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INCIDENCE RINGS OF PRE-ORDERED SETS

W. RUSSELL BELDING

Intvoduction. In this paper* every relation = on a set X is a binary relation
which is transitive and reflexive. G. C. Rota [2] has defined incidence
rings of partially ordered systems (X, =). We generalize these rings by
dropping the anti-symmetric condition on the order =.

If X is a set and £ a binary relation on X, then (X, =) shall denote this
relational system, We say that (X, =) is a pre-ordered relational system if
the_relation, = is transitive and reflexive. If confusion is unlikely, then we
shall often take - the liberty of using the relation = to denote the usual
ordering of the natural numbers and also to denote a relation on'a set X.
Unless otherwise stated 0,1 should be understood to be real numbers. To
each relational system (X, =) there is a unique zefa function; {, mapping
X x X into {0,1}. For x, ye X, (x,y) = 1, if x =y and {(x,y) = 0 otherwise.
In the context of a relation system (X, =), [x,y] = {ue X[x Su =y} is an
intevval and (X, =) is locally finite iff every such interval is empty or a
finite set. :

We shall consider only rings R which have a multiplicative identity;
rings may or may not be commutative. We do not assume any relationship
between the rings.R and sets X we discuss. The symbol R* denotes the set
of units of the ring R; the function det is the determinant function. If #is a
positive integer, then M(n; R) .denotes the complete ring of n x n matrices
over the ring R. If X is any set, then Sx denotes the group of permutations
of the set X; for positive integers n, S,denotes Sy,

For a given ring R and locally finite pre-ordered system (X, <), the
incidence rving I=(X, s, R) is set—theoretically the set of functions f
mapping X X X into R satisfying the following ordev condition. For every
x, ye X, flx,y) # 0 only if x =y. Multiplication, addition and scalar multi-
plication for incidence rings are defined in section 1. If [x,y] is a

*This paper forms part of the author’s dissertation, written under the direction
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non-empty interval and if =| is the relation = restricted to the set [x, y],
then the interval ving I[x,v] of I is the incidence ring ([x,y], =, R). In
general I[x,y] is not isomorphic to a subring of I. The zeta function ¢ of
(X, =) is in I and if ¢ has an inverse, say p, then p is the Mdbuis function
of I. To indicate that f is a function mapping the set X into the set Y we
often write f: X — Y. If xe X, yve Y and f(x) = y we often write x 7y to
indicate the action of f. If (X, =), (Y, £') are relational systems and fis a
bijective map f: X — Y such that x =y iff f(x) =’ f(y), then these relational
systems are isomorphic by the function f.

Of the various sorts of orderings which may be defined on a set partial
orderings are the ones which have been studied in greatest detail. The
reason for this is simple. Where natural orderings arise on a mathemati-
cal structure they are often ‘less than or equal to’ type orderings which are
partial orderings. However, there are orderings of some interest which
are reflexive and transitive but not necessarily antisymmetric. Pre-
ordered relational systems arise, for example, whenever a topology is
defined on a finite set or whenever a topology in which arbitrary inter-
sections of open sets are open sets is defined on a set. Incidence rings, the
study of which has been made important for the foundations of Combina-
torial Theory by G. C. Rota [2] are examples of structures defined
originally using a partial ordering but where the structures do not
collapse or become insignificant when the antisymmetry property of the
order is dropped.

The study of incidence rings of a locally finite pre-ordered relational
system (X, =) is related to the study of enumeration problems associated
with the order = and to the study of inversion formulas for certain functions
on the sets X and X x X. The zeta function ¢ of an incidence ring /=
(X, 5, R) precisely describes the relational system (X, =) and the inverse
of £, when it exists, is the Mobuis function of the ring.

By way of example consider the position integers N ordered by
division |, (W, |) is a locally finite partially ordered system. The zeta
function of the incidence ring of (A, ¥ over, say the real numbers, is

Eim,n) = 1if mln
*™ 710 otherwise.
The classical Mébuis function is
1 ifn=1
te(n) = 0 if n is divisible by the square of a prime

(-1)* if n is the product of % distinct primes.
If we write

<—”—)'f l
plm,m) = {Helm) 12T
0 otherwise

then p is the inverse of ¢ in the incidence ring. The classical inversion
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formula of Mobuis becomes an inversion formula in the incidence ring. If
g is a real valued function on N satisfying g(n) # 0 only if nl7 for a fixed
7 e N and if

f(m) =§n g(n),
then

g(m) =§i fm)p(n, m) =§f(n)u(n,WL)-

If we now move to the integers Z ordered by division, then (Z, |) is no
longer a partially ordered relational system; however, (Z, |) is a locally
finite pre-ordered relational system. Inversion formulas for (Z, |) analo-
gous to the one given above for (AN, |) are naturally of mathematical
interest and therefore it is of interest to characterize those functions in the
incidence ring of (Z, |) over, say the real numbers, which are invertible.
The main result of section 1 is to carry out such a characterization for an
arbitrary locally finite pre-ordered system.

G. C. Rota [2] has defined incidence rings of functions subject to an
order constraint mapping X” into the real numbers where X is a locally
finite partially ordered set. It is possible to define such rings for locally
finite pre-ordered systems (X, =) as we do in section 1. For the study of
inversion formulas in incidence rings it is desirable to know which
functions in the incidence ring are invertible and in section 1 we charac-
terize the units of an arbitrary incidence ring I = (X, S, R) where (X, =) is
a locally finite pre-ordered relational system and R a commutative ring.
A function f in I is invertible iff for each interval ring of the form I{x, x] of
I, the restricted function f|[x,x] is invertible in I[x,x]. This type of
local-global invertibility property can be tested using determinants for the
following reason. Each interval ring I[x, y] of I is isomorphic to a subring
of a complete matrix algebra M(n, R). Using properties of the pre-order
relation we show that invertibility in the subring of M(n, R) isomorphic to
I[x,v] is equivalent to invertibility in Mz, R) itself. Consequently f is
invertible in the full incidence ring I iff a certain collection of determinants
related to f are all units in R. As a corollary of this result we show that an
incidence ring contains a Mobuis function iff the underlying pre-ordered
system is a partially ordered system. Also, several results are developed
which relate the structure of a locally finite pre-ordered system to the
algebraic structure of its incidence rings.

R. P. Stanley, [3] and [5], has shown that locally finite partially
ordered systems (X, £) and (X', £') are isomorphic iff their respective
incidence rings over any given field are isomorphic rings. In section 2 we
generalize this result to pre-ordered systems. The generalization is not
complete in the following sense. If (X, =), (X', £') are locally finite
pre-ordered systems which are isomorphic it is easy to show that their
incidence rings (X, 5, R) and (X', £’ R) over a common ring R, are
isomorphic. Conversely if R is a field, if either X or X' is finite and if
(X, 5, R) and (X', ', R) are isomorphic rings then (X, =) and (X', =') are
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isomorphic relational systems. However, for the case where both X and X'
are infinite sets we have had to require spec1al conditions on a ring
isomorphism ¥: (X, 5, R) — (X', =/ R) to ensure that the systems (X, =),
(X', =') will also be isomorphic.

Incidence Rings. We shall be concerned with developing the theory of
incidence rings of pre-ordered sets. G. C. Rota [2] has defined incidence
rings for partially ordered sets. Here we drop the antisymmetric condition
on the underlying order and investigate the corresponding changes in the
structure of the incidence rings.

1. Invertibility in Incidence Rings. - In this section we completely charac-
terize the units of an incidence ring I of a pre-ordered set over a commuta-
tive ring‘with identity. :Several results relating ‘the structure of the
pre-order ‘relation to invertibility are ‘derived including a type of inverse
function' theorem. It is shown that I contains a MObuis function iff the
underlying order is a partial ordering.

Definition 1.1. Let (X, =) be a locally finite pre-ordered system. The
incidence ring of the relational system (X, =) over the ring R is the set of
functions f mapping X x X into R satlsfymg the followmg ordeaf condition:
flx, y) #0 only if x = y; for every %, veX., We refer to this set of functions
as (X, 5, R), or where convenient, as simply /. On the set I we define
operatlons of multlphcatlon O addition @, and left and rlght scalar multi-
phcatlon *. Let + and . denote addition and mpltlphcatlon respectively in
the ring R. For every f, ge I; x, ye X and be R we have:

(fOL)(x,y) = MEX f, u) . gu, vy

(f®)(x,¥) = flx,y) + g(x, V)
(B *f) (x,y) = b.f(x,y) and (F*b)(x,y) = f(x,9).D

For convenience we drop the notation @, @, * and ‘write fg, f + £, bf and fb
respectively for multiplication, addition and left and right scalar multi-
plication in I.

Lémma 1.2. Let(X, =) be a locally finite pre-ovdeved system and R a ving.
Then I1=(X, =, R) is a ving and a left and vight R-module (in the ring
theoretic sense).

