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INCIDENCE RINGS OF PRE-ORDERED SETS

W. RUSSELL BELDΊNG

Introduction. In this paper* every relation Ion a set X is a binary relation
which is transitive and reflexive. G. C. Rota [2] has defined incidence
rings of partially ordered systems (X, ύ).. We generalize these rings by
dropping the anti-symmetric condition on the order %

If X is a set and••% a binary relation on X, then (X, %) shall denote this
relational system. We say that (XΓS) is a pre-ordered relational system if
the relation = is transitive and reflexive.;- If confusion is unlikely, then we
shall often take the liberty of using the relation ^ to denote the usual
ordering of the natural numbers and also to denote a relation on a set X.
Unless otherwise stated 0,1 should be understood to be real numbers. To
each relational system (X, =) there is a unique zeta function, ζ^ mapping
X xX into {0,1}, For ,x, ye X, ζ(x,y) = 1,.. if- -AT ̂  y znd ζ(x,y) = 0 otherwise.
In the context of a relation system (X> =),[x,y] =-{ue x\x = u ~ y} is an
interval and (X, ^) is locally finite'iff every such interval is empty or a
finite set.

We shall consider only rings R which have a multiplicative identity;
rings may or may not be commutative. We do not assume any relationship
between the rings R and sets X we discuss. The symbol β* denotes the set
of units of the ring R; the function det is the determinant function, lί n is a
positive integer,, then bΛ{n,R\ denotes the complete ring of n x n matrices
over the ring R. If X is any set, then £χ denotes the group of permutations
of the set X\ for positive integers n, ^denotes S[1)ttt>n\.

For a given ring R and locally finite pre-ordered system {X, ύ), the
incidence ring 1= (X, =, R) is set—theoretically the set of functions /
mapping X x X into R satisfying the following order condition. For every
x, ye X,f(x,y) Φ 0 only if x ύ y. Multiplication, addition and scalar multi-
plication for incidence rings are defined in section 1. If [x, y\ is a
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non-empty interval and if =| is the relation ύ restricted to the set [χf y],

t h e n t h e interval ring I[x, y] o f / i s t h e i n c i d e n c e r i n g ([x, y\, ύ\, R). In

general /[#,3>] is not isomorphic to a subring of /. The zeta function ζ of

(X, =} is in / and if ζ has an inverse, say μ, then μ is the Mobuis function

of /. To indicate that / is a function mapping the set X into the set Y we

often write/: X —» Y. lί xe X, ye Y and/(#) = y we often write x\-*y to

indicate the action of/. If (X, =), (Y, =') are relational systems and/is a

bijective map/: X —* Y such that x ύ y iff f(x) =rf(y), then these relational

systems are isomorphic by the function /.

Of the various sorts of orderings which may be defined on a set partial

orderings are the ones which have been studied in greatest detail. The

reason for this is simple. Where natural orderings arise on a mathemati-

cal structure they are often 'less than or equal to' type orderings which are

partial orderings. However, there are orderings of some interest which

are reflexive and transitive but not necessarily antisymmetric. Pre-

ordered relational systems arise, for example, whenever a topology is

defined on a finite set or whenever a topology in which arbitrary inter-

sections of open sets are open sets is defined on a set. Incidence rings, the

study of which has been made important for the foundations of Combina-

torial Theory by G. C. Rota [2] are examples of structures defined

originally using a partial ordering but where the structures do not

collapse or become insignificant when the antisymmetry property of the

order is dropped.

The study of incidence rings of a locally finite pre-ordered relational

system {X, ύ) is related to the study of enumeration problems associated

with the order = and to the study of inversion formulas for certain functions

on the sets X and X x X. The zeta function ζ of an incidence ring / =

(X, % R) precisely describes the relational system (X, ύ) and the inverse

of ζ, when it exists, is the Mobuis function of the ring.

By way of example consider the position integers TV ordered by

division |, OV, I) is a locally finite partially ordered system. The zeta

function of the incidence ring of OV, I) over, say the real numbers, is

(l if m\n
ζ{m>n) =\0 otherwise.

The classical Mobuis function is

1 if n = 1

μ.c(ή) = < 0 if n is divisible by the square of a prime

(-l)k if n is the product of k distinct primes.

If we write

μ(m,ή) = Y \m/

(0 otherwise

then μ is the inverse of ζ in the incidence ring. The classical inversion
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formula of Mόbuis becomes an inversion formula in the incidence ring. If
g is a real valued function on yV satisfying g(n) Φ 0 only if n\r for a fixed
r e JV and if

f(m)=Σ g{n),
n\m

then

g{m) =Σί f(n)μ.(n,m) = Σf(n)μ(n,m).
n\m n

If we now move to the integers Z ordered by division, then (Z, I) is no
longer a partially ordered relational system; however, (Z, |) is a locally
finite pre-ordered relational system. Inversion formulas for (Z, |) analo-
gous to the one given above for (_yV, I) are naturally of mathematical
interest and therefore it is of interest to characterize those functions in the
incidence ring of (Z, I) over, say the real numbers, which are invertible.
The main result of section 1 is to carry out such a characterization for an
arbitrary locally finite pre-ordered system.

G. C. Rota [2] has defined incidence rings of functions subject to an
order constraint mapping X2 into the real numbers where X is a locally
finite partially ordered set. It is possible to define such rings for locally
finite pre-ordered systems (X, ύ) as we do in section 1. For the study of
inversion formulas in incidence rings it is desirable to know which
functions in the incidence ring are invertible and in section 1 we charac-
terize the units of an arbitrary incidence ring / = (X, % R) where {X, Ik) is
a locally finite pre-ordered relational system and R a commutative ring.
A function/ in / is invertible iff for each interval ring of the form /[#,#] of
7, the restricted function /![#,#] is invertible in /[#,#]. This type of
local-global invertibility property can be tested using determinants for the
following reason. Each interval ring 7[ΛΓ, 3;] of 7 is isomorphic to a subring
of a complete matrix algebra bA{n,R). Using properties of the pre-order
relation we show that invertibility in the subring of M(n,R) isomorphic to
l[x,y] is equivalent to invertibility in M(n,R) itself. Consequently / is
invertible in the full incidence ring 7 iff a certain collection of determinants
related t o / are all units in 7ϋ. As a corollary of this result we show that an
incidence ring contains a Mobuis function iff the underlying pre-ordered
system is a partially ordered system. Also, several results are developed
which relate the structure of a locally finite pre-ordered system to the
algebraic structure of its incidence rings.

R. P. Stanley, [3] and [5], has shown that locally finite partially
ordered systems (X, ύ) and (Xf, ύ') are isomorphic iff their respective
incidence rings over any given field are isomorphic rings. In section 2 we
generalize this result to pre-ordered systems. The generalization is not
complete in the following sense. If (X, i ) , (Xr, ύτ) are locally finite
pre-ordered systems which are isomorphic it is easy to show that their
incidence rings (x, ^, R) and (Xr, =', R) over a common ring R, are
isomorphic. Conversely if 7? is a field, if either X or Xt is finite and if
(X, ί, R) and (X', iΓ, R) are isomorphic rings then (X, ί) and (Xf, ^ f) are
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isomorphic relational systems. However, for the case where both X and X1

are infinite sets we have had to require special conditions on a ring
isomorphism ψ: {X, ύ, R) —> {Xf, %', R) to ensure that the systems (X, ίi),
(Xr, =') will also be isomorphic.

Incidence Rings. We shall be concerned with developing the theory of
incidence rings of pre-ordered sets. G. C. Rota [2] has defined incidence
rings for partially ordered sets. Here we drop the antisymmetric condition
on the underlying order and investigate the corresponding changes in the
structure of the incidence rings.

1. Inυertibility in Incidence Rings. In this section we completely charac-
terize the units of an incidence ring I oi a pre-ordered set over a commuta-
tive ring with identity. Several results relating the structure of the
pre-order relation to invertibility are derived including a type of inverse
function theorem. It is shown that / contains a Mδbuis function iff the
underlying order is a partial ordering.

Definition 1.1. Let (X, ύ) be a locally finite pre-ordered system. The
incidence ring of the relational system (X ? =) over the ring R is the set of
functions/ mapping X x X into R satisfying the following order condition:
f(x,y) Φ 0 only if x ^ yy for every 'x, y e X We refer to this set of functions
as (X, ̂ , R),or where convenient, as simply /. On the set / we define
operations of multiplication O, addition Θ, and left and right scalar multi-
plication *. Let + and . denote addition and multiplication respectively in
the ring R. For every f, ge I; x, y e X and be R we have:

{f<Dg)(x,y) - Σ f{x,u).g(uiy)

(f®g)(χ,y) = f{χ,y)+g(χ,y)

(b */) (Xίy) = h:f(x,y) aM(f*b)(x,y)=f(x,y).b

For convenience we drop the notation O, ©, * and write fg, / + g, bf and fb
respectively for multiplication, addition and left and right scalar multi^
plication in /.

Lemma 1.2. Let (X, ̂ ) be a locally finite pre-ordered system and R a ring.
Then 1= (X, % It)" is a ring and a left and right R-module fin the ring
theoretic sense)V

Proof. Let u, υ., x, ye X; a, be R and /, g, he L By the definition of addition
in /, the members of / form a commutative group with respect to addition,
provided X is non-e^mpty, since R has this property. We neglect altogether
the trivial case X - Φ. By the definition of scalar multiplication it is
obvious that af e /, (a + b)f -of + bf and a(f -h g) •••= af + ag; and similarly for
scalar multiplication on the right.

