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PASSAGES BETWEEN FINITE AND INFINITE

ALEXANDER ABIAN

Infinite sets and infinite operations (e.g., infinite sums and products)
arise from the generalization and extension of the concepts of finite sets
and finite operations. However, due to the unintuitive nature of the concept
of infinity, there is a natural tendency to handle problems involving infinite
sets or infinite operations by means of finite sets or finite operations. In
this way, problems involving finite sets or finite operations are passed on
to problems involving infinite sets or infinite operations and vice-versa. It
is by means of these passages between finite and infinite that problems
involving the concept of infinity are handled in Mathematics.

In a given context, the passage between infinite and finite is predomi-
nantly performed by associating with an infinite set S a unique finite set
L(5) which may be called the label of S. In a more general situation, l(S)
need not be restricted to being finite. However, in this paper, to dramatize
the passage from infinite to finite, we restrict L(S) to being finite. For
example, in the context of Mathematical Analysis, the infinite set {1/2, 1/3,
1/4, . . .} is very often associated with the finite set {θ}. Similarly, the in-
finite set {3/4, 9/4, 4/5, 11/5, 5/6, 13/β, . . .} is very often associated with
the finite set {1, 2}. The labels given depend on the context of the problem.
Thus, in another context, a set other than {0} may be associated with the
infinite set {1/2, 1/3, 1/4, . . .}. Depending on the purpose and the context,
the labeling of infinite sets by means of finite sets can acquire various de-
grees of complexity. In some cases, extremely difficult situations may
arise when the lebeling of sets must satisfy certain properties or fulfill
certain requirements.

On the other hand, if the labeling of infinite sets by finite sets is not
subject to any specific conditions, then the labeling can be done quite
simply, say as a function assigning a finite set to every infinite (or for the
sake of generality to every) set of the universe of discourse. Even with this
degree of arbitrariness, the passage between infinite and finite is achieved
with the utmost theoretic rigor. Clearly, the labeling can be considered as
a table with two columns, one listing the sets and the other listing their
labels.
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As an example, let us consider the set {0, 1, 2, . . .} of all natural
numbers with their usual addition and multiplication. Let the labeling of the
infinite subsets of {0, 1, 2, . . .} be given by:

5 1 L(5)

{ 0 , 2 , 4 , 6 , 8 , . . . } {1,3}
{ 1 , 3 , 5 , 7 , 9 , . . .} {2}
{ 0 , 1 , 2 , 3 , 4 , . . . } {5}
{1 ,6 ,15 ,28 ,45 , . . .} {6}
{1 ,6 ,15 ,26 ,48 , . . .} {6}
{1 ,7 ,13 ,19 ,25 , . . . } {9,21}

K) { 1 , 3 , 1 5 , 1 0 5 , 9 4 5 , . . . } {8}
{10,22,36,52,70, . . .} {6,7}
{2, 12, 120, 1680, 30240, . . .} {14}
{ 1 , 2 , 4 , 8 , 1 6 , . . .} {0,5}
{ 0 , 3 , 4 , 5 , 6 , . . .} {9}

Based on the above table, we may compute an infinite sum in terms of
finite sums as follows. Let us consider the infinite sum

(2) 1 + 5 + 9 + 13+ 17 + . . .

Since addition among natural numbers is defined for two at a time, it is
reasonable to consider the following partial sums of (2),

1, 1 + 5 = 6 , 1 + 5 + 9 = 15, 1 + 5 + 9 + 13 = 28,
1 + 5 + 9 + 13 + 17 = 45, . . .

and then to consider the infinite set

(3) {1,6, 15, 28 ,45 , . . .}

of partial sums of (2). Examination of Table (1) shows that the finite set {6}
is associated with the infinite set {1, 6, 15, 28, 45, . . . } . Consequently,
based on Table (1) we may define

1 + 5 + 9+ 13+ 17 + . . . = 6

The above example illustrates first, a passage from finite to infinite
(namely, the extension of the notion of finite sums to infinite sums) and
second, a passage from infinite to finite (namely, the association of the
finite set {6} with the infinite set {1, 6, 15, 28, 45, . . .} of partial sums).
For obvious reasons, we may even say that (in the sense of Table (1)) the
infinite series given by (2) converges to 6. Similarly, we may say that (in
the sense of Table (1)) the infinite set given by (2) converges to 6.

Next, let us consider the infinite sum

(4) 1 + 6 + 6 + 6 + 6 + . . .

The set of partial sums of the above infinite sum is

(5) {1, 7, 13, 19, 25, . . .}
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Examination of Table (1) shows that the finite set {9, 21} is associated with
the infinite set given by (5). Thus it seems reasonable to say that (in the
sense of Table (1)) the infinite series given by (4) is divergent. Similarly,
we may say that (in the sense of Table (1)) the infinite set given by (5) is
divergent.

Infinite products of natural numbers can be handled in an analogous
way. Let us consider the infinite product

(6) 1 3 5 ° 7 9 . . .