Proof. Let u, v, x, ye X; a, be Rand f, g, he I.. By the-definition of addition
in I, the members of I form a commutative group with respect to addition,
provided X is non-empty, since R has this property. We neglect altogether
the trivial case X = ?. By the definition of scalar multiplication it is
obvious thatafel, (a + 0)f =.af + bf and a(f +g) = af + ag; and similarly for
scalar multiplication on the right.

Suppose (fg)(x,y) # 0, then by the definition of mulitplication in I there
is a ue X such that f(x,u) g(u,y) +# 0. Hence f(v,u) #0,gu,y) #+0 sox Su
and # =y. By the transitivity of the relation, x =y. This shows that fge[l
and that /is closed under multiplication. Furthermore, in the equation

(fg)(x,v) = WZ; Fle,u) g, y)
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the sum on the right involves only finitely many non-zero summands, since,
if f(x, u) g(u, y) # 0, then ue[x, y] and this latter set is finite. The finiteness
of such summands enables us to show easily that

flg +h) =fg +fliand (g + h)f = gf + hf.

To show that / is a ring it suffices to show that I contains a multiplicative
identity and that multiplication is associative. If we define

oy Mlifx=y
0¥, ¥) = {O ifx#y

then 6 ¢ I, as = is reflexive. Furthermore,

(BF)(x, y) = 25 8(x, w) flue, v) = flx, ¥).

ueX
So &f =f and similarly f6 = f, showing that & is the multiplicative identity
of I. We have,
(F@M)(x,y) = 25 flx,w)(gh)u, v) = 25 f(x, H)<E gl v) h(v..\')>.

ueX ueX reX

The interval [x,v] is a finite set and [«, v] is a finite set for each u¢ X so
this sum contains finitely many non-zero summands. Using the distributive
and commutative addition laws in the ring R we may write this sum as

(flgh)e,v) = 20 <Z) flx, 1) glu, v)> (v, y)

reN \wueX

= 25 (f2)x, ) (v, )

veX
= (18 (x, v).
So f(gh) = (fg)h, thereby showing that [ is a ring.

Corollary 1.3. Let (X, =) be a locally finite pre-ovdered svstem and R a
ving, then I =X, =, R) is an algebru over R iff R is a commutative ving.

Proof. Since I is a ring, it is an algebra over R iff for every be R and
f, &€l we have

a(fg) = (af)g = flag).
Since I contains an identity this result is equivalent to
bf = fb

for be R and feI. By definition of scalar multiplication in I this holds iff R
is commutative.

By construction of incidence rings, if 7 = {X, <, R) is an incidence ring
and X a finite set, then I is isomorphic to a subring of M(p, R) the complete
ring of p x p matrices over R, where p is the cardinality of X,

Definition 1.4. Let X = {x;, . . ., x,} and let (X, <) be a pre-ordered system
and R a ring. Let /= (X, £, R). A map

mp: I — M(p, R)
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is defined as follows. Let fel and let i, jbe integers 1 =4, j = p. m,(f) is
that member of M(p, R) whose (i, j)-th entry is

(mp(f))ij =f(xi,A’j)-

For convenience we shall drop the subscript from the map m, since it will
be clear from the context what the cardinality of X is.

Lemma 1.5. Let X be a finite set, (X, £) a pre-ovdeved system, R a ving
and let [ ={X, 2, R). Then the map m: I — m(I) is a ving isomovrphism. If
R is a commutative ving, then m is an algebrva isomovphism.

Proof. Let X ={x, ..., x,); f,gel and beR. For 1 =4, j=n, (m(f); =
f(xi,x,). Clearly m(f+g) = m(f) + m(g) and m(f) = 0 iff f= 0. Also,

m () = (f)0i ) = 25 Fx, ) gl X7)

=3 m(emihy = () mg)),

So m(fg) = m(f)m(g). If I,is the identity matrix of M(n, R) it is easy to see
that m(f) = I, iff f = 6. This shows that m maps I isomorphically to its
image m(I) in M(n, R). Further, if R is commutative, then I and M(n, R) are
algebras over R and m is an algebra isomorphism since m(bf) = b(m(f)).

In the preceding proof the enumeration given to the set X changes
(X, £, R) only by an isomorphism.
p

Lemma 1.6. Lef X={x,, ..., x,} and let (X, 5) be a pre-ovdevred system.
Let o€ S, and let 0(2) be the pre-ordeyr velation on X defined as follows:

xio(i)x/ iff Xo(i) = Xo(j) -
Let I=(X, 5, R and I°= (X, 0(2),R). For every fel let f’be an element of
19 defined as follows:
Fxiy x7) = F(Xotiy s Xo(jy)-

Then the map o: I — I°is a ving isomorphism.

Pyroof. Let f, gel. By the order condition on I we have f%(x;,x;) # 0 only if
Xo(i)y S Xo(j), 80 fxi,xj) # 0 only if x;0(S)x;. Thus f7e I°. Clearly (f+g)’ =
f?+ g and f?= 0 iff f = 0. Also,

(12)7(x4, %) = 2 F(Xo iy, %) (X} 5 Xo(k)
j=1

n

= 21 Ty Xo () & Xa(jys Xo(k)
e
= (fogﬂ)(xi: xk)-

So (fg)?=f%?° Clearly f°=06 iff f= 5. This shows that o is a ring iso-
morphism.

Definition 1.7. Let (X, =) be a locally finite pre-ordered relational system
and R a ring. Let «, ve X and suppose « = v. Recall that [u, 0] = {xe X|u =
x = v}. Let 5, , be the relation < restricted to the subset [«,v]. Then
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(lu,v], <4, R) is the incidence ring of the relational system ([« v], <, )
over the ring R. We call this incidence ring the interval rvingI[u, ] of the
incidence ring I = (X, 5, R).

Definition 1.8. Let I=(X, 5, R) be an incidence ring and let I{u«, »] be an
interval ring of I. If fe I, let f“,‘_vl eI[u, v] be defined as follows: for every

x,yelu,vl,
fl[u,z'](x' .v) = f(x, _V)-

Lemma 1.9. LetI[u,v] be an intevval ving of an incidence ving I = (X, <, R).
Then every gellu,v) has the form fl,, .| for some fel.

Proof. Let gel{u,v]. Define fel as follows: for every x, yeX

g, vy if x, ve [, 0]
flx,y) = {O otherwise.

Then fl,,,| = & as required.

Interval rings, for example I[x, y] of an incidence ring I, are introduced
because, as is later shown, a function f belonging to / is invertible in 7 iff
fl{s,,1 is invertible in I[x, v] for each non-empty interval [x, y]. According
to this result a global property of a function f, that is, whether or not fe ¥,
can be determined by examining the local properties of f, that is, whether
or not fl jellx, y]*, for each such interval [v,y]. The locally finite
condition requires that intervals [x, y] be finite sets so Lemma 1.5 shows
that I[x, y] is isomorphic to a subring of M(n, R) where nis the cardinality
of [x,y]. In general I[x, y] is not isomorphic to a subring of I as the
following example shows.

Example 1.10. Let X = {x;,v,, x;}. Define the relation < on X as follows:
X=X, b, Sx oand for i=1,2,3, x; <x,. LetI=(X, s, Z,), where, as is
usual, Z, is the field consisting of 2-elements. [7is isomorphic to a subring
of M(3,Z,) by Lemma 1.5. By construction of incidence rings and by
definition of this particular pre-ordered system (X, ), I is a ring with
2° = 32 members.

Consider the interval [x),x,]= {¥, v,}. The interval ring I[x, v,] is
isomorphic to M(2, Z,) and has 2* = 16 members. The units of M(2, Z,) are

the matrices:
[01] 11 10 01 11
1 0J, o 1], [1 1), [1 1] L1o0

and the identity matrix [3 0}.

We note the following equation relating three of these invertible matrices:

w HHE A
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By construction of I, if m({/) is the subring of M(3,Z,) isomorphic to I
according to Lemma 1.5, then the units of m (/) are the matrices:

010 10l [too] Jo10] 110
100} tol,{t10f,lt1of, 100
00 1 o 1] loo1] {oo 1] {oo1

o = O

1
0
0
1 0
and the identity matrix [0 0|. If the interval ringZ[x,, x,] is isomorphic
0 1
to a subring of I, then M(2, Z,) is isomorphic to a subring of m (7). The ring
M(2, Z,) has 6 units and m (I) has 6 units, therefore the units of M(2, Z,) are
mapped onto the units of m(f). Let ¢, be the identity matrix of M(2, Z,) and
let 7, be the identity matrix of m(/). Then the isomorphism maps ¢, to i,.
Further, suppose that the invertible matrices [(1) ﬂ, [1 é] of M(2,Z,) are
mapped to invertible matrices j,, j, respectively of m(/). Equation (1) and
properties of ring isomorphisms require that

(2) Jitj2 = ioe
Equation (2) is impossible to fulfill in m(I) because, by inspection of the
units of m(l), the addition of any two of these units gives a matrix with
zeros in its third row and i, has a non-zero entry in its third row.