Suppose (fg)(x, y) Φ 0, then by the definition of multiplication in / there
is a ueX such that f(x., u) g(u,y) Φ 0, Hence /(ΛΓ, U). Φ 0, g{u,y) Φ 0 so x ύ u
and u ^ y. By the transitivity of the relation, x % y. This shows that fge I
and that / is closed under multiplication. Furthermore, in the equation

(fg)&j)= Σ f(x,u)giμ,y)
ueX



INCIDENCE RINGS OF PRE-ORDERED SETS 485

the sum on the right involves only finitely many non-zero summands, since,
if f(x, u)g(u,y) Φ 0, then ue [x, y] and this latter set is finite. The finiteness
of such summands enables us to show easily that

fig + h) = fg + fh and (g + h)f = gf + hf.

To show that / is a ring it suffices to show that / contains a multiplicative
identity and that multiplication is associative. If we define

δ{X, V) = < Λ . f

( 0 if x Φ y

then δ e /, as ~ is reflexive. Furthermore,
(δf)(x, y) = Σ δ(ΛΓ, u)f{u, v) = f(x, v).

ucX

So δf =f and similarly fδ = f, showing that δ is the multiplicative identity
of 7. We have,

(/&/*))(*. V) = Σ fix, u)teh)(u, v) = Σ f(x, H)(Σ g(ι<, ι>) lι(v. v))
U(X ueλ \r(X I

The interval [x,y] is a finite set and [//, v] is a finite set for each ue X so
this sum contains finitely many non-zero summands. Using the distributive
and commutative addition laws in the ring R we may write this sum as

(f(gh))(x,y) = Σ(Σ f(x,ιι)g(ι<,v))h(v,y)
f(\ \U€\ /

= Σ (fg)(x,y)Hυ,v)
ι>(X

= «fgW(χ,y).

So f(gh) = (fg)h, thereby showing that / is a ring.

Corollary 1.3. Let (X, -) be a locally finite pre-ordereά system and R a
ring, then I = (X, - , R) is an algebra over R iff R is a commutative ring.

Proof. S i n c e I i s a r i n g , i t i s a n a l g e b r a o v e r R iff f o r e v e r y beR a n d

f, g e I w e h a v e

cι(fg) = (af)g=f(ag).

Since / contains an identity this result is equivalent to

bf = fb

for beR and fe I. By definition of scalar multiplication in / this holds iff R
is commutative.

By construction of incidence rings, if / = (X, %, R) is an incidence ring
and Λ" a finite set, then I is isomorphic to a subring of M(/>, R) the complete
ring of p x p matrices over R, where p is the cardinality of X.

Definition 1.4. Let λ" = {xly . . ., Λ*̂ ) and let (X, <) be a pre-ordered system
and R a ring. Let / = (Λr, ~, R). A map

m^: / — M(/>,Λ)
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is defined as follows. Let fel and let i, j be integers 1 ^i, j i p. π\p(f) is

that m e m b e r of hA{p,R) whose (ij)-th entry is

(mρ(f))ij =f(Xi,Xj)-

For convenience we shall drop the subscript from the map m , since it will
be clear from the context what the cardinality of X is.

Lemma 1.5. Let X be a finite set, {X, <) a pre-ordered system, R a ring
and let I = (X, ^, R). Then the map m : / — m (/) is a ring isomorphism. If
R is a commutative ring, then m is an algebra isomorphism.

Proof. Let X = {xl9 . . ., xn}; /, ge / and be R. For 1 ^ i9 j % n, (m(/))f ; =
f(Xi,Xj). Clearly m(f+g) = m (/) + m (g) and m(/) = 0 iff/= 0. Also,

n

™(fg)ij = (fg)(χi,*j) = Σ f(χi,χk)g(χk,χj)

= Σ m (/) .Λ m (^) A . = (m (/) m (^)) z ; .

So m(/^) = m(f)m(g ). If /»is the identity matrix of M(n,R) it is easy to see
that m (/) = /„ iff / = δ. This shows that m maps / isomorphically to its
image m (/) in tλ(n,R). Further, if R is commutative, then /and M(n,R) are
algebras over R and m is an algebra isomorphism since m(bf) = b(m(f)).

In the preceding proof the enumeration given to the set X changes

(X, =,R) only by an isomorphism.

Lemma 1.6. Let X= {xly . . ., xn} and let (X, ^) be a pre-ordered system.
Let σe Sw and let σ(i) be the pre-order relation on X defined as follows:

Xiσ(^)xj iff xσ{i) ύ xσ(j).

Let 1= (X, ^, R) and Γ = {X, σ(ύ),R). For every fel let f° be an element of
1° defined as follows:

f°(Xi,Xj) =f(xσ{i),Xσ{j)).

Then the map σ: / —> 1° is a ring isomorphism.

Proof. Let f, ge L By the order condition on /we have f°(Xi,Xj) Φ 0 only if
Xσϋ) ίxσij), so Άxi,Xj) * 0 only if xM%)xh Thus f°e Iσ. Clearly (f+g)σ =
fσ+g a n d / σ = O i f f / = 0. A l s o ,

n

(fg)°(Xi,Xk) = Σ f(Xσ{i),Xj)g(Xj,Xσ{k))

n

= Σ f(xσ(i)> xσ{])) g(Xσ(j)> xσ{k))

= \fσ^)(xi,Xk)

So (fg)° =f°gσ. Clearly fσ= δ iff / = δ. This shows that σ is a ring iso-
morphism.

Definition 1.7. Let (X, =) be a locally finite pre-ordered relational system
and R a ring. Let u, υeX and suppose u = v. Recall that [u, v] = {xe X\u =
xύ v}. Let ^uι, be the relation i restricted to the subset [u, v]. Then
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([u, v], =u>v, R) is the incidence ring of the relational system ([*/,*'], =uι)
over the ring R. We call this incidence ring the interval ringl[u, r] of the
incidence ring /= (X, =,R).

Definition 1.8. Let /= (X, i, R) be an incidence ring and let l[u, v] be an
interval ring of /. If fe /, let /l[MfI,i e/[w, υ] be defined as follows: for every
x,y e [u, υ\,

f\\u,r](χ,y)=f(χ,y)

L e m m a 1.9. Letl[u, v] be an interval r'uig of an incidence ring I = (X, ^y R).

Then every ge l[u, v] lias the form f \[UιV\ for some fe I.

Proof. L e t g e l [ u , υ ] . D e f i n e f e l a s f o l l o w s : f o r e v e r y ΛΓ, y e X

f( x = $g(x,y) if #, ve [u, υ]
-nx>y) \0 otherwise.

Then/|fWtt,i = g, as required.

Interval rings, for example l[x, y] of an incidence ring/, are introduced
because, as is later shown, a function / belonging to / is invertible in / iff
/ | [ M ] is invertible in l[x, y] for each non-empty interval [x, y]. According
to this result a global property of a function/, that is, whether or not/e/* ,
can be determined by examining the local properties of /, that is, whether
or not / l[v},j el[x, v]*, for each such interval [Λ',V] The locally finite
condition requires that intervals [x,y] be finite sets so Lemma 1.5 shows
that /[Λ%)>] is isomorphic to a subring of M(n,R) where n is the cardinality
of [-v,_y]. In general l[x, y] is not isomorphic to a subring of / as the
following example shows.

Example 1.10. Let X = {xux2, -V3} Define the relation = on X as follows:
xγ % Λ'2, x2 - AΊ and for i = 1, 2, 3, x{ % xt. Let / = (X, i, Z2>, where, as is
usual, Z2 is the field consisting of 2-elements. /is isomorphic to a subring
of M(3,Z2) by Lemma 1.5. By construction of incidence rings and by
definition of this particular pre-ordered system (X, =), / is a ring with
25 = 32 members.

Consider the interval [ΛΓ^ΛΊ] = {xu Λ'2}. The interval ring l[xu \\] is
isomorphic to M(2,Z2) and has 24 = 16 members. The units of M(2,Z2) are
the matrices:

r° η r
1
 η p °i r° η Γ

1
 η

Li oj, Lo lj, Li iJ, Li iJ, Li oj
and the identity matrix .

We note the following equation relating three of these invertible matrices:

[;:]-[!K;]
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By construction of /, if m (/) is the sabring of M(3,£2) isomorphic to /

according to Lemma 1.5, then the units of m (7) are the matrices:

~o l oΊ Γi l oΊ Γi o oΊ Γo 1 dl Γi i o~
1 0 0 , 0 1 0 , 1 1 0 , 1 1 0 , 1 0 0

j) o lj L° o lj LP o lj [o o lj [o o i_

" l 0 0~"

a n d t h e i d e n t i t y m a t r i x 0 1 0 . If t h e i n t e r v a l ringl[xu x \ ) i s i s o m o r p h i c

_0 0 lj
to a subring of /, then M(2,Z2) is isomorphic to a subring of m (/). The ring

M(2,Z2) has 6 units and m (7) has 6 units, therefore the units of M(2,Z2)
 a r e

mapped onto the units of m(/). Let iλ be the identity matrix of M(2, Z2) and

let i2 be the identity matrix of m(7). Then the isomorphism maps iι to i2.

Further, suppose that the invertible matrices , of M(2,Z2) are

mapped to invertible matrices jx, j2 respectively of m(7). Equation (1) and

properties of ring isomorphisms require that

(2) jl +J2 ~ *V

Equation (2) is impossible to fulfill in m (7) because, by inspection of the

units of m(7), the addition of any two of these units gives a matrix with

zeros in its third row and i2 has a non-zero entry in its third row.

This shows that it is impossible that M(2,Z2) is isomorphic to a

subring of m (7) and therefore, it is impossible that l[xι, Xi] is isomorphic to

a subring of 7.

