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VARIATIONS IN DEFINITION OF ULTRAPRODUCTS OF A FAMILY
OF FIRST ORDER RELATIONAL STRUCTURES

WILFRED G. MALCOLM

Two variations are made in the standard definitions, cf. [1], of an
ultraproduct of a family of first order relational structures with respect to
a chosen ultrafilter X of the index set I. The first variation, following a
method used by W. A. J. Luxemburg, cf.[2] in the construction of higher
order ultraproducts, relaxes the requirement of similarity on the members
of the family. The second variation uses subfilters of X to define the
individuals and relations of the ultraproduct.

In section 1 the construction of the ultraproduct with these variations
is set out and some consequences developed, particularly those relating to
the identity relation. In section 2 a family of similar structures is taken
and a necessary and sufficient condition is established under which the first
variation produces more relations, from an extensional view-point, than the
standard definition.

1 Let {M; :iel} be a collection of first order relational structures. For
each i, let M; = {RY; R}, R%, ...}, where R} is the class (non empty) of
individuals in the i% structure and, for each positive integer %, Rf is the
class of k-placed relations of the structure. Each Rf contains at least the
empty relation and each R? contains the identity relation denoted by e;. It
is further assumed that the distinct members of each Rf are distinct from a

set-theoretic and extensional point of view. Finally, if a,, .., a,€eR? and
s"eRﬂa then “‘s*@,, .., a)’’ denotes the fact that a,, ..,a; are related
by sk.

Let X be an ultrafilter defined on I. For each 2= 0, X*is a subfilter
of X; that is X*is a subclass of X and is a filter. For each k= 0, let R,k be

the class {f*:7*: 1 — |J{R¥:i€e1} and for all i €1, f*i) e R5}. Let ~ denote
the relation defined on R* by: for all f% g*eR%, f*~, g* if, and only if,
{i : £*6) = g* @} e x*.

Lemma 1. For each integer k = 0, ~ is an equivalence relation.

Proof: Immediate.
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For each integer % = 0, let Rfk denote the quotient class of Rf with
respect to ~, and if f*¢ RF let 7* denote its equivalence class. The next
lemma prepares the way for the definition of the individuals and relations
of the ultraproduct.

Lemma 2. For each integev k =0, {i : fX0)(f%4), . . ,f2())}e X if, and only
if, {i : g% (&30), . . , g8(0)) e X, wheve f? ~, &%, for each j from 1 to k, and
and f* ~ gk

Proof: Let F{={i:f{(i) = g](z)} for each j from 1to %, and F*= {i : 7% =
gkz)} Now kaF°n NFYNF,C F,and FENFON .. an NF, C F,, where

={i: /) (F30), . .f26@)}and F, = {i : g*6)(g3(d), . . g0(9))}. ButX° and X*
are subfilters of X. Hence F,e X if, and only if, Fye X.

The ultraproduct, denoted by 7M;/(X; X°, . .) can now be defined. The
class of individuals is R;o For each integer k > 0, and for each fke R,'?/e a
k-placed relation of the ultraproduct, denoted by the same symbol [, k. is
defined by: 7473, .. ,f9) if, and only if, {i:f FEOF), . . ,fo@)}e X, for all
f—‘l’, . ,f,fe R§ o« The symbol Rik is also used to denote the class of k2-placed
relations of the ultraproduct.

Lemma 2, which justifies the definitions as given, has not required the
‘ultra’ property of X. If this requirement is dropped the definition provides
a variation to the standard construction of reduced products. Further, it is
noted that fo$’s theorem as stated for an ultraproduct in relation to a
suitable first order language still holds for an ultraproduct defined as
above.

The first result below establishes that from a set theoretic and
extensional viewpoint the use of subfilters X*, for & > 0, adds no extra
relations to those gained by taking X* = X.

Theorem 1. For each k>0, if f* g*e Rf such that f* +g but {i : fk(l) =
z)}eXthenforallfl,. L) keR orfk(fl" :fk) lf’ and only Zf7 gk(fb' }fle)

Proof: F(f2, .. ,f) if, and only if, {i: fA9)(r29), . . ,f2())}e X; that is if,
and only if, {z gXO(f), . ., )} e X, as {i : f¥(4) = g*@)} € X; that is if,
and only if, g%(f2, . . . , /D).

From now on for all 2> 0, X* will be X itself. The next theorem
establishes that for all 2 > 0, the distinct members of R,’f provide distinct
k-placed relations on an extensional basis.