This shows that it is impossible that M(2,Z,) is isomorphic to a

subring of m(I) and therefore, it is impossible that I[x,, x,] is isomorphic to
a subring of .

Theorem 1.13. Let (X, £) be a locally finite pre-ovdered system and R a
ving. Fov evevy fel =(X, =, R), f is invertible in I iff for every interval
ving 1w, v] of I, fli...| is invertible inI{u,v].

Proof. First suppose that f is invertible in 7 and let Z=f"'. Letu, ve X

and suppose u =v. Let h;="hl,, and f,=fl,,. Then f;'=1, for if
x, yelu,v], then in I{u, v]

(I fi)x,y) = Z) Iu(x,s) fi(s,v)

selu,v)

20 Iylx,s) fils,y)

as = is a pre-order and

0

SeA by the order condition.
= 25 h(x,s) f(s,v) by definition of f,, A,.

seX
=5(x,y)

Thus 7, f, = 6 and similarly fi/ = 6 in I{u,v]; so fi'= hyand f|,, is in-
vertible in I[«, v]. Conversely suppose that the restriction of f is invertible
in every interval ring of I. Define /7e as follows: for every x, ve X

gl(x,y), if x < y and g is the inverse of fl, ,j in7[x, y].

Hx ) = {o if x £y

Clearly /#(x,y) #0 only if x=yv and hel. Let x, v, «, ve X and suppose
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[x,y] € [#,v]. Let g, and g, be the inverses of f, =f (., and f,'=f|(,.] in
I[v;, y] and I[u, v} respectively. Clearly f, =f,li.,] since [x,v] ¢ [u,v]; we
show that g, = g,1[x,]. Let u, ze[x, v}, then w, z¢ [, v] and

(1) 5w, 2) = [Z)]gxu',f)fl(f,,z)
telx,y :
(2) 5(w, 2) = [2 &1, 0) f(t, 2)
telu, v
= 2 &, Al 2)
tel v,y ]

by the order condition and f; =7, |[x].

These two equations hold for every w, ze|x,v]. Since [x, v]is a finite set,
of cardinality » say, Lemma 1.5 shows that I[,\‘,'\'] is isomorphic to a
subfing' of M(n, R). It is well known that inverse matrices are unique if
they exist. Hence inverses in I[x, v] are unique if they exist. In particular
Z2l[x,] =& by equations (1), (2) and this latter remark. From this we
deduce:

(3) ifu, ve X, u = v.andif g is the inverse offl[,‘,,.| in Ilu, v), then for every
v, velu, vl hlx, v) = glx; y).

Let «, ¢ X and let ¢ be the inverse of flj,, .

(1), v) = [Z) lf(u, D, v)
telu, 1
= 12'1 fae, g (t, v) by (3)
teju,t
= 6(u,v).

So fo = 6 and similarly if = 5, showing. that /; ="' and that fis invertible
in 1.

We shall later improve Theorem 1.13 by showing ‘that we only need
consider interval rings of the type Iu, ] instead. of considering all interval
rings; to determine. whether or.not a function is invertible in the parent
incidence ring /I, provided R is commutative. Having shown that inverti-
bility in an incidence ring I is equivalent to invertibility in  all of the
interval rings of I and hence by Lemma 1.5, equivalent to the invertibility
of a collection of finite matriceés in specified subrings of M(n, R), for
various #, it is degirable to investigate invertibility criteria for interval
rings. Since each interval ring of [ is an incidence ring of a finite
pre-ordered System, such criteria are given by the next theorem which
gives an effective computational device for determining whether or not a
function f belonging to I = (X, £, R) is invertible whenever X is a finite set
and R a commutative ring. If X has » members and m is the mapping of
Definition 1.4, then invertibility in m(/) is equivalent to invertibility in
M(;z,R).

Theorem 1:14., ‘Lef-X ={x,, ... x,}and lel (X, ) be a pre-ovdered system.
Let R be «. commutative ving and I=<(X, <, R>. If fel, then felI* iff
det(m (f)) e R*.
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Proof. 1f feI*, then m(f™") = (m(f))”' since m is a ring isomorphism by
Lemma 1.5. So m(f) is invertible in m () which is a subring of M(n, R).
This shows that m(f) is invertible in M(n, R) and by a well known ring
theoretic result det(m(f))e R*. Conversely, suppose det(m(f))=u and
ue R*. Then m(f) is invertible in M(n,R). It remains to show that
m(f) 'e m(I). Let F; be the (n-1) X (n-1) matrix obtained by deleting the
i-th row and j-th column of m(f). Then

(m (f)-l)ij = ('1)”/ det(Fji)u—l.
If S(j,7) = {oe S,l0(j) = i} then det(F;) is the sum of terms of the form

(1) £(0) f (X1, Xo(1) + + « [(Xjosy Xo(-1) F&Xi1, Xoen) « + « Xy Xo(m)

where ¢(0) = +1 depending on o. If (m(f™')); #0 then for at least one
o€ S(j, i) there is a non-zero product of the form (1). By definition of Fj; no
factor f(xy, x4) where p = jor g =i occurs in any summand.

To show that m(f)™'e m(I) it suffices to show that (m(f)™");; # O only if
x; £ xj. If i = jthere is no problem, since = is reflexive. Now suppose that
i # jand that (m(f)™"); # 0. The factor f(x;, x,(;) appears in (1), so, by the
order condition, x; £ x,;). If o({) = j, the proof is complete. If o(i) # j, the
factor f(X,., %24) appears in (1) and X,() S %2(). I 0°(i) = j, then x; <
Xo() S X,2¢) = X; and x; = xj, by the transitivity of <. If 0®(i) # j, 0°({) # j and
so on; we obtain:

X; S Xgiy S ... S Xon- 1G).

If for some p, g such that 1S p<p+q=n-1 we have o) = o %), then
i = 0(i) and the factor f(x,¢-1(), x;) occurs in (1); this is not possible. So the
integers i, o(i), . . ., 0"'({) are distinct and for p such that 1 < p=n-1we
have o’(é) = j. By the transitivity of <, x; = x,. Thus m(f)™'e m(J) and since
m is an isomorphism, f ' exists in I and fel*.

The following Theorem enables us to use Theorem 1.14 to improve
Theorem 1.13 in the case where R is a commutative ring.

Theorem 1.15. Let (X, £) be a locally finite pre-ovdeved system, R a
commutative ving and I=<X, 5, R). Let Y be any finite subset of X such
that Y is the disjoint union of intevvals of the type [y,v]. Suppose that

Y=U [v;,v;]. Let =y be the velation = vestricted to Y and let Iy=
i=1

(Y, 2y, R). If m is the mapping of Definition 1.4, then for every fe Iy we
have:
n
det(m (f)) = H det( fliy;i1)-
Proof. The proof is by induction on n. If n=1then Y = [y, 1], £ = fl{y,41)
and the result is clearly true. Suppose, inductively, that the result holds

whenever Y is the disjoint union of at most n - 1 intervals of the type [y, y].
Let yi, ..., y,€X be such that intervals [y,-,y,.] are pairwise disjoint. Let

n n

Y =U [y;,y;] and w=U (v;, v;]. Without loss of generality we may
i

1 i=2
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suppose that the y; are enumerated such that:

(1) y, sy for2=i<p
2) y; sy forp+1=isp+q

(3) neither y; Sy, nor y; =y, forp+q+1sisn=p+q+7.
The set Y is a disjoint union of intervals so that (1) and (2) imply:
4) yi £y for2sisp.

(5) mEZyforp+1=i=p+aq

If for particular 7, jsuch that 2 =i < pand p+1=j = nwe had y; £ yj, then
by (1) and the transitivity of = we would have y, £ y;. This contradicts (5)
if p+1=j<p+qgand 3)if p+ g+ 1=j=n; hence

(6) yiEZyfor2=sispandp+1<Sjsp+qg+r=n

If for particular i, j such that p+ g+ 1=i=nand p+1=j= p+ gwe had
v; £y, then by (2) and the transitivity of £ we would have y; =y, a
contradiction of (3). Hence:

(1) y;Zyviforp+g+1=i=nand p+15jsp +q.