Theorem 1.13. Let (X, =) be a locally finite pre-ordered system and R a

ring. For every fel =.(X, =, R), f is invertible in I iff for every interval

ring l[u,v] ofI,f\[Uιl.] is invertible inl[u,v].

Proof. F i r s t s u p p o s e t h a t / i s i n v e r t i b l e i n 7 a n d l e t h-f'1. L e t iί, veX

a n d s u p p o s e u ύ v. L e t h γ = h\UtV] a n d fx = f \ [ U t V \ . T h e n / 7 1 = h u f o r i f

x, ye [u,v], then in l[u, v]

(Λi/i)U,.y)= Σ th(x,s)fΛs,y)
S€[u,v\

^ \ , as ^ is a pre-order and
= Zv hάx, s) his, y) b y t h e o r d e r c o n d i t i o n >

= ΣJ h(x, s) f(s, v) by definition of fu hι.

= δ(x,y)

Thus hιfι = δ and similarly f^ = δ in l[u, v]; s o / ^ 1 = hι a n d / | ^ ? j is in-

vertible in l[u, v]. Conversely suppose that the restriction of/ is invertible

in every interval ring of 7. Define he I as follows: for every x, ye X

_ f£"(#, y), it x = y and g is the inverse of f\[x y] in l[x, y].

- (0, ifxέy.

Clearly h(x,y) Φ 0 only if x ^ y and he I. Let x, v, u, ve X and suppose
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[x,y] Q [u,*v] L e t -^i a n d g2 b e t h e i n v e r s e s of' f\ =/, ' iχ, v j a n d f2'=f \[u,v] i n
I[x) y] a n d • l[u, v] r e s p e c t i v e l y ; C l e a r l y fι = / 2 |[Xf>.j s i n c e [x, y] c [u, ?•]; w e
s h o w t h a t ^ Ί =. ,§*2 | [ x , y ] . L e t w, z e [x, v], t h e n rv, z e [*/, v] a n d

(1) •S(M',2) = Σ gι(ii\t)'fι(t,z)
te[χ,y] : ' '

(2) δ(«',2>= Σ g2{w,tγf2(t';z)
t([u,v]

= Σ g2(iVj) fi((,z)

by the order condition and /Ί =/ 2 |fX)y]. "

These two equations hold for every ?r, ze [̂ v,.v]. Since [x,y] is a finite set,
of cardinality n say, Lemma 1.5 shows that /[Λ', V̂] is isomorphic to a
subring of hλ(n,R). It is well known that inverse matrices are unique if
they exist. Hence inverses in ΐ[x, y] are unique if they exist. In particular
^Ifv.y] - ^ i bv equations (1), (2) and this latter remark. From this we
deduce:

(3) if u, ve X, u < v and[if g is the inverse of f\\UtV\ in l[ιι, v], then for every
v, ye [ιι,υ],h{x,y):=*g(x;y).-:

Let //, v e X and let g be the inverse of'/|[ t t ι Γ].

(f!ι)(H,v) = Σ f(u,t)h(t,v)
tt[u.v\

= Σ' /K t)g{t, v) by (3)
tΛu.t] '

= δ(u,υ).

So, fg =.δ and similarly hf = δ, showing that h =f~ι and that f.is invertible
in /.

We shall later improve Theorem 1.13 by showing that we only need
consider interval rings of the type I[ιι, M]-instead., of considering all interval
rings, to determine whether or not a function is invertible in the parent
incidence ring /, provided R is commutative. Having shown that inverti-
bility in an incidence ring / is equivalent to invertibility in' all of the
interval rings of 7 and hence by Lemma 1.5, equivalent to the invertibility
of a collection of finite matrices in specified subrings of hΛ(n,R), for
various n, it is desirable to investigate invertibility criteria for interval
rings. Since each interval ring of / is an incidence ring of a finite
pre-ordered system, such criteria are given by the next theorem which
gives an effective computational device for determining whether or not a
function / belonging to / = (X, =, R) is invertible whenever X is a finite set
and R a commutative ring. If .V has n members and m is the mapping of
Definition 1.4, then invertibility in m (/) is equivalent to invertibility in
M.(«,Λ).

T h e o r e m 1:14, LetX - \x.u ..-. ., xn} and let (X, s)..be a fire-ordered system.

Let R be a commutative ring and I - {X,-%,R). If fel, then f el* iff

d e t ( m ( / ) ) e Λ * .
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Proof. If / e / * , then m(fι) = (m(/)) - 1 since m is a ring isomorphism by
Lemma 1.5. So m (/) is invertible in m (/) which is a subring of M{n,R).
This shows that m (/) is invertible in t\A(n,R) and by a well known ring
theoretic result det(m (/)) e R*. Conversely, suppose det(m (/)) = u and
neR*. Then m (/) is invertible in M(n,R). It remains to show that
m (f)"Le m(/). Let Fij be the (n- 1) x (n- 1) matrix obtained by deleting the
z-th row and j-th column of m(f). Then

(m (/)"%• = ( - i f d e t ^ ) ^ 1 .

If S(jJ) = {σe Sn\σ(J) = i) then det(Fμ ) is the sum of terms of the form

(1) ε(σ)f(xu xσ(ι)) . . . f(xj-i,xσ(j-i)) f(xμι,xσ(μι)) . . . f[xn, xσ(n))

where ε(σ) = ±1 depending on σ. If (mf/"1))^ ^ 0 then for at least one
σe S(j, i) there is a non-zero product of the form (1). By definition of Fμ no
factor f(Xp, xq) where p - j or q - i occurs in any summand.

To show that m(f)~1e m(7) it suffices to show that (m (/)"%• φ 0 only if
Xj ί Xj. If i = j there is no problem, since i is reflexive. Now suppose that
i Φ j and that (m{f)~ι)ij Φ 0. The factor f(xiy xσ{i)) appears in (1), so, by the
order condition, x{ % xσ^y If σ(i) = j , the proof is complete. If σ(i) Φ j , the
factor f(xσ{i),xσ2{i)) appears in (1) and xσ{i) ί xσ2{i). If σ2(i) = j , then xι ύ
xσ(i) = xσ2(i) = Xj and λ'i ύ Xj, by the transitivity of =. If σ2(ί) Φ j , σ3(ί) Φ j and
so on; we obtain:

Xi ί x σ { i ) % . . . i x o n - l ( i ) .

I f f o r s o m e p , q s u c h t h a t l^p^p + q^n-lwe h a v e σ p ( i ) = σ p + q ( i ) , t h e n

/ = (jq[i) and the factor f{xσq-i{i),Xi) occurs in (1); this is not possible. So the
integers i, σ(i), . . ., (j"'1^) are distinct and for p such that I < p ύ n - l w e
have σp(i) = j . By the transitivity of =, Xj = xjΛ Thus m(/)" 16 m(7) and since
m is an isomorphism, f~ι exists in / and / e / * .

The following Theorem enables us to use Theorem 1.14 to improve
Theorem 1.13 in the case where R is a commutative ring.

Theorem 1.15. Let (X, =) be a locally finite pre-ordered system, R a
commutative ring and I- (X, =, R). Let Y be any finite subset of X such
tliat Y is the disjoint union of intervals of the type [J>,J>]. Suppose that

n

Y - U [j>;,v;]. Let =y be the relation = restricted to Y and let Iγ -
1=1

(Y, =γ, R). If m is the mapping of Definition 1.4, then for every ft Iγ we
Jiave:

n

d e t ( m ( / ) ) = Π d e t ( / | [ y ι , > . ] ) .

Proof. The proof is by induction on n. If n = 1 then Y = [yl9 vx], / = f\ [yi>>1]
and the result is clearly true. Suppose, inductively, that the result holds
whenever Y is the disjoint union of at most n - 1 intervals of the type [y,;y].
Let yl9 . . ., yneX be such that intervals [j;,-, j',-] are pairwise disjoint. Let

n n

Y = U b>,-,?,•] and W = U [yi9 v, ]. Without loss of generality we may
7=1 i-2
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suppose that the \\ are enumerated such that:

(1) y, i yt for 2 ^ iύ p

(2) y{ ^ y, ϊoτ p + 1 ^ i ^ p + q

(3) neither y1 ύ y{ nor yt^ y\ for p + q + 1 ύ i % n = p + q + r.

The set Y is a disjoint union of intervals so that (1) and (2) imply:

(4) y{ i yγ for 2 ^ i ^ p.

(5) J>i £ y,- for £ + 1 ^ f i /) + ί?.

If for particular i, j such that 2 ^ i ^ p and /> + 1 ύ j ύ n we had yi ^ v, , then

by (1) and the transitivity of ^ we would have y1 ^ yj. This contradicts (5)

itp+lύjfip+q and (3) if p + q + 1 ^ j ^ n\ hence

(6) .V; ̂  yj f o r 2 ^ i ^ p a n d p+l^j^p+q+r=n.

If for p a r t i c u l a r £, j such that p+q+l^i^n and /> + 1 ^ j < p + qwe had

j ; r = 3'; , then by (2) and the t rans i t iv i ty of = we would have j ^ = ylf a

contradict ion of (3). Hence:

(7) y\ % yj f o r p+q+l^i^n a n d p + I ^j ^p + q.

E a c h i n t e r v a l [)>,-, 3>;] i s a s u b s e t of Y. L e t u s s u p p o s e t h a t Y= {xu . . .,xu}

a n d t h a t

(8) [yι,yι] = {χι, . ., χs}= wa

P

(9) U [3>«,3>i] = { * S 4 l , , ^ S + / } = ^ 3

( 1 0 ) U b , , 3 Ί ] = { ^ / + i , ., Xs>t+«}= Wγ

i-ρ+ι

n

(11) U [3;,-, V,] = {*S4/4^1, , ^ S + /+« + ! } = ^

Of course s+ t+ u+ υ- iv. If s = 0, the proof is complete by induction.