Theorem 2. Fov each k > 0 and 7* gte RE, F*+ g if, and only if, theve exist

(1’, .., fke Rxo satisfying one, and only one, of the relations fk

Proof: Assume fk# gt and let G = {i : f%i) # g%(i)}. Hence GeX. For each
i€ G, there exists af, .., ale R} which satisfy one, and only one, of the
relations fXi), g*(), as f4i) # g%(9). Let G,={i:ie G and fXi)(ai, . ., af)}
and G, = {i : ie G and g*(i)(a}, . ., a})}. Now G = G, U G, and so either Goe X,
GifXor GeX, Go ¢ X. Define, for each j from 1 to & f, as follows: for all
i€ G, put f}(9) = a; for all i lG choose f(¢) some arbitrary member of R;.



396 WILFRED G. MALCOLM

Hence f, is uniquely defined as G eX. Further, if Gye X, G,£X then f],
from 1 to k, satisfy the relation fkbut not gk but if Gi€ X, Gof X then they
sat1sfygk but notf’a Conversely, if f* = gk then for allfoeRxo,] from 1 to %,

f (fl! L ’fk) lf and Only lf g(fl; .. 5f/e)

The next results are concerned with the way the identity relations in
the component structures transfer to the ultraproduct. For technical
reasons a short lemma is set out.

Lemma 3. Let G=1{i: |RJ| =1}. If X° is a subfilter of ulirafilter X then
Ryo # Ry, if, and only if, there is an F € X such that F DG and F ¢X°.

Proof: Assume that Ryo # Ry and so there exist /% g€ R such that f® ~g°
but f° £,g° Let F={i:f°:) =g°)} and so F O G, Fe Xbut F¢X°. Con-
versely, assume there exists an Fe X such that F D G but FeX°. Define
7% g%€eR} by: for all ieF put f(i) = g(i); for alli¢F take f(i) # g@). Thus
O~ g%but f° #,g° and so Ryo # Ry.

A subfilter X° of an ultrafilter X will be called distinct if Ryo # Ry,
otherwise it will be called indistinct.

Theorem 3. If f2eR? is defined by: f2(i) =e;, for all i€, then f* is the
identity velation of 7M,/(X;X°) if, and only if, X°is an indistinct subfiltey
of X.

Proof Assume X°is an indistinct subfilter of X and so Rjo=Rj. For all
g ERXo, ?(f g°) if, and only if, {i : e; (f°(z) g°(i)} eX; that is if, and
only if, f° ~ g% that is if, and only if, f°=5° as RS X0 =Rg}. Hencef is the
identity relation. Conversely, assume X° is a d1st1nct subfllter of X
Hence, as in Lemma 3, there exist °, g%¢ Ryo such that ° #g° but f° ~ g°.
Thus {i:f°G) = z)}eX and so f2(f° g°. Hence f2 is not the identity
relation.

It should be noted that ? as defined in the above theorem is always an
equivalence relation and moreover one with the general substitution
property. Thus the theorem has given that a distinct subfilter gives rise to
a non-normal structure. The next theorem sets out the expected relationship
between such a non-normal structure and the normal ultraproduct got by
putting X° equal to X.

Theorem 4. 7M;/(X;X) is isomorphic to a quotient structuve of wM;/
(X;X9. ’

Proof: Define a map B :Rgo — Ry by: for each f° €RY, put B(f°) = [f"]
where [ f° ]eRx B is well defined and surjective. Further, for all /* eRx,
and for all f3, . . ,ffeR%o, 743, . . , i) if, and only if, fk(B(fi’), s B
Let ~g be the binary relation defined on RXo by: 7° 3g if, and only if,
B(F%) = B(g°). Now ~g as defined is a congruence of 7M;/(X; X°) and it can
be immediately checked that the quotient structure with respect to this
congruence is isomorphic to 7M;/(X; X).

2. Let {M;:iel} now be a family of similar structures. For each 2> 0,
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let the symbols {7? : j < a;} denote the k-placed relations of each M;, where
a; is the common (i.e. for all iel) cardinality of each R¥, and each symbol
rf', Jj < a: denotes the corresponding relation in each structure under the
similarity correspondence. In Robinson cf.[3]the individuals of the ultra-
product are defined as in section 1 but with X° = {|}. But in Bell-Slomson
cf. [1], the individuals are defined by taking X°= X. It is this which is
called the standard definition. Further, the k-placed relations of the
ultraproduct in this standard definition, denoted by the same symbols
{7 j < a,} as used for the component structures are defined by: #; K9 fD)
if, and only if, {i : 7X(f3(@), . . ,f£()} e X. Now in terms of section 1 this
definition has selected from Rf the subclass SF= {n : — U{RE: et}
and for all iel, hk(z) = r 7 < azk} and associated with each member of this
subclass a k-placed relatmn of the ultraproduct. The following theorem
establishes a necessary and sufficient condition under which the construc-
tion of section 1 applied to this family of similar structures reproduces
only the standard relations. Of course at least the standard relations will
always be produced for if h% # hk then 7} # 7%

Theorem 5. For all k >0, there exists an f*¢ RF such that 7%+ 1* for any
Wk e SEif, and only if, X is o -incomplete.