Each interval [y;, y;] is a subset of Y. Let us suppose that V= {x;, ..., x,}
and that
(8) [ylvyl] = {xla L xs} = [Va
14

i=

(9) tJZ [yi:yi] = {xﬁl’ L) xsol}: [/Vﬂ
p-q

(10) ,liIJl [yi, yi] = {xs*tkly CREEE) xs~!+u}: [Vy
i=p+

n
(11) . U [yi:,\)i] = {xsnm*ly P xS+IHIH'} = IV(
i=piqil

Of course s+ t+ u+v=1w. If s=0, the proof is complete by induction.
If £=0 or u=0 or v = 0, then one or more of the inequalities (1), (2) or (3)
is vacuously true and the proof will be simplified; here we are considering
the most general case when £+ 0, u # 0 and v # 0. There are eight cases to
be proved but the other seven cases are very similar and simpler to prove.
Let fe I, then m(f) is an w x ¢ matrix in M(w, R). We have;

(12) (m(f)),, :f(xi,Xj). for 1 = i, _] =S w.
We express m(f) as a block of 16 matrices as follows:

s t u v

A, A, As A, S

A | A | A, | A |t

AQ AIO Al 1 A12 u
Ay A Ags A v
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The square matrices A, Ag, Ay, A, are respectively m( fli,,,,1), m(fl W),
m(flW,) and m(flW,). For example, A, has entries (m(f)); fors +¢+1%
jEs+t+u and s+1=i=s +/; and so on for the remaining matrices.
Define the (¢ + « + v) X (¢ + u + v) matrix B as follows:

. As Aq Ag

B = AlO All AlZ
A14 A15 AIG

Then B = m(f|w) and by inductive hypothesis and definition of W we have:
det(B) =T det(m (I, )

Of course, det(A,) = det(m( fl[y,,y,])); we shall show that
det(m (f)) = det(A,) det (B)

and this will complete the proof by induction. The method is to show that
the matrices A;, A,, A5, 4,, Ag, A3 and A, are all zero matrices and
therefore that the computation of det(m(f)) is independent of the matrices
A, and A,. We may therefore set all entries of A, and Ay equal to 0 to
obtain a matrix C:

A, 0

0 B

such that det(m(f)) = det(C) and by a well known result in determinant
theory, det (C) = det(4,) det(B). To show that A;, A4, As, A, Ag, Ajzand Ay
have only zero entries we proceed as follows: By (3), (8) and (11) we have

(13) x; £xjand x; Zx;,for1Si<sands+t+u+1%5j=w.
By (13) and the order condition on the functions in Iy applied to f we have
(14) flxi,x;) = 0=flx;,x;yforl1=issands+t+u+1=j=n.

Equations (12) and (14) show that the matrices A, and A,; are zero
matrices. By (4), (8) and (9) we have:

(15) x; Zxjfors+1siss+tandlsjss
(16) flx;,x;)=0fors+1=i=<s+tand1=j=s (order condition).

Equations (12) and (16) show that A; is a zero matrix. By (5), (8) and (10)
we have:

(17) x; Zxj,forlsissands+/+1=5jSs+f+u...
(18) flx;,xj))=0,for1=sissands+f+1=j=s+t+u(order condition).

Equations (12) and (18) show that A, is a zero matrix. By completely
similar arguments we use (6), (9), (10), (12) and the order condition to show
that A, is a zero matrix; we use (7), (11), (10), (12) and the order condition
to show that A,; is a zero matrix. Thus A,, A4,, A5, A,, Ag, A3 and A5 are
zero matrices.
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We now show that because the previously mentioned matrices are zero
matrices, the entries of the matrices A4, and Ay do not affect the computa-
tion of det(m(f)). The ring R is commutative so we have:

(19) def(m(f)) = Z} e(o')f(xbxo(l)) .. 'f(xw’xo(u))-

OCSw

Let 0e S, and suppose that the summand corresponding to o and appearing
on the right side of equation (19) is non-zero. Referring to the diagram of
m (f) and noting that A;, A; and A; are zero matrices we require that

(20) o(s+1, ..., s+tP)={s+1,..., s+f}L

Noting that A; and A, are zero matrices we require that

21) oft,...,shc{t,..., s+t}

Equations (20), (21) and the fact that o is bijective imply that
22) oft,...,sh=A{1, ... sk

Equation (22) shows that no entry of the matrix A, appears in any non-zero
summand of (19). Further, noting that A; and A,; are zero matrices we
require that

23) o({1l,...,s,s+t+1,...,s+t+ul)=
{4, ..., s, s+t+1,..., s+t+uh

Equations (22), (23) and the fact that o is bijective imply that
(24) ofs+t+1,.. ., s+t+u)=(s+t+1,... s+t+u.

Equation (24) shows that no entry of A, appears in any non-zero summand
of (19). Hence if

Al o
0o | B

then

det(m(f)) = det(C)
= det(A,) det(B)

n
= det(m (£ liy,y,1) 1'! det(m (£ ;)
n
= !_:[1 det(m(f '[yi,yi]))‘
The proof is complete. Theorem 1.13 is improved as follows, if R is a
commutative ring.

Theorem 1.16. Let (X, =) be a locally finite pre-ovdeved system and R a
commutative ving. Let I =(X, 5, RY. For every fel, fis invertible in I iff
for every x € X, flix x is invertible in I[x, x].

Proof. By Theorem 1.13 it suffices to show that the following conditions
(1) and (2) are equivalent.
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(1) for every xe X, flix x| is invertible in I[x, x].
(2) for every u, ve X such that u < v, fl,,) is invertible in I{u, v].

Intervals are finite sets so Theorem 1.14 shows that (1) and (2) are
equivalent to (3) and (4) respectively, where:

(3) for every xe X, det(m( fl[, ) € R*
(4) for every u, ve X such that « < v, det(m( fl, 1)) € R*.

If u, ve X and u < v, then the interval [«, v] is a finite set which is a disjoint

union of intervals of the form [x, x]. If [«, v] = U [v;, v;], then Theorem 1.15
shows that et

det fl[u v] H def fl lyi, }zl)

The group R* is closed under multiplication so (3) and (4) are equivalent.

If (X, =) is a locally finite partially ordered system, F a field and
I=(X, 5, F), then a function f in I is invertible iff for every xe X, f(x, x) # 0,
according to the previous theorem, since [x,x] = {x}and F* = F - {0}. This
result has been proved already in Smith [4]. The proof is easy to give
because = is a partial ordering: If f is invertible, then

= (ff Hx,x) = floe, %) f 7 (x, x)

so that f(x,x) # 0. Conversely one may show by induction on the length of
intervals that if f(x, x) # 0 for all xe X, then

e, y) = -(fly, ) [ 2 N, 2) flz, y)]

xS z<y

Accordingly, Theorem 1.16 is the precise generalization of this known
result for incidence rings of partially ordered sets over a field to incidence
rings of pre-ordered sets over a commutative ring. From the previous
theorem we may easily derive the following corollary.

Corollary 1.17. Let (X, =) be a locally finite pre-ovdeved system, R a
commutative ving, I =X, £, R) and let fe I*. If x, ye X ave such that x # y,
xsyandy = x, then theve ave u, ve X such that

(1) flx,u) # fly,u)and x Su =y
(2) flv,x) #f(v,v)and x = v = y.
Proof. [x,x] = [y,y] and because feI*, Theorem 1.16 shows that if
&= fliuy, then gellx,x]*. Let [x,x]={x, ..., x,} and x, = x, v, = y. The

matrix m(g) is invertible in M(n,R). If for every ue[x,x] we had
f(x,u) =f(y,u), then the first and n-th rows of m(g) would be identical and
m(g) would not be invertible. Hence (1) holds. Similarly (2) holds by
considering the first and last columns of m(g).

Let I=<X, £, R) be an incidence ring such that R is not necessarily
commutative. Let Y be a subset of X and let Iy =(Y, £, R). If fel, fly is
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the restriction of fto Y, so that flyely, and if fly is invertible in Iy, then it
is possible to find a function g in I* such that gly is the inverse of f|y in Iy.

Theorem 1.18. (Inverse function theorem for incidence rings) Let (X, <)
be a locally finite pre-ovdeved system, R a ving, I =(X, 5 R), Y a subset
of X, Iy=(Y, 5, R) and let fel. If fly is invertible in Iy, then theve is a
geI* such that gly is the inverse of fly in Iy.

Proof. Let h belong to Iy and suppose % is the inverse of fly. Define g as
follows. For every x, ye X,

hix,y)if x, ye Y
5(x, y) otherwise.

gx,y) = {

If x £y, then h(x,y) =0 = 6(x,y) so that g satisfies the order condition and
gel. Also, gly = h so that gly is the inverse of f|ly. We show that ge I* by
constructing the inverse of g. Define the function g' as follows. For every
x, yeX,

flx,y)if x, ye ¥
d(x, y) otherwise.

g'lx,y) = {

We show that gg’' = 6 = g'¢g. Let x, ye X.
Case (1). x, ye Y.