If t = 0 or it = 0 or υ - 0, then one or more of the inequalities (1), (2) or (3)

is vacuously true and the proof will be simplified; here we are considering

the most general case when t Φ 0, u Φ 0 and v Φ 0. There are eight cases to

be proved but the other seven cases are very similar and simpler to prove.

Let fe Iy, then m(/) is an iv x w matrix in hλ(w,R). We have;

(12) (m(/)) ι7 =Axi9Xj). for 1 s i, j s w .

We express m(/) as a block of 16 matrices as follows:

s t u v

Aι A2 A3 A4 s

A5 At A7 A8 t

AQ A10 An A12 u

A A A A i)
^ 1 3 ^ 1 4 ^ 1 5 -^16 υ
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The square matrices Aly Λβy Ani Al6 are respectively m (f\[yi,yi\), m(/ | Wβ),

m (/ | Wγ) and m(/ | W(). For example, AΊ has entries (m(/)), ; for s + / + 1 i

j = s + t + u and s + l = z ^ s + / ; and so on for the remaining matrices.

Define the (t + u + ι>) x (£ + u + z;) matrix J3 as follows:

^ 6 A.7 A8

B = Alo An A12

Then B = ^ ( / l ^ ) and by inductive hypothesis and definition of W we have:

det(B) = Γ T d e t ( f n { / | [ y . f > . . 1 ) )

Of c o u r s e , det(^4L) = d e t ( m ( / | [ > 1 1 > y i ] ) ) ; w e s h a l l s h o w t h a t

det(m(/)) =det(A1)det(5)

and this will complete the proof by induction. The method is to show that

the matrices A3, A4, A5, AΊ, A8, A13 and A15 are all zero matrices and

therefore that the computation of det(m(/)) is independent of the matrices

A2 and AQ. We may therefore set all entries of A2 and A9 equal to 0 to

obtain a matrix C:

c = 1 Λ i 1 °
0 B

such that det(m(/)) = det(C) and by a well known result in determinant

theory, det(C) = det(Aχ) 6e\(B). To show that A3, A4, As, AΊ, A8, A13 and A15

have only zero entries we proceed as follows: By (3), (8) and (11) we have

(13) Xj % Xj and Xj ^ Xj, for 1 ύ i = s and s + t + u + 1 % j ^ w.

By (13) and the order condition on the functions in /γ applied to/we have

(14) f { x h x f y = O.= f ( x h x - i ) f o r 1 % i ύ s a n d 5 + / + « + l ^ j i w.

Equations (12) and (14) show that the matrices AA and Al3 are zero

matrices. By (4), (8) and (9) we have:

(15) xi i Xj for s + l i ^ s + / and 1 ύ j ύ s

(16) f(xj,Xj) - 0 for s + l ύ i ύ s + t and 1 = j g s (order condition).

Equations (12) and (16) show that A5 is a zero matrix. By (5), (8) and (10)

we have:

(17) Xi £ Xj, f o r 1 ^ i - k s a n d s + t + l ^ j ^ s + t + " « . . . . .

(18) f(xj,Xj) = 0, for 1 ύ i i s and s + t+l^j^s + t+u (order condition).

Equations (12) and (18) show that A3 is a zero matrix. By completely

similar arguments we use (6), (9), (10), (12) and the order condition to show

that A7 is a zero matrix; we use (7), (11), (10), (12) and the order condition

to show that A15 is a zero matrix. Thus A3, A4, A5, A7, A8, A13 and A15 are

zero matrices.
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We now show that because the previously mentioned matrices are zero

matrices, the entries of the matrices A2 and AQ do not affect the computa-

tion of det(m(/)). The ring R is commutative so we have:

(19) det(m(/)) = Σ e{σ)f(xl9xσ{1)) . . ./(#„, A^U,))
σeSw

Let σe Su and suppose that the summand corresponding to σ and appearing

on the right side of equation (19) is non-zero. Referring to the diagram of

m (/) and noting that A5, A7 and A8 are zero matrices we require that

(20) σ({s + l, . . .,s+t}) = {s + l, . . . ,s + f}.

Noting that A3 and A4 are zero matrices we require that

(21) σ({l, . . . , s } )c{ l , . . . , s + ί}.

Equations (20), (21) and the fact that σ is bijective imply that

(22) σ({l, . . . , S } ) = {1, . . .,s}.

Equation (22) shows that no entry of the matrix A2 appears in any non-zero

summand of (19). Further, noting that A5 and A13 are zero matrices we

require that

(23) σ({l, . . ., s, s + t + 1, . . ., s + t + u}) =

{l, . . ., s, s + t + 1, . . ., s + t + u}.

Equations (22), (23) and the fact that σ is bijective imply that

(24) σ({s + t + 1, . . ., s + t + u}) = (s + t + 1, . . ., s + t + u}.

Equation (24) shows that no entry of A9 appears in any non-zero summand

of (19). Hence if

0 B

then

det(m(/))=det(C)

= det(41)det(JB)
n

= det(m(/|[ y i , } . 1 ,))Πdβt(m (/| [ y. f y.]))

n

= Πdet(m(/|[ y |,y.])).

The proof is complete. Theorem 1.13 is improved as follows, if R is a

commutative ring.

Theorem 1.16. Let (X, i ) be a locally finite pre-ordered system and R a

commutative ring. Let I = (X, ^, R). For every f el, f is invertible in I iff

for every xeX, f\[x,x] is invertible in l[x,x].

Proof. By Theorem 1.13 it suffices to show that the following conditions

(1) and (2) are equivalent.
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(1) for every xe X, f\\x,x] is invertible inl[x,x].

(2) for every u, υ e X such that u ̂  υ, f\[UtV\ is invertible in l[u, v].

Intervals are finite sets so Theorem 1.14 shows that (1) and (2) are

equivalent to (3) and (4) respectively, where:

(3) for every xeX, det(m (/l[X(Xj)) e R*

(4) f o r e v e r y u , v e X s u c h t h a t u % v , d e t ( m ( f \ [ u > v ] ) ) e R * .

If u, v e X and u = v, then the interval [u, v] is a finite set which is a disjoint
n

union of intervals of the form [xf x]. If [u, v] = U [Vό^*], then Theorem 1.15

shows that
n

dβt(πfi(/l[B,,,])) = Π d e t ( m ( / | [ y i , w ] ) ) .

The group R* is closed under multiplication so (3) and (4) are equivalent.

If (X, =) is a locally finite partially ordered system, F a field and

/= (X, =, F), then a function/in / is invertible iff for every xe X, f(x,x) Φ 0,

according to the previous theorem, since [x,x] = {x} and F* = F - {θ}. This

result has been proved already in Smith [4]. The proof is easy to give

because ^ is a partial ordering: If/ is invertible, then

1- (ff-1)(x,x)=f(x,x)Γι(x,x)

so that f(x,x) Φ 0. Conversely one may show by induction on the length of ζ

intervals that if f(x,x) ί 0 for all xe X, then

f'ι(χ,y) = -(f(y,y)Γι\ Σ Γ\χ,z) f(z,y)\.

Accordingly, Theorem 1.16 is the precise generalization of this known

result for incidence rings of partially ordered sets over a field to incidence

rings of pre-ordered sets over a commutative ring. From the previous

theorem we may easily derive the following corollary.

Corollary 1.17. Let (X, =) be a locally finite pre-ordered system, R a

commutative ring, I = (Xy =, R) and let fe /*. If x, ye X are such that x Φ y,

x = y and y = x, then there are u, υ e X such that

(1) f{x, u) Φ f(y, u) and x ̂  u % y

(2) f{v,x) Φ f(v, y) and x i v i y.

Proof [x,x] = [y,y] and because fe I*, Theorem 1.16 shows that if

g = f\{x,x\, t n e n gel[x,x]*. Let [x,x] = {xίy . . ., xn} and xι = x, xn = y. The

matrix m(̂ ") is invertible in M(w, i2). If for every ue[xfx] we had

f(x,u) =f(y,u), then the first and n-th rows of m{g) would be identical and

m (g) would not be invertible. Hence (1) holds. Similarly (2) holds by

considering the first and last columns of m{g).

Let /= (X, <, R) be an incidence ring such that R is not necessarily

commutative. Let Y be a subset of X and let Iγ = (Y, ^, R). If fel, f\Ύ is
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the restriction of / t o Y, so that /lye/y, and if f\γ is invertible in 7y, then it
is possible to find a functiong in 7* such that^ly is the inverse of f\γ in Iγ.

Theorem 1.18. (Inverse function theorem for incidence rings) Let {X, %)
be a locally finite pre-ordered system, R a ring, I = (X, ύ, R), Y a subset
of X, Iγ= (Γ, ̂ , R) and let fe I. If f\γ is invertible in Iγ, then there is a

ge 7* such that g\γ is the inverse of f\γ in Iγ.

Proof. Let h belong to Iγ and suppose h is the inverse of f\γ. Define g as
follows. For every x, y e X,

six v ] J ^ ' ^ i f ^ ^ F

v ' y ) \δ(x,y) otherwise.

If x £ y, then h(x, y) = 0 = δ(x, y) so that g satisfies the order condition and
gel. Also, g\γ = h so that g\γ is the inverse of f\γ. We show that ge 7* by
constructing the inverse of g. Define the function g"' as follows. For every

* v 'y/ (δ(Λr,3;) otherwise.

We show that gg1 = δ == g'g. Let x, y e X.
Case (1). x, ye Y.

