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PROOFS OF THE NORMALIZATION AND CHURCH-ROSSER
THEOREMS FOR THE TYPED X-CALCULUS

GARREL POTTINGER

Introduction This paper contains new proofs of the normalization
theorem and Church-Rosser theorem for the typed A-calculus. Both results
are obtained as corollaries of a theorem which shows that a certain kind of
reduction sequence must always contain a normal term." The proof of this
theorem proceeds via an assignment of ordinals. A knowledge of ordinal
arithmetic sufficient for understanding this assignment’ will be pre-
supposed, and detailed arguments for various assertions about alphabetic
change of bound variables will not be given. Apart from these matters the
paper is self-contained.

1 The calculus Terms are built up from variables x, y, 2, x,, . . ., the
operator )\, and the grouping indicators ) and ( according to the following
rules.®

1. x is a term.
2. If t and u are terms, then (fu) is a term.
3. If ¢ is a term, then (\x?) is a term.

Henceforth ¢, u, v, {,, . . . are to be terms. Omitted parentheses are to
be restored according to the convention of association to the left, and a dot
is to be construed as a left parenthesis which has its mate as far to the
right as possible. The formulas of the propositional calculus which can be
built up from propositional parameters p, ¢, 7, s, p;, . . ., the connective 2,
and the grouping indicators will be used as ¢ype symbols. In what follows
A, B,C, A,... are to be type symbols. ‘=’ will be used to express
identity. T, is to be a function which maps the set of variables onto the set

1. It is not shown that every reduction sequence must contain a normal term.
2. Rubin [1, pp. 175-219] is enough.

3. The use/mention conventions of Curry will be employed—all symbols written down are in the
metalanguage and the objectlanguage is never displayed.
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of type symbols and satisfies the condition that for every A, {x: 7o(x) = A} is
denumerable. 7 is to be the smallest function satisfying the following
conditions.

1. For all x, 7(x) = 7,(x).
2. For all#, u, A, and B, if 7(¢) = A D B and 7(x) = A, then 7(fu) = B.
3. For all x and ¢, if 7 is defined for ¢, then T(A\x?) = 7(x) D 7(¢).

t is a typed term iff 7 is defined for £. From now ont, u, v, ¢;, . . . are
to be typed terms.

Let *x* be an occurrence of x in{. *x* is bound iff *x* falls within a
part of ¢ of the form Axu. Otherwise, *x* is free. x is free in t iff there is
a free occurrence of x in £, and x is bound in ¢ iff there is a bound occur-
rence of x in . u is free for x in t iff there is no y such that y is free in u
and some free occurrence of x in £ falls within a part of ¢ of the form xyv.
[u/x/%] is to be the result of replacing every free occurrence of x in ¢ by an
occurrence of . It is easy to show that if 7(x) = 7(x), then [u/x/f] is a typed
term and 7([u/x/¢]) = 7(2).

t =, u iff there is a term Axv and a variable y such that (1) y is free
for x in v, (2) v is not free in v, and (3) u is a result of replacing an
occurrence of Axv in ¢ by an occurrence of Ay[ y/x/v]. t=q u iff there exist
V1« « ., Up(1 < m) such that v, = ¢, v, =u, and for all i < n, v; =, V;4,.

(xxt)u is a B redex, and if x is not free in f, then Ax.fx is an 7 redex.
If u is free for x in £, then (\xf)u is a contractible redex and if xx .#x is ann
redex, then A x. tx is a contractible redex. If (\xf)u is a contractible redex,
then [u/x/t] is the contractum of (Axt)u, and if \x.¢x is a contractible
redex, then ¢ is the contractum of r\x . tx.

t > u iff u is a result of replacing an occurrence in f of a contractible
redex by an occurrence of the contractum of that redex. If ¢ > u, then the
redex occurrence replaced in passing from £ to u is contracted in passing
from # to u. A veduction is a sequence of terms v, . . ., v,(1 < n) such that
for all i <m, v; =q Vij41 O ©; > V;y1. A veduction of t fo u is a reduction
V1, . . ., Uy Such that v, = ¢ and v, = u. ¢ = u iff there is a reduction of £ to u.
‘>’ is read ‘reduces to’. ¢ =u iff there exist v,, ..., v,(1 <n) such that
v,=%, vpo=u, and for all i <mn, v; 2v;4, or v;4, 2v;, t is normal iff no
redex occurs in ¢,

2 Normalization Define c(?) as follows.

Case 1: Lett=x. Then c(f) =0.

Case 2: Let ¢ =1#£f,. Then c(¢) =c(f) +c(t,) + 1.
Case 3: Let # =xxf,. Then c(f) =c(t,) + 1.

c(A4) is to be the number of occurrences of D in A.