(gg")(x,y) = HEY I(x, t) fit,y) = 8(x, ).
Case (2). x¢ Yand y¢ Y.
(gg")(x,y) = ,Z} 5(x, H)6(t, ) = 6(x, y).
Case (3). xe Yand y¢ Y.
(g8")(x,3) = 2 gx, )g'(£.9) + o 8x gy
= IZ‘)/ hix, )5 (L, y) + l;}y &(x, Ho (L, y)
=0+06(x,y) =05(x ).
Case (4). x¢ Yand ye Y.

(&g (x,3) = 25 0(x, Of(t,y) + 25 b(x,D5(¢, )
teY teX-Y
=0+ 6(x,y) = 6(x,v).
In all four cases gg' = 6. Similarly g’g= 6 and therefore g’ =g~ ' and geI*.

A question of some interest is the following. If R is a ring, (X', =') a
locally finite pre-ordered system, X a subset of X’ and = the relation =’
restricted to X, what are the relationships between the algebraic structures
(X', £', R) and (X, 5, R)? Example 1.10 shows that if J=(X, 5, R) and
I'={X', ', R), then I is not necessarily a subring of I'. However, the
multiplicative group I* is isomorphic to a subgroup of (1')*.

Theorem 1.19. Let (X', =') be a locally finite pre-ordeved system, R a
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ving, X C X' and < the velation =' vestvicted to X. Let I=(X, s, R) and
I'={(X'", €', R). Then I* is isomovphic to a subgroup of (I')*.

Proof. We define an injective group homomorphism a: I* — (I')* as follows.
If feI*, then for every x, ye X'

fle,y)if x, veX
&(x, v) otherwise.

a(f)x,y) =
By construction of a(f) and the proof of Theorem 1.18, a(f)e (I')*. Let
f, ge*and x, ye X'. Then,

(fe)lx,v)if x, ve X
6(x,y)  otherwise.

al fg)lx, ») =}5
We show that a( fg) = a(f)a(g).
Case (1). x, ve X.

a(flalg)x,v) = 25 alf)x, Halg)t, v)

teX!
= [Z\) fix. ) g(t,v)
= (fg)lx,v) = alfg)lx, y)
Case (2). x¢ X and y¢ X.

a(fa(g)lx, v)

E\ 6(x, )5(¢, v)
teX'
6(x, v) = a( fg)(x, )

n

Case (3). xeX and yv¢ X,
a(Ha(g)(v,v) = ’E\ a(f)x, Ha(Q)(t,v) + 25 alf)x, Ha(g)(t,v)

teX'=\

= E\ flx, DB (L, v) + \Z\ 8(x, )o(¢, y)
te teX =]
=0+ 0(x,y) = alfg)lx, v).

Case (4). x¢ X and ve X. The computation is the same as Case (3). This
shows that a( fg) = a(f)a(g) for every f, g in I*.

If a(f)=25, then X=¢ or f=25; but if X =¢ then/=¢,s0of=6. Con-
versely it is clear that a(d) = 6. This shows that @ is an injective group
homomorphism, and that /* is isomorphic to a(/*).

The map a of the previous theorem is not a homomorphism of the
additive group of I into the additive group of I’ because «(0) # 0.

Definition 1.20. If £ is any pre-order relation on a set X, then =€ is the
converse relation on X defined as follows: for every x, ve X, x =€y iff

Yy,

It is easy to see that if (X, <) is a locally. finite pre-ordered relational
system, then (X, <) is a locally finite pre-ordered relational system and
conversely. Let R be a commutative ring, I = (X, =, R) and I°= (X, =%, R).
We shall give an example at the end of section 2 to show that / and [“are
not necessarily isomorphic rings. However it is true that the groups of
units of 7 and /¢ are isomorphic as we now show.
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Theorem 1.21. Let (X, =) be a locally finite pre-ovdeved system, R a
commutative ving, =X, 5, R) and let = (X, =%, R). Then the multiplica-
tive groups I'* and I°* ave isomorphic.

Proof. <€ is the converse relation of = and we shall denote by [x, y] the
interval {zlx =z =y} of (X, =). It is easy to see that for every x,ye X,
[x, v] = [v,x]°. We shall define a function c: I* — [°* as follows: for every
feI* and every x, ye X

felx,y) = 71y, x).
Then fc(x,y) # 0 only if x =%y by the order condition on I, the fact that f ™ 'e [/
and by definition of =, Therefore, c is a function from I* into I If xe X,
then [x,x] =[x, x]. If [x,x]={x,, ..., x,} and if m is the map of Definition
1.4, then for 1 =7, j = »n we have
(m (fci[x,v] € ))17 = fC(xi) Xj) = f-l(x/'; 'Vt') = (m (f—l ,| \,xl))j; .
In other words,

m(felinae) = (m(F o)

By a well known result in determinant theory
det(m (fel{yjc)) = det(m (f'lflw,)‘) =det(m (f ).

Since f~'eI*, this computation yields a member of R*, so by Theorem 1.16,
f. is invertible in I°*. Hence the mapping c takes I* into I°*. If g is any
member of I* let 7 be the member of I defined as follows: for every
x, ye X

hx,y) = g (v, X).

From the previous discussion it is clear that /e I* and that /. = g, so the
map c is surjective. Furthermore it is clear that for every fel*, f, = 6 iff
f=06 and the map is injective. It remains to show that (fg) =f.g.. Let
f, geI* and let x, ye X. Then

(f9)clx,¥) = (f2)" (v, x) = (€7 (v, x)
= Z; 8 My, 2) Tz, x)
= :i . gz, ) felx, 2)
= jéc\ flx,2) gz, ) R is commutative

= (,fcgz)(xy ,\')-
Thus fg = (fg). and c: [* — [Fis a group isomorphism, as required.
Definition 1.22. If R is a ring, Z (R) denotes the center of R.

Theorem 1.23. (X, ) is a locally finite pre-ovdeved systemn, R a ving and
I=(X, <, R). Then,

Z{) = {fell for every x, yeX; flx,v)=0if x #y and
for every hel; i(x,y) f(y,v) = flx, X)h(x, y)}.
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Proof. Let fez(I), x, ve X, x =yand x # y, Define a function % as follows.
For every u, ve X

lifu=v=y
0 otherwise.

h(u, v) = {

Then hel and If = fh. However,

(f)(x,y) = fx, Mh(y,y) = fx,y)
(hf)(x,y) = h(x,x)f(x,y) = 0.

So f(x,y) =0 if x# y. Let g be any member of [; since fg = gf we have, for
every x, yeX

(f)(x,y) = fx,x)g(x, )
& )x,9) =gx, ) f(y,)

as required. Conversely suppose that fel and f satisfies the conditions:
for every x, veX andgel,

flx,y) =0if x# y, and f(x, %) g(x,y) =g(x, v f(y,).
Then,

(f(x,y) = flx,0g(x,y) =g(x,3) f(v,)) = (&(x,)
showing that gf = fg and hence, fe Z(I).

We show that in only very simple cases is / a commutative ring or a
field. Namely:

Corollary 1.25. (X, <) is a locally-finite pre-ovdered system, R a ring and
I=(X, 5, R). Then I is a commutative ring iff R is commutative and the
velation = is the equality velation on X.

Proof. I is commutative iff Z(I) =1 Suppose I is commutative, then
Z(I)=1 1f x, yeX and x =y, there is a function fel such that f(x,y) = 1.
By Theorem 1.21, f(x,y) =0 if x # y, hence x = y. So the relation = is the
equality relation on X.

Let b, ceR and let xeX. There are functions f, gel such that
f(x,x) = band g(x,x) = c. However, gf = fg so that

(f9)(x,x) = fx,x)8(x,%) = (gF)(x, %) = g(x, %) f(x, %).

Thus, bc = c¢b and R is therefore commutative. Conversely, suppose that R
is commutative and that = is the equality relation on X. For every fel and
x,veX, f(x,y)=0 if x #y by the order condition. Also if ge/ then
flx,x) g(x,x) = g(x,x)f(x,x), as R is commutative. By Theorem 1.23,
f, geZ(I) and therefore Z(I) =1.

Corollary 1.25. Lef I=(X, 5, R). Then I is a field iff X ={x} and R is a
field.

Proof. 1t is clear that if R is a field and X = {x}, then I is isomorphic to R,
and [ is a field. Conversely suppose that I is a field, in particular 7is a



INCIDENCE RINGS OF PRE-ORDERED SETS 499

commutative ring, = is the equality relation on X and R is a commutative
ring; by the previous theorem. If X contains two distinct members, say x
and y, let /7 be defined as follows. For every u, ve X

lifu=v=x
0 otherwise.

h(u,v) = {

hel and hlh.xl = 0. Since R is commutative, Theorem 1.16 shows that
h¢I*; but i # 0 solis nota field. This contradiction shows that X = {x}, a
singleton. If f # 0, then f(x, x)f (¥, x) = 1 so that f(x, x) is invertible in R if
flx, x) is non-zero. Every non-zero member of R is f(x, x) for some fel so
that R is a field.