(gg')(x,y) = Σ h(x,t)f(t,y) = δ(x,y).

Case (2). #/7and yiY.

(gg')(x,y) = Σ δ(x,f)δ(t9y) = δ(x,y).
ux

Case (3). xe Fand yi Y.

(gg')(χ,y) = Σ g(χ,t)g'(t,y) + Σ g(χ,t)g'(t,y)
teY UX-Y

= Σ h(x,t)δ(t,y)+ Σ δ(x,t)δ(t,y)
teY UX-Y

= 0 + δ(x,y) = δ(x, y).

Case (4). xj. Fand ye Y.

(gg')(x,y)= Σ δ(x, ήf(t, y)+ Σ δ(x9ήδ(t,y)
teY teX-Y

= 0 + δ(x,y) = δ(x,y).

In all four cases ggr = δ. Similarly g'g= δ and therefore gr =g~1 and gel*.

A question of some interest is the following. If R is a ring, {X1, =f) a
locally finite pre-ordered system, X a subset of Xr and = the relation ='
restricted to X, what are the relationships between the algebraic structures
(X\ ^', R) and (X, % R)Ί Example 1.10 shows that if / - (X, ^, R) and
/' = {Xf, ̂ ', R), then / is not necessarily a subring of /'. However, the
multiplicative group J* is isomorphic to a subgroup of (/')*•

Theorem 1.19. Let (Xr, =') be a locally finite pre-ordered system, R a
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ring, X c Λr' and % the relation ^ restricted to X. Let I = (X, % R) and
Γ = (Xr, ύr, R). Then I* is isomorphic to a subgroup of (/')*.

Proof. We define an injective group hornomorphism a: /* — (/')* as follows.
If fe /*, then for every x, y e Xr

a{f){pC'y)s\δ^y) otherwise.

By construction of a(f) and the proof of Theorem 1.18, ot(f)e (/')*. Let
/, gel* and x, y e X'. Then,

,(fe)(vv).ί(/^,v)if.,veX
«W£ΛΛ,j; | δ ( λ % J , ) otherwise.

We show that a(fg) = a(f)a{g).
Case (1). x, ye X.

<*{f)(*(g)(x,y)= Σ a(f)(xJ)a(g)(t,y)

- b.f(χJ)g(t,y)

= (fg)(x,y) = oι(fg)(xfy)

Case (2). xjΛYand v / X .

α(f)α(^)(Λ', v) = Σ δ(x,t)δ(t,v)

= δ(x,y) = a( fg)(x,y)

Case (3). xeX and v /A".

a(f)a(g)(x,v) = Σ α(/)(λ-,0α(5-)(ί,Λ') + Σ ' α ( f ) ( * , Oα(^)(Λ v)

= Σ Πx,t)δ(t,v) + Σ δ(x,t)δ(t,y).
tc\ ' ttX'-X

= 0 + δ(Λ', v) =. a(fg)(x,y).

Case (4). x/X and yeX. The computation is the same as Case (3). This
shows that α( fg) - a(f)a(g) for every/, g in /*.

If a{f) = δ, then X = φ or / = δ; but if X = φ then/ = ̂ , so f = δ. Con-
versely it is clear that α(δ) = δ. This shows that o? is an injective group
homomorphism, and that /* is isomorphic to a(I*).

The map a of the previous theorem is not a homomorphism of the
additive group of /into the additive group of /' because α(0) Φ 0.

Definition 1.20. If = is any pre-order relation on a set X, then =c is the
converse relation on λr defined as follows: for every x,yeX,xtcy iff
yύx.

It is easy to see that if (X, l ) is a locally, finite pre-ordered relational
system, then (X, ~c) is a locally finite pre-ordered relational system and
conversely. Let R be a commutative ring, / = (X, =, R) and Ic - (X, <c, R).
We shall give an example at the end of section 2 to show that / and 7C are
not necessarily isomorphic rings. However it is true that the groups of
units of /and Ic are isomorphic as we now show.
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Theorem 1.21. Let (X, i ) be a locally finite pre-ordered system, R a

commutative ring, 1= (X, ^ R) and let Ic = (X, ^ c , R). Then the multiplica-

tive groups 7* and 7C* are isomorphic.

Proof. <c is the converse relation of = and we shall denote by [*,j;]cthe

interval {z\x ^ c z =c y] of (X, =c). It is easy to see that for every x, ye X,

[x,y] - [j,^]°. We shall define a function c: 7* —> / c * as follows: for every

fe 7* and every x, y e X

fΛχ,y)=f~1(y,χ).

Then fc(x,y) Φ 0 only ii x ^c y by the order condition on /, the fact t h a t / - 1 e /

and by definition of =c. Therefore, c is a function from /* into /c. If xeX,

then [*,x]° = [x, x]. If [x,x] = {xγ, . . ., xn} and if m is the map of Definition

1.4, then for 1 ^ i, j ύ n we have

(m(/ c | U v | c)) . ; . =Mxi9Xj) =f'\xhXi) = (m(/- 1 | (χ f X | ) ) / l .

In other words,

mCfcLxlO = (m(/-1 |[x fxl)) t.

By a well known result in determinant theory

det(m(/ c | l X i X,c))=det(m(/- 1 | [X i X l) t)=det(m(/- 1 | [χ,vl)).

Since f~ιel*, this computation yields a member of R*, so by Theorem 1.16,

fc is invertible in 7C*. Hence the mapping c takes / * into 7C*. If g is any

member of 7C* let h be the member of / defined as follows: for every

x, v e X

h(χ,y) =g~ι(y,χ).

From the previous discussion it is clear that he I* and that hc = g, so the

map c is surjective. Furthermore it is clear that for every f el*, fc = δ iff

/ = δ and the map is injective. It remains to show that (fg)L =fcgc- Let

/, gel* and let x, ye X. Then

(.fe)cUj) = (fgVHy.x) = te "1/"1)^,^)

= Σ H~ι(y,z)Γ\z,χ)

\ _z_x

= Σ Zc(Z,V)fc(x,z)

ΣJ fc(x,z)gc{z>v) R i s commutative

v _ t z _ c v '

= (/c#c)(*,.v).

Thus fcgc - (fg)c and c: /* —» / c is a group isomorphism, as required.

Definition 1.22. If R is a ring, Z(R) denotes the center of R.

Theorem 1.23. (X, %) is a locally finite pre-ordered system, R a ring and

1= (X, <, R). Then,

Z(7) = {fel\ for every x, yeX; f(x,y) = 0 if x Φy and

for every he I) h(x,y)f(y,y) =f(x, x)h(x, y)}.
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Proof. Let fe Z(I), x, ye X, x = y and x Φ y. Define a function h as follows.
For every u, υ e X

ί 1 if u = v = y
h(u,v) = <Λ[0 otherwise.

Then he I and hf = fh. However,

(//*)(*, ̂ )=/(*,30MJ>,J>) =f(χ,y)
(hf)(xty) = /z(*. *)/(*, 3>) = 0.

So /(ΛΓ, 3;) = 0 if x Φ y. Let g be any member of /; since fg- gfwe have, for
every x, yeX

(fg)(χ,y)=f(χ,χ)g(χ,y)
(gf)(χ,y)=g(χ,y)f(y,y)

as required. Conversely suppose that f el and /satisfies the conditions:
for every x, yeX and gel,

f(x,y) = 0 if XΦ y, and f(x, x)g(x, y) = g(x,y)f(y,y).

Then,

(fg)(χ,y) = f(χ,χ)g(χ,y) = g(χ,y)f(y,y) = {gf)(χ,y)

showing thatg/ = fg&nά hence, fe Z(/).

We show that in only very simple cases is / a commutative ring or a
field. Namely:

Corollary 1.25. (X, =) is a locally-finite pre-ordered system, R a ring and
I = {X, ^, R). Then I is a commutative ring iff R is commutative and the
relation = is the equality relation on X.

Proof. I is commutative iff Z (/) = /. Suppose / is commutative, then
Z(/) = /. If x, yeX and x = v, there is a function f el such that/(#, y) = 1.
By Theorem 1.21, f(x,y) = 0 if x Φ y, hence x = y. So the relation = is the
equality relation on X.

Let b, ceR and let xeX. There are functions f, gel such that
f(x, x) = b and g(x,x) = c. However, gf = fg so that

(fg)(χ,χ) =f(χ,χ)g(χ,χ) = {gf)(χ,χ)=g(χ,χ)f(χ,χ)

Thus, be - cb and R is therefore commutative. Conversely, suppose that R
is commutative and that = is the equality relation onX. For every f el and
x, ye X,f(x9y) = 0 if x Φ y by the order condition. Also if gel then
f(x,x)g(x*x)=g(x,x)f(x,x), as R is commutative. By Theorem 1.23,
/, geZ(I) and therefore Z(/)=/.

Corollary 1.25. L^ί / = (X, ̂ , Λ>. T7?ew / is a field iff X = {x} and R is a
field.

Proof. It is clear that if R is a field and X = {x}, then / is isomorphic to R,
and / is a field. Conversely suppose that / is a field, in particular / is a
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commutative ring, = is the equality relation on X and R is a commutative
ring; by the previous theorem. If X contains two distinct members, say x
and v, let h be defined as follows. For every u, ue X

i ( , _{liϊu=υ = x
n-'» ι) ~ | Q otherwise.

he I and /z|[>ιV] = 0 . Since R is commutative, Theorem 1.16 shows that
hfίI*\ but h Φ 0 so / is not a field. This contradiction shows that X = {x}, a
singleton. If f Φ 0, thenf(xtx)f~1(xJx) = 1 so that f(x, x) is invertible in R if
f(x,x) is non-zero. Every non-zero member of R is f(x,x) for some/e/ so
that R is a field.

