0 in the construction of M\ for other purposes. Con-
sequently, for SI and S2, we can replace 22 by 22
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