According to Corollary 1.29, some interesting inversion formulas may
be derived whenever the zeta function of an incidence ring is invertible.
For this reason we turn our attention to showing that the zeta function of an
incidence ring is invertible iff the underlying pre-order relation is a
partial order. The ‘if’ part of the following theorem has been proved in
Rota [2]. The ‘only if’ part has been proved in Tainiter [6] provided that X
is a finite set. The following theorem does not require X to be a finite set
and its proof differs from both of the latter proofs. First we give a useful
Lemma.

Lemma 1.26. Let X be a finite set, (X, <) a pre-ovdeved svstem, I =
(X, =, R) and let € be the zeta function of I. Then

det(m (0)) = [T c0e 0= 1,
if = is a partial ovder and det(m (§)) = 0 if < is not a pavtial ovder.

Proof. Let X = {,\'1, R ,\‘,7}. For 124, j=n, m(), =L{(x;,x,). This is 0
or 1 according as x; Zxjory; = x;. If =is not a partial ordering, there are
i,j such that 1 =7, j=»n,¢+#jand {(x;,x,) =1={C(x,x;). This shows that
the ¢-th and j-th rows of m({) are identical. Hence det(m({)) = 0. On the
other hand suppose that = is a partial ordering. We have:

(1) det(m(C)) = 2 sgn (G)C('\‘l"\‘o(l)) D C(xmxrf(n))'

0eSy

Because the relation = is reflexive we have {(x,,x;) ... {(v,.x,) =1. We
show that this is the only non-zero summand of (1). For suppose ce S, 0 is
not the identity permutation and that

(2) C(xla-\‘(r(l\) LRI C(«Yny'\'rr(n)) #0.

Let S=1{ilo()#i}=1{, ... i,}. S is non-empty because o is not the
identity permutation, so that 1 <# =n. If jeS and o(j) ¢S then o°(j) = o(j)
and therefore of(j) = j, a contradiction. Therefore, if je S then o(j)e S. For
1 =¢=»wehave y; =x,, and

-~ - < <\ oA
(B) X SXpup S SN

For 0=t <v, 0d'(i;)eS. The set S contains » elements and (3) lists » + 1
elements so for some p, g suchthat 1 <p<p+¢qg=vrand ¢ > 1 we have
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4) o’G,) = o’ and i, = o%(,).

By the transitivity of =, (4) and (3) we have x; = x,(;,) = X;, which con-
tradicts the antisymmetry of =. So if ¢ is not the identity permutation, then
equation (2) is false and

det(m I_[c’ (x,x) = 1.

Theorem 1.27. Let (X, =) be a Zocally finite pre-ovdered system, R a
commutative ving and I =<X, 5, R). If € is the zeta function of I then € is
invertible iff < is a partial ovder.

Proof. 1f (X, =) is a partially ordered system, then for every xe X, [x, x] =
{x}. Also, &(x,x)=1, so ¢ is invertible in I[x,x] for every xe X. By
Theorem 1.16 ¢ is invertible in I. Conversely suppose that (X, =) is not a
partially ordered system. Then there are u, ve X such that # = », » = » and
v #u. For every x, ve[u,u], {(x,») = 1 so that det(m C’I lwa])) = 0 and ¢l u)
is not invertible in I{u,u] by Theorem 1.14. By Theorem 1.16, ¢ is not
invertible in /.

Recall that the M®buis function of an incidence ring is the inverse of
the zeta function. The previous theorem shows that an incidence ring of a
locally finite pre-ordered set over a commutative ring contains a Mobuis
function iff the pre-order relation is a partial ordering.

Interest in functions which are invertible in incidence rings is
motivated by the following theorem and its corollary. The theorem is the
corresponding generalization of Proposition 2 and Corollary 1 of section 3
in Rota [2]. In that paper incidence rings are of the form (X, 5, R) where R
is the field of real numbers and (X, =) is a locally finite partially ordered
system; however, the proof is the same as the proof in Rota [2], since both
are statements of the equation f/f * = 6 for a function feI*. The usefulness
of the following theorem is increased due to the fact that the previous
results allow us to construct all functions which are units in the incidence
ring of a locally finite pre-ordered set over a commutative ring, whereas
previously, only the units of incidence rings over locally finite partially
ordered sets were known. The important Mobuis inversion theorem does
not generalize to incidence rings of pre-ordered sets, as we have shown
that an incidence ring contains a Mobuis function iff the underlying order is
a partial order.

Theorem 1.28. Let (X, ) be a locally finite pre-ovdeved system, R a ving,
I=(X, 5,R) and let g, he I*. If P, and P, ave functions mapping X into R
such that for given x,, x,€ X, Py(x) # 0 only if x < x, and Py(x) # 0 only if
x, = x, and if Q, and @, ave defined by

Qo(x) = E\ h(x, y) Po(y), @(x) = Zi Pi(v)g (v, x)
then

Po(x) = 25 h7Hx, ) Qu(v) and Py(; E (g v, x).

yeX
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Proof. Rota [2].

Corollary 1.29. (Mbobuis Inversion) Lef (X, =) be a locally finite partially
ordeved system, R a conminutative ving and I1=(X, =, R). Let u be the
Mobuis function of I, If Py and P, ave functions mapping X into R such that
for given x,, x,e X we have Py(x) # 0 only if x < x, and Py(x) # 0 only if
x; = x; and if

Qo('\') = E Po()'), @ (x) = E pi(,V)

then

Po(x) = 25 u(x,y) Qo) and Py(x) = 25 @Qu(v) u(v. ).

yeX veX
Proof. Rota [2].

2. The Isomovphism Problem fov Incidence Rings. This section gives a
partial solution to the following problem: if (X, £) and (X', =') are locally
finite pre-ordered systems, R a ring, I=(X, <, R),I' =(X', =', R) and if
and [’ are isomorphic rings is it necessarily the case that the pre-ordered
systems (X, £), (X', £') are isomorphic? R. P. Stanley has shown in [3]
and [5] that if R is a field, (X, =) and (X', =') partially ordered systems
and if I and I" are isomorphic rings, then the partially ordered systems are
isomorphic. Parts of Stanley’s proof make essential use of the anti-
symmetric property of the partial orderings; for this reason a simple
generalization of his proof does not seem possible. However, using a
similar proof technique we have the following results:

Let I be a field and a topological space such that if /e F - {0} there is
an open set U such that 0e U and /¢ U. Let (X, £) and (X', =') be locally
finite pre-ordered systems, [ = (X, =, F) and I = (X', <' F). If ¢:
I —I' is a ring isomorphism such that whenever K is a closed maximal
2-sided ideal in I, then Y(K) is a closed set in I', then the pre-ordered
systems (X, =) and (X', =') are isomorphic. The sets I, I' are given a
topological structure related to the topology on F.

If one of the sets X, X' is finite the previous result can be improved as
follows:

If either X or X' is a finite set and ¢: I — I' is a ring isomorphism,
then the pre-ordered systems (X, =) and (X', ') are isomorphic.

The following conventions shall be observed in this section. (X, =),
(X', =" are locally finite pre-ordered systems, F is a field and a topologi-
cal space such that if fe¢ F - {0}, there is an open set U in F such that Oe U
and t¢U. I=(X, 5, F) and I' = (X', ', F). The topological condition on F
is always possible; the discrete topology on F has this property.

Definition 2.1. X = {[x, x]|xe X}.

We use the variables a, b, ¢ for members of X, a’, b', ¢’ for members of X’
and u, v, 7, x, y, Z as members of X. For convenience we allow that the



502 W. RUSSELL BELDING

relation = is also defined on X as follows: [x,x]<[v,v] iff x £y, Then
(X, =) is a partially ordered system.

Definition 2.2. For every ae f, fs is that member of I defined as follows:
for every x, ve X:

S5(x,y) if x, vea
X,y) = - -
fale, ) {0 otherwise.

Definition 2.3. For every ae X.
Ju = {gel lglx, v) = 0 for every x, ye al.

Definition 2.4. For every x, ve X, e,, is that member of [ defined as
follows: for every u, ve X

Vlifu=x,v=yand x =y
enlu,v) = {0 otherwise,

We assume that f,, Ju, ey are defined similarly. Recall that f, If, is the
set of functions f,gf,, where ge I.

Lemma 2.5. For every a, be X, a = b iff f,If, # {0).
Proof. If a=b, xea, ye b, then x = y and
(falr fu)(X, ) = falx, X)eq(x, ) (v, ) = 1.