According to Corollary 1.29, some interesting inversion formulas may
be derived whenever the zeta function of an incidence ring is invertible.
For this reason we turn our attention to showing that the zeta function of an
incidence ring is invertible iff the underlying pre-order relation is a
partial order. The 'if' part of the following theorem has been proved in
Rota [2]. The 'only if part has been proved in Tainiter [6] provided that X
is a finite set. The following theorem does not require X to be a finite set
and its proof differs from both of the latter proofs. First we give a useful
Lemma.

Lemma 1.26. Let X be a finite set, (X, %) a pre-ordered system, 1 =
(X, ~, R) and let ζ be the zeta function of I. Then

det(m(ζ)) = Π ζ(x,x) = 1,

if ~ is a partial order and det(m (ζ)) = 0 if ^ is not a partial order.

Proof Let X = {xlf . . ., Λ-W}. For 1 ύ /, j ί n, m(ζ)tJ = ζ{Xi,x,). This is 0
o r 1 a c c o r d i n g a s Xj % x\ o r \'i ~ Xj. If < i s not a p a r t i a l o r d e r i n g , t h e r e a r e
/, j s u c h t h a t 1 ύ i, j ύ n, i Φ j and ζ(xifXj) = 1 = ζ(Xj,Xi). T h i s s h o w s t h a t
t h e i-th and j-th r o w s of m (ζ) a r e i d e n t i c a l . H e n c e det(m(ζ)) = 0. On t h e
o t h e r hand s u p p o s e t h a t % i s a p a r t i a l o r d e r i n g . We h a v e :

(1) det(m(ζ)) - Σ sQn(σ)ζ(Xι,xσω) . . . ζ(xn,Xσ{n)).
O(Sn

Because the relation = is reflexive we have ζ(Xι,Xi) . . . ζ(xf!,xfί) = 1. We
show that this is the only non-zero summand of (1). For suppose σe £n, σ is
not the identity permutation and that

(2) ζ(XuXσ{ι)) ζ(X,n*o(n)) * 0.

Let S = {i\σ(i) Φ i} = {iu . . ., ir}. S is non-empty because σ is not the
identity permutation, so that 1 < r ^ n. If je S and σ(;)/S then σ*(j) = σ(j)
and therefore σ(j) - j , a contradiction. Therefore, if je S then σ(j) e S. For
1 < / = r we have xit < Λ*^,^ and

(3) χ h 5 ,v r 7 ( l l , % . . . % xor{iι).

F o r 0 % t % r , (Jl(ii)e S. T h e s e t S c o n t a i n s r e l e m e n t s a n d (3) l i s t s r + 1
e l e m e n t s s o f o r s o m e p , q s u c h t h a t 1 <p<p + q~r a n d q > 1 w e h a v e
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(4) σfyj = c/+Vi) and z2 = σ*(z'i).

By the transitivity of ^, (4) and (3) we have xiι^xσ(iι) ύ Xjv which con-
tradicts the antisymmetry of ~. So if σ is not the identity permutation, then
equation (2) is false and

det(m(ζ)) = Π ζ(x,x)= 1.
XfX

Theorem 1.27. Let (X, ^) be a locally finite pre-ordered system, R a
commutative ring and I = (X, ^, R). If ζ is the zeta function of I then ζ is
invertible iff = is a partial order.

Proof. If (X, ^) is a partially ordered system, then for every xe X, [x,x\ =
{x}. Also, ζ(x,x) = 1, so ζ is invertible in /[#,*"] for every xeX. By
Theorem 1.16 ζ is invertible in /. Conversely suppose that (X, ύ) is not a
partially ordered system. Then there are u, v e X such that u% v, v Iku and
v Φ ι ι . F o r e v e r y x , y e [ u , u ] , ζ ( x , y ) = 1 s o t h a t d e t ( m (ζ \[u,u])) = 0 a n d ζ\[u,u]

is not invertible in l[u,u] by Theorem 1.14. By Theorem 1.16, ζ is not
invertible in /.

Recall that the Mδbuis function of an incidence ring is the inverse of
the zeta function. The previous theorem shows that an incidence ring of a
locally finite pre-ordered set over a commutative ring contains a Mδbuis
function iff the pre-order relation is a partial ordering.

Interest in functions which are invertible in incidence rings is
motivated by the following theorem and its corollary. The theorem is the
corresponding generalization of Proposition 2 and Corollary 1 of section 3
in Rota [2]. In that paper incidence rings are of the form (X, ύ, R) where R
is the field of real numbers and (X, I ) is a locally finite partially ordered
system; however, the proof is the same as the proof in Rota [2], since both
are statements of the equation//"""1 = δ for a function fe /*. The usefulness
of the following theorem is increased due to the fact that the previous
results allow us to construct all functions which are units in the incidence
ring of a locally finite pre-ordered set over a commutative ring, whereas
previously, only the units of incidence rings over locally finite partially
ordered sets were known. The important Mδbuis inversion theorem does
not generalize to incidence rings of pre-ordered sets, as we have shown
that an incidence ring contains a Mδbuis function iff the underlying order is
a partial order.

Theorem 1.28. Let (X, ύ) be a locally finite pre-ordered system, R a ring,
I - (X, =, R) and let g, he I*. If Po and Pλ are functions mapping X into R
such that for given x0, xλe X, PQ{x) Φ 0 only if x i x0 and Pλ(x) Φ 0 only if
Xι = x, and if QQ and Q1 are defined by

QoW = Σ h(x,y)P0(y), Qλ(x) = Σ Pάy)g{y,x)

then

P0(x) = E h"1(xty)QQ{y) and P^x) = Σ QiWg^iy.x).
yeX yeX
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Proof. Rota [2].

Corollary 1.29. (Mobuis Inversion) Let (X, =) be a locally finite partially
ordered system, R a commutative ring and I = (X, ~,R). Let μ be the
Mobuis function of I. If Po and Pλ are functions mapping X into R such that
for given x0, xλe X ive have P0(x) Φ 0 only if x ^ x0 and P^x) Φ 0 only if
xι = x; and if

QoW = Σ P0(y), QiM = Σ Pi(y)

then

Po(x) = Σ μ(*,3>) Qo(y) and Px(x) = Σ Qi(y)μ(v,x).
yeX xeX

Proof. Rota [2].

2. The Isomorphism Problem for Incidence Rings. This section gives a
partial solution to the following problem: if (X, i ) and (Xr, i ' ) are locally
finite pre-ordered systems, R a ring, / = (X, i , R), / ' = (X\ ^', R) and if I
and Γ are isomorphic rings is it necessarily the case that the pre-ordered
systems (X, ^), (Xr, ^r) are isomorphic? R. P. Stanley has shown in [3]
and [5] that if R is a field, (X, %) and {X\ ύr) partially ordered systems
and if/ and V are isomorphic rings, then the partially ordered systems are
isomorphic. Parts of Stanley's proof make essential use of the anti-
symmetric property of the partial orderings; for this reason a simple
generalization of his proof does not seem possible. However, using a
similar proof technique we have the following results:

Let F be a field and a topological space such that if te F - {0} there is
an open set U such that Oe U and t{ U. Let (X, Ξ) and (X', i ' ) be locally
finite pre-ordered systems, / = (X, %, F) and / = (X\ < ; , F). If ψ:
I —> /' is a ring isomorphism such that whenever K is a closed maximal
2-sided ideal in /, then ψ(K) is a closed set in Ir, then the pre-ordered
systems (Λr, ^) and (Xr, =') are isomorphic. The sets /, /' are given a
topological structure related to the topology on F.

If one of the sets Ar, Xr is finite the previous result can be improved as
follows:

If either I or I ' is a finite set and ψ: / —* I1 is a ring isomorphism,
then the pre-ordered systems (X, =) and (λ", ̂ f ) are isomorphic.

The following conventions shall be observed in this section. (λr, =),
(Xr, =') are locally finite pre-ordered systems, F is a field and a topologi-
cal space such that if t e F - {θj, there is an open set U in F such that 0 e U
and tί U. I = (X, ύ, F) and /' = (Xr, ^', F). The topological condition on F
is always possible; the discrete topology on F has this property.

Definition 2.1. X = {[ΛΓ, X] \xe X}.

We use the variables a, b, c for members of X, a\ bf, cr for members of Xr

and u, v, r, x, y, z as members of X. For convenience we allow that the
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relation = is also defined on X as follows: [x,x] = [y,y] iff x = y. Then

(X, I) is a partially ordered system.

Definition 2.2. For every aeX, fa is that member of / defined as follows:

for every x, y e X:

, , x _ ίδ(.v, v) if x, ve a
-ta(x>y>=\θ otherwise.

Definition 2.3. For every αe X.

Ja = {gd lgt*r, v) = 0 for every x, ye a}.

Definition 2.4. For every x,yeX, ex% is that member of / defined as

follows: for every u, ve X

x ί 1 if u = x, v = v and x = y
eXλ(u, v) = \ Λ ,.>v ' ; (0 otherwise.

We assume that fa,, Ja,, es y' are defined similarly. Recall that falfb is the

set of functions fagfb, where gel.

Lemma 2.5. For every a, be X, a = b ifffjfb * {0|.

Proof. If a ^ b, xe a, ye b, then x ^ v and

(faexjb)(x, y) = fa(x, x)exy{x, v) fb(y, y) = 1.

Thus /Λ//*fc contains a non-zero function. Conversely suppose that /^//^ Φ {θ}.

Let ,§ e / be such that fagfb Φ 0. Let χt ye X be such that (fagfh)(x,y) Φ 0.