The set of partial products of the above infinite product is

(7) {1, 3, 15, 105, 945, . . .}

According to Table (1), the finite set {8} is associated with the infinite
set given by (7). Thus, (in the sense of Table (1)) we may define

l - 3 5 7 9 . . . = 8

and we may say that the infinite product given by (6) converges to 8. Simi-
larly, we may say that (in the sense of Table (1)) the infinite set given by (7)
converges to 8.

Again, in the sense of Table (1), we have the following convergent infi-
nite sums and products:

1 + 2 + 2 + 2 + 2 + . . . = 2
0 + 1 + 1 + 1 + 1 + . . . = 5
2 6 10 14 18 . . . = 14

On the other hand, in the sense of Table (1), the following infinite sums and
products are divergent

0 + 2 + 2 + 2 + 2 + . . .
1 2 2 2 2 . . .

According to the above, an infinite set S of natural numbers is called
convergent (in the sense of Table (1)) if and only if L(S) is a singleton, say
{a}, in which case we say that S converges to a. Thus, we see that the
notion of convergence is a special case of passage between infinite and
finite. Indeed, an infinite set is called convergent if and only if it is labeled
with a single symbol.

Based on the notion of convergence, we may define the notions of con-
tinuity and differentiability of a function from the natural numbers into the
natural numbers. As expected, a function / from {0, 1,2, . . .} into {0, 1,
2, . . .} is called continuous (in the sense of Table (1)) at x = a if and only
if for every infinite subset 5 of {0, 1, 2, . . .} which converges to a, the set
f[S] is either {/(a)} or is an infinite set which converges to f{ά). For in-
stance , let / be given by

(8) /(0) = l, /(1) = 1, /(2)=6, /(3)=6, /(4) = 15,
/(5) = 15, /(6) = 26, /(7) = 26, /(8) = 48, /(9) = 48, . . .
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and let us determine whether / is continuous (in the sense of Table (1)) at
x - 2. From Table (1) we see that the only set converging to 2 is {1, 3, 5,
7, 9, . . . } . Hence to establish the continuity of / at x = 2 we need only es-
tablish the equality

(9) L(/[{1, 3, 5, 7, 9, . . .}]) =/(L({l, 3, 5, 7, 9, . . .}))

From (8) we see that

/[{I, 3, 5, 7, 9, . ..}] = {1,6, 15,26,48, . . .}

Moreover, from Table (1) we see that

(10) L({1,6, 15,26,48, ...}) = 6

Again from (8) we see that

(11) /(2) = 6

But then from (10) and (11) the equality in (9) is established. Thus, / is
continuous at x = 2.

As expected, a function/is called differ entiable (in the sense of Table
(1)) at x - a if and only if for every infinite subset S of {0, 1, 2, . . .} which
converges to a, the set

\ x -a j

is either a singleton set, say {c}, or is an infinite set which converges to c
for some natural number c, in which case c is said to be the derivative of /
at x = a.

For instance, let us establish the differentiability of the function / given
by (8) at x = 2. As before, Table (1) shows that the only set converging to 2
is {1, 3, 5, 7, 9, . . .}. Furthermore, from (8) we see that

/(Ό-/(2) , /(3) -/(2) /(5) -/(2)
1-2 ~ & ' 3 - 2 = U ) 5 - 2 ~ό

/(7)-/(2) /(9) -/(2) _

7 - 2 ' 9 - 2 ' ' β '

Therefore the set corresponding to (12) is

{0,3,4,5,6, . . .}
which, as Table (1) shows, is convergent to 9. Consequently, we may con-
clude that / is differ entiable at x = 2 and the value of its derivative (in the
sense of Table (1)) at x = 2 is 9.

The above discussion illustrates our contention that concepts such as
convergence of sequences, infinite sums and products, and continuity and
differentiability of functions, which are closely related to the notion of in-
finity, are handled via a table which describes a given labeling of infinite
sets by finite sets. It may seem, however, that the labeling is somewhat
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artificial. Indeed, any method of assigning a meaning to an infinite process
must have an element of artificiality, since the concept of infinity seems
somewhat unnatural.

In classical Mathematics, problems related to convergence, continuity
and differentiability are handled via a suitable topology introduced on the
universe of discourse. However, a close examination of a topology shows a
basic resemblance to our labeling method described above. Indeed, a
topology on a set A is introduced as a list of subsets of A (called the list of
open sets) which, however, must satisfy certain properties. But then, based
on this list of open sets, limit points of subsets of A are defined. Now, if
L(S) indicates the set of limit points of a subset 5 of A, then we see that
essentially classical topology can also be interpreted as a table similar to
Table (1), except, of course, that l(S) is not necessarily finite. Also, in
classical topology, the assignment of L(S) is not arbitrarily made as in
Table (1), but is subject to the familiar closure axioms on S u L(S). Never-
theless, we may say that a table such as Table (1) defines a '"topology" on
the set under consideration.
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