Thus f,If, contains a non-zero function. Conversely suppose that 7,If, # {0}.
Let ge I be such that f,¢f, # 0. Let x, ye X be such that (f,gf,)(x,v) # O.
Then for some u, ve X we have f,(x,u) g(u,v) f(v,v) # 0. This shows that
x=u,vea, a=[x x|, y=0v,veb, b=[y,v], x=yvand therefore a = b,

Definition 2.6. (1) For each ae f a denotes the cardinality of «.
@) R =N, ae X}
@) R =(V{J,la"e X"

Lemma 2.7. R is a 2-sided ideal of I and for every ae X’, J, is a maximal
2-sided ideal of I,

Proof. By definition of J, it is clear that .J, is an additive subgroup of I
Let ge [, feJ, and x, yve a. Then

(f9)(x, ) = 25 Flx, ) glu, v)

ueX

=25 f(x,u) glu, v) by the order condition as feJ,.
ued

=0

Similarly (gf)(x,v) = 0. This shows that fg, gfe J, and therefore .J, is a
2-sided ideal of I. Now suppose that A is any 2-sided ideal of / which
properly contains -J,. Then -J; is maximal if A = /, which holds if 6 ¢ K. By
definition of .J,, and since « is a finite set

b -0, e ed,.

vea
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To show that 6 ¢ K it suffices to show that e.x¢ K for every xea. Let xea
and fe K - J,. For some u, vea,f(u,v)# 0. Let [ =f(u,v), then I7" exists
because [+ 0 and F is a field. Also, [ 'e,e I. The members x, u, v of X
are in a so x=u and v =x. The set K is a 2-sided ideal so that
(I"e,)(fe,) e K. If v, se X we have
(I"en ) (feu)r,s) = 25 \,l"exu(r, V) Ay, 2)enx(z, S)
y, Z€!
= 0(7,x)d(s, x) = ew(7, ).

n

Thus (I7'e.,)(fe,x) = exx and e e K, for every xe a. Therefore 6¢ K, K = I and
J, is a maximal 2-sided ideal of I. R is therefore an intersection of
2-sided ideals of I so R is a 2-sided ideal of I.

Notation. For an integer n = 1, R” is the smallest ideal of I which contains
all functions f f, . . . f, where fi, . . ., f,are members of R.

Lemma 2.8. 01 R"={0}.

Proof. 1t is clear that the function 0 is in this intersection. For every
X, veX, let

I[x,y] = cardlae Xla € [x, y] ).

For every x, ye X, I[x,y] is a non-negative integer by the locally finite
condition on (X, £). If fe R and l[x, v] £ 1, then either x £Z v, in which case
f(x,y) =0, or [x,y] =[x, x] and if a =[x, x], then f(x,y) = 0 because x, vea
and feJ,. Suppose inductively that if fe R” and I[x, y] < #, then f(x,v) = 0.
We shall show that if fe R”"' and I[x,v]=#n+1 then f(x,y)=0. Each
function f belonging to R”'' may be expressed as an F-sum of functions of
the type g./, where ge R” and lie R; therefore it suffices to show that
(gh)(x,v) = 0 whenever I[x, v] S n + 1.

(gh)(x,v) = Zz\ glx, z)h(z,v)
25 gly, 2)h(z, )

ze[xy]

2 glx,2)h(z,v)

zeS oy, vl

where S =[x,y]-[y,v]. For every zeS, ||y, z]=n so by our inductive
hypothesis g(v,z) = 0. For any ze[y.v], I[z, v] =1 so that .(z,y) = 0 by our
inductive hypothesis. Therefore (gh)(x,y) = 0. This shows that for every
positive integer #, if fe R” and I[x, v] < n, then f(x, v) = 0. Now suppose that

fe 101 R”. Let x, ve X and let i[x,v]=» If » =0, then x £ v and flx, v) = 0.
It » > 0, then fe R™ and f(x,v) = 0. Sof= 0.

We shall now introduce a topology to the ring I, which is identical to
the standard topology for incidence ring in Doubilet, Rota and Smith [3].
For the definition of topological terms used but not defined we refer the
reader to Kelley [1].

Definition 2.9. A convergence class for I is a set K consisting of pairs
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({0, D), f) where fel, D is a directed set and (¢, D) is a net in I, satisfying
the following conditions:

(a) If (¢, D) is a net in I'such that ¢(d)=f for every d e D, then ((v, D), f) e K.
() If ((¢,D),f)e K and («',D') is a subnet of (¢, D), then ((«', D"), f) e K.
() I ((¢, D), /)¢ K, there is a subnet (y, E) of (¢, D) such that if (', £') is
a subnet of (¥, E), then (({', E'), f)¢K.

(d) Let D be a directed set, E; a directed set for each deD and let
G =D X X{Edlde D} It d, a)eG let v(d, a) = (d, a(d)). Gis adirected set
and if (¢, D x E4) is a net in I such that (W, . ..), E,), f,) € K for every
deD and if Y'(d) = fy and ((Y', D), f) e K, then (Yo, G), fle K.

For the incidence ring [ we define the convergence class K as follows:
let D be any directed set and let (¢, D) be a net in/, then ©(d)e! for every
deD. For everyx, veX, {o(d)(x,v)| deD}is a net in F. Then ((¢ D), /e K
iff for every x, veX, the net {¢(d)(v,y)|de D} converges to f(x,v) in the
topology on F. The class K is a convergence class for/ as is easily shown
and by Theorem 9 of Chapter 2 in Kelley [1], K may be used to define a
closure operator on the subsets of 7/ and hence a unique topology on I.
Following Doubilet-Rota and Stanley [3] we refer to this topology as the
standard topology on I

Definition 2.10. If A is a subset of X x X and fe I, then f4 is that member of
I defined as follows: for every x, yeX

o Y flx ) if x, ve A
falx, ) = {O otherwise.

Lemma 2.11. Let A be « set of subsets of N x X such that U‘II = X x X and
if A, Bet then A _ Be Y. Let Y be a subsel of I which is closed in the
standavd topology. If fe I and if for every Ae Y, f1e Y, then fe Y.

Proof. The set % is directed by inclusion. If Ae ¥, let f(A) =f4. Then
(f, ) is a net in Y. Because Y is closed in the standard topology, if

((f, ), f)eK, then fe Y. Let x, yeX, then, since Ui[ = X% thereis an Aey
such that (x, y)e A. For every Be Y such that A ¢ B, (x,v)e B and fi(x,v) =
flx,v). Therefore the net |f (x,v)!Ce %} converges to f(x,v). Hence
((f,"),f)e Kand fe Y.

Lemma 2.12. For every ae 4‘7, J, Is closed in the slandayvd topology on I.

Proof. 1t is enough to show that if (¢, D) is a netin .J, and ((¢; D), f)e K,
then f € .J,. Assume this situation holds. Let x, ve «; then «(d)(x,v) = 0 for
every de D. If f(x,v) =1t and ¢ # 0, there is an open set [’ in I such that
Oc¢ U7 and t¢ {'. Therefore the net |o(d)(x,v)/de D} does not converge to
fx,v) and ((¢;, D), /)¢ K. This contradiction shows that f(x, v) = 0 for every
x, ve«a and therefore .J, is closed in the standard topology on /.

The previous lemma is the only preliminary result in this section
requiring the restriction on the topology of IF. The reason we introduced
the standard topology on I is to facilitate the following lemma. In Stanley’s
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proof given in [3] and [5] such recourse to the standard topology is not
necessary.

Lemma 2.13. If K is a maximal 2-sided ideal in I and closed in the
standavd topology, then K = J, for some a e X.

Proof. Lemmas 2.7 and 12 show that the J, are closed maximal 2-sided
ideals in I. Suppose K is not a subset of any of the J,, we show that this
implies 6 € K so that K =7 and K is not a proper ideal. So K ¢ .J, for some
aeX and by the maximality of K, K =.J,. Let be)?, K ¢ J, so for some
x, veb, there is an fe K such that f(x,y)=1+0. If web, then ¢,, and
e,ne I and therefore (I”'e,,)(fe,,) is in K, because Kis a 2-sided ideal. But
1"%,.fe,, = e,, so that e,,e K for every ueb. The set b was an arbitrary
member of f, and since U? =X we see that ¢,,e K for every u#e¢X. This

implies that for every finite subset A of X x X, 4 = 2, e.neK. Now let
(x,x)eA

% = [A|A is a finite subset of X x X}; 4 is directed by inclusion, Uy = X x X
and (6, %) is a net in K where 6(A4) = 64. Clearly ((6, %), 6) ¢ K, by definition
of K. By Lemma 2.11, 6 ¢ K. The proof is complete.

Definition 2.14. A function ¢: [ — I'" is closed on maximal 2-sided ideals
iff for every closed maximal 2-sided ideal K of I, ¢(K) is closed in the
standard topology on I'.

Lemma 2.15. Let y: I —I' be a ving isomovphism which is closed on
maximal 2-sided ideals. Then for every aeX theve is an a'e X' such that
Y(J,) =y, card(@) = card(@’), cord(X) = card(X') and Y (R) = R'.