Then for some u, veX we have fa(x, ιήg(u,v) fb(ι>, y) Φ 0. This shows that

x = ιι} χe <7, r; = [-v,.v], v = v, ye b, b = [y, v], Λ' i v and therefore a % bΰ

Definition 2.6. (1) For each ae X, a denotes the cardinality of a.

(2) R ={\{Ja\aeX}

(3) R' = Γ\{Ja>\a'eX'}.

Lemma 2.7. R is a 2-sided ideal of I and for every ae X, Ja is a maximal

2-sided ideal of I.

Proof. By definition of Ja it is clear that Ja is an additive subgroup of /.

Let ge ί, feJa and x, ye a. Then

(fg)(x,v) = Σ f(x,")g(",v)

~ Σ) f(x, u) g{u, y) by the order condition as feJa .
m a

= 0

Similarly (gf)(x,y) = 0. This shows that fg, gfe Ja and therefore Ja is a

2-sided ideal of /. Now suppose that K is any 2-sided ideal of / which

properly contains Ja. Then Ja is maximal if A' = /, which holds if δ e K. By

definition of Ja, and since a is a finite set

δ - Σ exxeJa.
x ( a
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To show that δ e K it suffices to show that exxeK for every xe a. Let xe a
a n d fe K - Ja. F o r s o m e u, ve a,f(u, v) Φ 0 . L e t I =f(u, v), t h e n l~ι e x i s t s

because / Φ 0 and F is a field. Also, f1exue I. The members x, u, v of A'
are in a so x ^ u and υ = x. The set iί is a 2-sided ideal so that
(Γιexu)(fevx) eK. If r, s e X we have

(Γ 1O(/O(^,s)= Σ Z"1^(r,3;)/(v^)^x(2,s)
y, zeX

= δ(r,x)δ(s,x) = exx(r,s).

Thus (Γιexu){fevx) = exx and exxe K, for every xe a. Therefore δ e K, K = / and
Jfl is a maximal 2-sided ideal of /. R is therefore an intersection of
2-sided ideals of / so R is a 2-sided ideal of /.

Notation. For an integer n ̂  1, Rn is the smallest ideal of / which contains
all functions fx f2 . . . fn where Λ, . . . , / « are members of R.

Lemma 2.8. Π Rn = {θ}.
W> 1

Proof. It is clear that the function 0 is in this intersection. For every
x, yeX, let

\[x,y] = carό{aeX\a c [x,y]}.

For every λ', veX, \[x, y] is a non-negative integer by the locally finite
condition on (X, =). If fe R and \[x, y] = 1, then either x ^ 3;, in which case
f(x,y) = 0, or [x, y] = [x, x] and if α = [Λ",JC], then f(x,y) = 0 because x, ye a
a n d / e JΛ. Suppose inductively that if /e Λw and \[x,y] % n, then f(x,y) = 0.
We shall show that if /e Λwfl and I [ Λ Γ , V ] ^ W + 1 then f(x,y) = Q. Each
function / belonging to Rn+1 may be expressed as an F-sum of functions of
the type g.Ii, where geRn and h e R\ therefore it suffices to show that
(gh)(x,y) = 0 whenever \[x,y] = n + 1.

(gh)(x,y)= Σ g(x,z)h(z,y)

= Σy ^"U, 2)Λ(2, v)

Σ g(x,z)h{z,y)
zcSv[y,y]

where S = [x,y] - [y,y]. For every zeS, \[x,z] <n so by our inductive
hypothesis g(x, z) = 0. For any ze [_v,vL '[2» v] = 1 so that h{z,y) = 0 by our
inductive hypothesis. Therefore {gh)(x, y) = 0. This shows that for every
positive integer n, if fe Rn and \[x,y] = n, then /(Λ\ V) = 0. Now suppose that

fe Π Rn. Let x, v e X and let I[ΛΓ, V] - r. If r = 0, then x i y and /(x, v) = 0.

If r > 0, then feRr and/(x, v) = 0. So/= 0.

We shall now introduce a topology to the ring /, which is identical to
the standard topology for incidence ring in Doubilet, Rota and Smith [3].
For the definition of topological terms used but not defined we refer the
reader to Kelley [ l ] .

Definition 2.9. A convergence class for / is a set K consisting of pairs
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((c?, D),f) where fel, D is a directed set and (CP, D) is a net in /, satisfying
the following conditions:

(a) If (co, D) is a net in /such that φ(d)=f ior every d e D, then ((c/>, D),f)eK.
(b) If (((/>, /)),/) e K and (</>',£') is a subnet of (co, D), then ((c?f, £>'),/) e JΓ.
(c) If (((ft D),f)/K, there is a subnet (ψ, £) of (Φ, D) such that if (ψ', E1) is
a subnet of (ψ, £) , then ((ψr, Ef),f) / K.
(d) Let D be a directed set, £^ a directed set for each deD and let

G = D x X { £ j r/e £>}. If (d, a) e G let c»(tf, a) = (d, a(d)). G is a directed set
and if (ψ, D x £^) is a net in / such that ((ψ(d, . . .), Ed), fd) e K for every
rfeΰ and if ψf(d) = fd and ((ψ', D),f)eK, then ((ψ°cf, G),f)eK.

For the incidence ring /we define the convergence class K as follows:
let D be any directed set and let (φ, D) be a net in/, then φ(d)el for every
rfcΰ. F o r e v e r y x , yeX, { w ( d ) { x , y ) \ d e D } is a n e t i n F . T h e n ( { w , D ) , f ) e K

iff for every x, yeX, the net {φ(d)(x, y) \d e D] converges to f(x,y) in the
topology on F. The class K is a convergence class for/ as is easily shown
and by Theorem 9 of Chapter 2 in Kelley [1], K may be used to define a
closure operator on the subsets of / and hence a unique topology on /.
Following Doubilet-Rota and Stanley [3] we refer to this topology as the
standard topology on /.

Definition 2.10. If A is a subset of Λ" x X and fe /, then fΛ is that member of
/defined as follows: for every x, yeX

/4<*'-v> = j θ otherwise.

Lemma 2.11. Lef $1 ftc? Λ sβ/ o/ subsets of X x Λr such that \J% = X x X and
if A, Be % then A .„ Be %. Let Y be a subset of I which is etosed in the
standard topology. If fe I and if for every Ae 51, f.\ e Y, then fe Y.

Proof. The set 51 is directed by inclusion. If s\eU, let f(A) =fΛ. Then
(f, Si) is a net in Y. Because Y is closed in the standard topology, if

((/, U),f)eK, then/ε Y. Let x, ye X, then, since U*X = Λ'2 there is an A e %l
such that (ΛΓ, y) e A. For every Be U such that ,4 c B, (x, v) e B and fn(x, y) =
f(x,y). Therefore the net { f( (x, y)\C e U] converges to f(x,y). Hence
((/, tl),/)e/f and fe Y.

Lemma 2.12. For every ae X, Ja is closed in the standard topology on I.

Proof. It is enough to show that if (e>, D) is a net in Ja and ((ô , D),f)eK,
then f e Ja. Assume this situation holds. Let .v, ve a; then tn(d)(x, v) = 0 for
every de D. If f(x,y) = t and / Φ 0, there is an open set U in F such that
Oe U and t(l\ Therefore the net [cp(d)(x, v) \dc D] does not converge to
f(x,y) and (((/?, /)), f)iK. This contradiction shows that /"(x, v) = 0 for every

ΛΓ, ve a and therefore JΛ is closed in the standard topology on /.

The previous lemma is the only preliminary result in this section
requiring the restriction on the topology of F. The reason we introduced
the standard topology on / is to facilitate the following lemma. In Stanley's



INCIDENCE RINGS OF PRE-ORDERED SETS 505

proof given in [3] and [5] such recourse to the standard topology is not
necessary.

Lemma 2.13. If K is a maximal 2-sided ideal in I and closed in the
standard topology, then K = Ja for some a e X.

Proof. Lemmas 2.7 and 12 show that the Ja are closed maximal 2-sided
ideals in /. Suppose K is not a subset of any of the Ja, we show that this
implies δ e K so that K = / and K is not a proper ideal. So K c Ja for some
aeX and by the maximality of K, K = Ja. Let beX, K ςf Jb so for some
x , y e b , t h e r e i s a n f e K s u c h t h a t f ( x , y ) = 1 * 0 . I f n e b , t h e n e u x a n d
eyue I and therefore (l~ιeux){feyu) is in K, because Kis a 2-sided ideal. But
I leu\fe\u = euu so that euue K for every neb. The set b was an arbitrary
member of X, and since [jX = X we see that euue K for every neX. This
implies that for every finite subset A of X xX, δA = Σ exxeK. Now let

(χ.χ)tA

U = { A U is a finite subset of X x x}; 31 is directed by inclusion, \jU = X x X
and (δ, 51) is a net in K where δ(A) = 6Λ. Clearly ((δ, 31), δ) e /\, by definition
of K. By Lemma 2.11, δ eK. The proof is complete.

Definition 2.14. A function ψ: I—* Γ is closed on maximal 2-sided ideals
iff for every closed maximal 2-sided ideal K of /, ψ(K) is closed in the
standard topology on Γ.

L e m m a 2 . 1 5 . Let ψ : I—> V be a ring isomorphism which is closed on

maximal 2-sided ideals. Then for every aeX there is ana'eX* snch that

ψ(Ja) =Ja, , cαrd(fl) - cαrd(α'), card (X) = card(X') and ψ (R) = Rr.