Proof: Assume that X is a,-incomplete and so let 8, be the first cardinal,
Br = ag, such that X is By-incomplete. Thus there exists, (with a permuta-
tion of the index set of Rf if necessary), for each j < B, an F; e X such that

n {F; j< By} = ¢. Construct f* 1nduct1ve1y as follows: for all if Fy, put
f4@) = vk for all ie F, - Fy, put f%i) = 7% assume that f*(¢) has been defined
for all i€ U {CF, : t < 6} for some ordinal 5 < §;, where CF, is the comple-
ment of F,, and define f¥(i) = v for all ie n{F, t <5} - Fs. By induction
f*is well defined and domain f*= |, as n{F 17 < Bet=¢. Now {i:f43)
78 = CF, and so fkae Rk as CFo¢ X. For 0<j< B, {i: f46) =rf}= n{F,
t<j}- F; and so f*+ kf as CF; ¢ X. Finally if B,= j < a, {i : fk(z =vit=¢
and so fkaé h"" as ¢¢X. Conversely, assume there is an f*e Rf such that for
all hfeS%, f""a& hf. For eachj < a, define G; = {i : f%(i) = 7§}, Now U{G, :
j<a}=1and so [V{CG; :j < a}=¢. But for all j < a;, CG; X and s0 X
is a-incomplete.

While the above theorem establishes the distinctness of ]7’“ in terms of
an equivalence class of maps Theorem 2 ensures that the distinctness is
carried over to the relations of the ultraproduct on an extensional basis.

Corollary 1. For each_k >0, if i is finile then for each fke Rf, there exists
some h*e Sf such that f¥=n*.

Pyoof: If a, is finite then X is a;-complete.

Corollary 2. If X is a principal ultvafilter then for all integers k > 0, and
for all f""e Rf, therve exists some h*e S;k such that fk= n*.

Proof: A principal ultrafilter is a;-complete for all a,.
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The final theorem concerns the relationship between two ultraproducts,
each formed by the standard definition from the same family of similar
structures with respect to the same ultrafilter, but where in the case of the
second ultraproduct the similarity correspondence may, for each 2 > 0,
link different k-placed relations from each structure from those linked in
the first case.

Let 7M,;/X be the standard ultraproduct formed as noted at the
beginning of section 2. Let 7'M;/X be a second ultraproduct formed by the
standard definition but following possible rearrangements of the relations
connected under the similarity correspondence; that is, for each iel', and
for each 2 > 0, if B, is a permutation of the set {j: j < a;} then the ~-placed
relations of 7'M,;/X are given by r'f j < a;, where r'k(fl, .., fp) if, and
only if, {i : 7p (£, - . /RO € X.

Theorem 6. There exists such a 1'M;/X as above non-isomorphic to nM;/X
if, and only if, theve exists some k > 0 such that X is ay-incomplete.

Pyoof: Assume that for each 2> 0, X is ak-complete. Associate each
standard relation 7 i< a, in ™™ /X with h . where for all iel, h¥(3) = 1'f
Associate 7'k, j < ak in 7'M;/X with %'k, where for all iel, h"‘(z) = rgk(,)
From Theorem 5 it follows that {— i <apt= {ﬁ'k i< ah Hence TM,/X is
the same structure as 7'M;/X. Conversely, assume that for some 2 > 0,X
is aj-incomplete. Hence from Theorem 5 there exists 7re RX such that f i is
distinct from each of the standard k-placed relations of 7M;/X. For each
j<ay, let Gj={i:f*s) =f}. Thus {G, : j< a4} partitions X and for each
Jj<ay, G; ;{X For each iel, and each m # k, m > 0, take B/ as the identity
permutation of a,. For each iel, take Bk as one of the permutations of ai
such that Bf’(O) = j, where i e G;. Hence the relation »'§ & of 7'M;/X is associ-
ated with 7% and so is distinct from all the k-placed relations of 7M;/X.
Thus 7'M,/ X is not isomorphic to 7M;/X.
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