Proof. Leta e)?, then ¢ (J,) is a maximal 2-sided ideal in I’ because Y is a
ring isomorphism. ¢ is closed on maximal 2-sided ideals so that Y (J,) is
closed in the standard topology on I'. Therefore, by Lemma 2.13 applied to
I',y(J,) = J, for some a'eX'. Let n=card(a) and n' = card(@'). We show
that 7|J, ~ M(n, F). Let 6: I— M(n, F) be defined as follows: let xe a, for
everyfel

6(f) = m(fliu.y)-

It is easy to show that 6 is a ring homomorphism (¢f. Lemma 1.7) onto
M(n, F) and that 6(f) = (0) iff feJ,. Therefore I|.J, ~ M(n, F). Since I|.J, ~
I'lJ,, we have M(n, F) = M(n', F) and therefore n = n', since both matrix
rings have the same dimension as vector spaces over F. Thus card(a) =
card(a'). If X is a finite set, then

card(X) = 2 card(a) = 2, card(a') = card(X").

ac\ a'eX’

If X is an infinite set, then card(X) = cord(j\’) because each ae X is a finite
subset of X. However, card(X) = card(X") by the bijective correspondence
between the closed maximal 2-sided ideals of [ and I'. Thus, card(X) =
card(X’). Finally,

v(R) = (N {alae 1)
=Niw)lae X =Nala'c X1} = R
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Lemma 2.16. I|R is isomorphic to H IlJ, by the isomovphism
aeX
6(f +R) = (f + Jaacx-

Proof. To show that 6 is surjective let (i, + J,),.x be @ member of HIlJa.
Define /1e I as follows: for every x, ye X,

X, y)if x
e ) = a0 v

0 otherwise.

This definition is possible because the members of X are pairwise disjoint
sets. Clearly 6(h + R) = (i, + J;), 5. The proof that 6 is an isomorphism is

a standard result given that R = n{Ja lae X).

Theorem 2.17. Lel : I — I' be a ving isomovphism, closed on maximal
2-sided ideals. Let Y(J,) =J, for every aei a'ef’, be the bijective
corvespondence betiveen closed maximal 2-sided ideals. Then fov every
aeX, U(f,) - f.eR".

Proof. Consider the following diagram.

v
I r
3 je e’ }3’
¥
IR 11 11, Iy, I'lR'.
Y aeX a'eX’ _}/v

The functions 3, 3, €, ¥ are defined as follows: for fel, 3(f) =f +R,
y(f+R) = (f+ Jacx, €(f) = (f+J)a . Clearly yo3=¢g; 3is an isomorphism
by Lemma 2.16.

U+ T )gn = WA + Ta g er
Y is an isomorphism by Lemma 2.15. 3', ¢’ and ¢’ are defined similarly to
3, 7 and ¢ respectively. If ¢ € .X then

3 ew(f,) = W(f) +R' definition of 3’

= N +Tp )y definition of 5 '
Yol (f, + Ty definition of
0,...,0,f,+J,,0,...) definition of f,
(

)
= ()70, ...,0,1,0,...) definition of £y, J,
= (70, .., 0.0, 0, . .) definition of ¥
= GO far + Ty e x definition of f,., Ju
= fo +R' definition of 4'
= 3" (fa) definition of ;3'.

Thus, 3'(U( £,)-fa) = 0 and W( f,) - foe R'.

We are now able to use Stanley's Lemma of [3] and [5] to show that the
partially ordered systems <f, <) and @”, <') are isomorphic under suitable
isomorphism conditions between the incidence algebras I and I', and thus
conclude that the pre-ordered systems (X, <), (X', =') are isomorphic.
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Lemma 2.18. (Stanley’s Lemma). Let I, be a ving and let e, f, e',f' be
idempotent members of I, such that e - e'¢ Ry and f - f'e R, wheve R, is a

2-sided ideal in I, such that ﬂ Ry ={0}. Then
nl

el,f = {0} iff e'l,f" = {0}.
Proof. Stanley [5] and Doubilet, Rota and Stanley [3].

Theorem 2.19. Let (X, =), (X', ') be locally finite pre-ovdeved relational
systems. Let F be a field and a topological space such that if t e F - {0},
then theve is an open set Uin F such that Oe U and t¢ U. Let I=(X, 5, F)
and I' = (X', =", F). If y: I — I'is a ving isomorphism which is closed on
maximal 2-sided ideals with respect to the standard topologies on I and I',
then the velational systems (X, =), (X', ') ave isomorphic.

Proof. In the set X' we have a' = b' iff f, I'fy # {0} by Lemma 2.5, and in :‘5
asb 1ff ﬁ,If;, #{0}. Let a<—>a' be the bijective correspondence between the
sets X, X' set up by { according to Lemma 2.15. The function ¢ is an

isomorphism so that f,If, # {0} iff Y (f )"V (f,) # {0}. However n(R')"— {o}

by Lemma 2.8 and Y(f,) - fo € R' by Theorem 2.17 so we may use Stanley’s
Lemma to conclude that g (f,)I"0(f,) # {0} iff fo.I'f # {0}. Therefore a = b
inXiff @' =d"in X'. In particular the partially ordered systems (X, =) and
<)~(', <') are isomorphic by the function ¥(a) = a’'.

Lemma 2.15 shows that the map ¥ preserves cardinality. For each
ae X there is a function V,: a — a' which is bijective. We may now define
a bijective function ¢: X — X’ which is a binary isomorphism. For every
xe X,

©o(x) = ¥,(x), where xe a.

If x, ve X, xea, yeb and x =y, then ¢ = b, a' =" b, therefore ¥,(x) =" ¥,(v)
and ©(x) =’ ©(y). Similarly, if ¢(x) ' ©(y), then x = y. Hence the systems
(X, =) and (X', =') are isomorphic.

If one of the sets X or X' are finite, then both are finite and the
topological conditions on ¥ may be eliminated, as the following theorem
shows.

Theorem 2.20. Let (X, <) and (X', =') be locally finite pre-ovdeved sets, F
afield, I={X, 5, F) andI' =(X', ="', F). Let I and I' be isomorphic rings
and suppose one of the sets X, X' are finite, then the pre-ovdered systeins
(X, 2 and (X', =') are isomorphic.

Pyoof. Without loss of generality suppose that X' is finite and suppose that
Y: I — I' is a ring isomorphism. Let F be given the discrete topology, then
F satisfies the topological condition required by the hypothesis of Theorem
2.19. In this case the function iy is closed on maximal 2-sided ideals; in
fact, for every set K C I, ¢ (K) is closed in the standard topology on I',
because the standard topology on I’ is the discrete topology on I' and
every subset of I' is both open and closed.
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To show that the topology on I' is the discrete topology it suffices to
show that for every ge I' the set I' - {g} is closed. Let (¢, D) be any net in
I' and suppose that (¢, D) converges, in the standard topology, to a function
f in I'. It must be shown that ¢ # f. Suppose that g=f. Then for every
X, ve X' the net {0(d)(x, v)|de D} converges to g(x, 1) in F. The set {g(x, v)}
is open in F, since F has the discrete topology so that there exists d., in D

such that if = is the relation which directs D, for everyd in D such that
dev, =d,

od)(x,y) = gx, ).

The set X' x X' is finite; by the properties of a directed set there is a d, in
D such that d,, = d, for every x, ye X'. In particular o(d,)(x, v) = g{x, V) for
every x, ve X'. Thus o(d,) = g; this contradicts our assumption that (¢, D)
is a net in I' - {g}. Hence f # g and the set I' - {g} is closed and {¢}is an
open set in /'. This shows that whenever F has the discrete topology and
X' is a finite set, the standard topology on [’ is, in fact, the discrete
topology on I'.

The conditions of Theorem 2.19 are now fulfilled, hence (X, £) and
(X', =') are isomorphic and X is also a finite set.

There are several other topologies which could be put on incidence
rings and used in the previous two theorems with precisely the same
results. These topologies need not concern us here; it is desirable to
remove the topological condition on the ring isomorphism in Theorem 2.19
or to show that it is necessary. I have not been able to do this.

To end this chapter we give an example of a pre-ordered system (Y, <
whose incidence ring I is not isomorphic to the incidence ring /€ of the
converse relational system (X, =),

Example 2.21. Let X =]x, v, z} have the relation = defined v = x, v <y,
z<z,x<y,v<2z Thenx =y v=y z:=2 v<“vand z <“x. By inspect-
ing the 6 members of the permutation group &, one may verify that the
pre-ordered relational systems (X, © and (X, £°) are not isomorphic.
Thus, if F is any field and 7= (Y, =, F)and /= (X, =, F) then [ and /€ are
not isomorphic rings by Theorem 2.20. However, as Theorem 1.21 shows
the multiplicative groups I* and /°* are isomorphic groups.
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