Proof. Let a eX, then ψ(Ja) is a maximal 2-sided ideal in /' because ψ is a
ring i somorphism, ψ is closed on maximal 2-sided ideals so that ψ(Ja) is
closed in the standard topology on /'. Therefore, by Lemma 2.13 applied to
I** Ψ f t ) = Ja> f ° r some ar eXr. Let n = cαrd(<7) and nr = card(rt'). We show
that l\ja ^ N\{n,F). Let θ: I-+ M(w, F) be defined as follows: let xea, for
e v e r y / e /

β ( / ) = m ( / | U x | ) .

It is easy to show that 6 is a ring homomorphism (cf. Lemma 1.7) onto
M(»,F) and that θ(/) = (0) iff feJa. Therefore l\ja ^ M(w,F). Since /| JΛ ^
Γ\ja<, we have M(w, F) ^ hλ(n',F) and therefore «= >zf, since both matrix
rings have the same dimension as vector spaces over F. Thus cαrd(α) =
carό(a'). If X is a finite set, then

cσrd(X) = Σ corό(a) = E cσrd(βf) = cαrd(.Yf)

If X is an infinite set, then cαrd(X) = cαrd(X) because each ae X is a finite

subset of X. However, cαrd(X) = cαrd(X') by the bijective correspondence

between the closed maximal 2-sided ideals of / and V. Thus, cαrd(X) =

cαrd(ΛΓ'). Finally,

Ψ(R) = ψ(Γ\{Ja\aeX'})

= Γ\{ψ(Ja)\aeX} = Γ\{j(,\a'cX'}=R'.
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Lemma 2.16. l\R is isomorphίc toll l\ja by the isomorphism
aeX

Θ{f + R) = (/ + Ja)afχ.

Proof. To show that θ is surjective let (ha + Ja)aeχ be a member of l l / ( j f l .

Define h e I as follows: for every x} y e X,

it ) = i^( A '»-v) i f χ> y t a

' y 10 otherwise.

This definition is possible because the members of X a re pairwise disjoint

sets . Clearly θ(h + R) = (ha + Ja)a(X. The proof that θ is an isomorphism is

a standard result given that R =\\{Ja\cιe X}.

Theorem 2.17. Let ψ: I—* Γ be a ring isomorphism, closed on maximal

2-sided ideals. Let ψ(Ja)
 = Ja> for every aeX,areXr, be the bijective

correspondence between closed maximal 2-sided ideals. Then for every

aeX, ψ(fa) - fa,eR'.

Proof. Consider the following diagram.

I 1 ^v

,3 y/ ε ε' ^ v ,r

I\R - Π / I J Λ — - — - Π v\ja, Γ\R'.
ci(X a'(X' r

The functions ,3, 7, ε, ψ are defined as follows: for fel, β(f) =f +R,

γ(f+R) = (/+ Ja)aίχ, ε(/) = (f+ Ja)a<κ Clearly γ°β= ε; β is an isomorphism

by Lemma 2.16.

ψ is an isomorphism by Lemma 2.15. βr, ψr and ε ' are defined similarly to

β, γ and ε respectively. If a e X then

β'°ψ(fa) = Ψ(fa) + R' definition of β'

= (γ'y'iΨLfa) + Jh>)b><\ definition of /

= (}'') l°Ψ(fa + Jb)bt\ definition of ψ

= h')~loΨ(0, • • - ° ? Λ +Ja, 0, . . .) definition of fa

= (γ'Γ^ΨlO, . . ., 0, la, 0, . . .) definition of /*, JΛ

= (y'Γ^O, . . ., 0,/rt>, 0, . . .) definition of ψ

= (•>')'*(/<!' +'h>)b'<x' definition of /Λ,, JΛ-
= fa, + Rr def ini t ion of γτ

= ,3f(/"Λ.) def ini t ion of ,3'.

T h u s , β'{ψ(fa)-fa') = 0 and ιM /"J - /*Λ.eΛr.

We a r e now able to u s e S t a n l e y ' s L e m m a of [3] and [5] to show tha t the

p a r t i a l l y o r d e r e d s y s t e m s (X, ~) and (Xr, <r) a r e i s o m o r p h i c u n d e r s u i t a b l e

i s o m o r p h i s m condi t ions b e t w e e n the i n c i d e n c e a l g e b r a s / and /', and t h u s

conclude tha t the p r e - o r d e r e d s y s t e m s (X, < ) , (Λ"f, = ' ) a r e i s o m o r p h i c .
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Lemma 2.18. (Stanley's Lemma). Let Io be a ring and let e, f, er,fr be
idempotent members of Io such that e - er e Ro and f- fr eR0 where Ro is a

2-sided ideal in Io such that Π K = {θ|. Then

eIof={0}iffe'Iof' = {0}.

Proof. Stanley [5] and Doubilet, Rota and Stanley [3].

Theorem 2.19. Let (X, =), (Xr, =r) be locally finite pre-ordered relational
systems. Let F be a field and a topological space such tlwt if t eF - {θ},
then there is an open set U in F such that 0 e U and t / U. Let I = (X, i , F)
and V - (Xr, i f , F). If ψ: I —* V is a ring isomorphism which is closed on
maximal 2-sided ideals with respect to the standard topologies on I and Γ,
then the relational systems (X, = ), (Xr, =') are isomorphic.

Proof. In the set Xr we have ar i b' iff fa,Γfb> Φ {θ} by Lemma 2.5, and in X,
a ^ b iff falfb Φ {θ}. Let a<^>a! be the bijective correspondence between the
sets X, Xr set up by ψ according to Lemma 2.15. The function ψ is an

isomorphism so that fjfb Φ {θ} iff ψ(fa)Γψ{fb) Φ {θ}. However Γ\(R')n= {θ|

by Lemma 2.8 and ψ(/β) - fa>e Rr by Theorem 2.17 so we may use Stanley's
Lemma to conclude that ψ(fa)I'ψ(fb) φ {0} iff fa I'fb' * i ° ! Therefore a % b
in X iff ar i br in Xr. In particular the partially ordered systems (X, i ) and
(Xr, ^f) are isomorphic by the function Ψ(α) = ar.

Lemma 2.15 shows that the map Ψ preserves cardinality. For each
ae X there is a function Φβ: a — a' which is bijective. We may now define
a bijective function φ: X —* Xr which is a binary isomorphism. For every
xeX,

φ(x) = ΨΛ(x), where xe a.

If x, ye X, xe a, ye b and x ^ y, then a ύ b, a1 ^ bf, there fore ΨΛ(ΛΓ) ^ f Ψh(y)

and φ(x) ̂ ' w(y). Similarly, if φ(x) <f φ(y), then x = y. Hence the systems
(X, s) and {Xf, ^) are isomorphic.

If one of the sets X or Xf are finite, then both are finite and the
topological conditions on ψ may be eliminated, as the following theorem
shows.

Theorem 2.20. Let (X, %) and (Xr, ^') be locally finite pre-ordered sets, F
afield, I = (X, i , F) and Γ = (Xf, ^ f , F). Let I and V be isomorphic rings
and suppose one of the sets X, Xr are finite, then the pre-ordered systems
(X, =) and (Xr, <') are isomorphic.

Proof. Without loss of generality suppose that X' is finite and suppose that
ψ: /—• Γ is a ring isomorphism. Let F be given the discrete topology, then
F satisfies the topological condition required by the hypothesis of Theorem
2.19. In this case the function ψ is closed on maximal 2-sided ideals; in
fact, for every set K c I, ψ(K) is closed in the standard topology on /',
because the standard topology on V is the discrete topology on /' and
every subset of /' is both open and closed.
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To show that the topology on Γ is the discrete topology it suffices to
show that for every ge Γ the set /' - {g\ is closed. Let (φ, D) be any net in
V and suppose that (φ, D) converges, in the standard topology, to a function
f in /'. It must be shown that g Φ f. Suppose that g = f. Then for every
x, ve X1 the net {v(d){xfy)\de D} converges to g(x, y) in F. The set {g(x,y)}
is open in Fy since F has the discrete topology so that there exists dxy in D
such that if g is the relation which directs D, for every d in D such that
dxy I d,

tn(d)(x,y) = g(x,y).

The set Xr x Xr is finite; by the properties of a directed set there is a d0 in
D such that dXλ | dQ for every x, y e Xf. In particular φ(do)(x, v) = g(x, _V) for
every x, yeXr. Thus w{dQ) = g; this contradicts our assumption that (φ, D)
is a net in /' - [g\. Hence f Φ g and the set /' - {g$ is closed and \g\ is an
open set in /'. This shows that whenever F has the discrete topology and
Xτ is a finite set, the standard topology on /' is, in fact, the discrete
topology on Γ.

The conditions of Theorem 2.19 are now fulfilled, hence (X, φ and
(X*, ~') are isomorphic and X is also a finite set.

There are several other topologies which could be put on incidence
rings and used in the previous two theorems with precisely the same
results. These topologies need not concern us here; it is desirable to
remove the topological condition on the ring isomorphism in Theorem 2.19
or to show that it is necessary. I have not been able to do this.

To end this chapter we give an example of a pre-ordered system (Λr, =)
whose incidence ring / is not isomorphic to the incidence ring / c of the
converse relational system CY, = C ) .

Example 2.21. Let X= {x, \\ z] have the relation ^ defined x i j , v = v,
z = z, x % v, Λ' < z. Then Λ* ^C Λ', V =C V, Z ^C zt y ^ c x and z <c x. By inspect-
ing the 6 members of the permutation group Sx one may verify that the
pre-ordered relational systems (X, %) and (Λ", =c) are not isomorphic.
Thus, if F is any field and / = (X, <, F) and /c = <A', % F) then / and Ic are
not isomorphic rings by Theorem 2.20. However, as Theorem 1.21 shows
the multiplicative groups /* and 7C* are isomorphic groups.
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