Let f be a redex. @,(¢) is defined as follows.
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Case 1: tis ann redex. Then @,(¢) = 0.
Case 2: tis a Bredex. Lett = (\xt,)f,. Then G,(#) = c(t(Axt,)).

t is a predicative redex iff either ¢ is an 7 redex or £ = (\x¢,){, and for
every redex u, # occurs in ¢, only if G,(x) < G,(¢).

t >pu iff £ >u and u is a result of replacing an occurrence in £ of a
predicative redex by an occurrence of the contractum of that redex.

V1, . . ., U, IS a predicative reduction iff v,, ..., v, is a reduction and
for all ¢ <, if v; > v;4,, thenv; >pv;4,. A predicative reduction of ¢ to u
is a reduction of £ to # which is a predicative reduction. ¢ =p u iff there is
a predicative reduction of ¢ to u.

Where 1 < n, let £(n, t) be the number of occurrences of redexes « in ¢
such that G,(#) =n. Consider a term ¢, let 0 <, <. ..< 7, be the natural
numbers such that R(r,,?), ..., R(n,,t) are not 0, and define:

W' RAmyt) +. .o+ 0™ R(ny,t) +c(),if m#0
0,ifm=0

Lemma 2.1 If t >pu, then Gu) < G(¢).

I}

G

Proof: Let *v* be the redex occurrence replaced in passing from £ to u,
and let *»'* be the term occurrence which replaces *v*,

Case 1: v is ann redex. Then c(u) < c(¢). Letv =xx.v'x, let 7(v') =4 D B,
and let c(4 D B) =n. According to the definition of 7, 7(Ax.v'x) = 7(v").
Hence, R(n,u) < R(n,t) and for 1 <m #n, R(m,t) = R(m,u). It follows that®
G) < g(2).

Case 2: v is a B redex. Let v = (\w,)v,, let T(xv,) =A D B, and let
c(AD> B)=n. Since c(4) <n, c(B)<n, and v is a predicative redex,
Rn,u) = Rn,t) - 1< R(n,t) and for all m, n < m only if R(m,u) = R(m, ¢).
It follows that* G(u) < G(2).

Let o0 = ({,, £, . . .) be an infinite sequence of terms. o is a reduction
sequence (for t,) iff for all i, &; > t;4, or ¢; =4t;4,. O is a predicative
reduction sequence iff for all i, {; >pt;y, or ¢; =4 ¢;4,. o is a complete
reduction sequence iff o is a reduction sequence and for all ¢, if #; is not
normal, then there is a j such that ¢<j and ¢ > ¢;4,. Henceforth, o,
oy, . . . are to be reduction sequences.

For o = (¢, t,, . . .) define:
£L(0) = the cardinality of {i: #; > t;41}

Theorem 2.2 If o is a complete, predicative reduction sequence, then L(o)
is finite.

4. To see this, one must know that if o = wB" int...+ Wwh iytiy and ay, = wﬁ”jn +...+
wBlj1 +jo, where 0 <B, <...<f,, then, where k is the greatest number such that i, EF/N
ay <@, if i <j,. This can be proved from Lemma 9.1.1 of Rubin [1] and the mbnotonicity
laws for + and <.
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Proof: Theorem 2.2 follows from Lemma 2.1 via transfinite induction on
¢ () (i.e., transfinite induction up to w®).

Corollary 2.3 [Normalization theorem]| There is a novmal u such that
t =zp u; a fortiovi theve is a novmal u such that t = u.

Proof: Evidently a complete, predicative reduction sequence for # exists.
By Theorem 2.2 such a sequence must contain an appropriate u.

3 The Church-Rossevr theorem Define:
(£] = {u: t =, u}
Consider the sequence T = ([t,], [&], . ..). T is a reduction sequence

(for [t,])) iff for all 7, ¢; is the last item of Z or there exist #]e[#;] and
t;1€[t;4,] such that £/ > ¢4, T is a predicative reduction sequence iff for
all 4, either [#] is the last item of T or there exist #] € [¢#;] and #;4y € [£;41]
such that &/ >p ¢;4,r. Henceforth =, Z,, ... are to be reduction sequences of
this sort. Define:

f={>: T is a predicative reduction sequence for [¢]}
Lemma 3.1 £ is finite.
Proof: Consider fasa tree, and apply Theorem 2.2 and Konig’s lemma.
Define:
L(#) = the maximum of the lengths of members of

Lemma 3.2 If ¢t 2pu,, t 2pu,, and u, and u, arve novmal, then either t is
novmal ov theve exist t,, v,, and v, such that t=4,t,, t, >pv, 2pu; and
tl >p Vo zp Uy,

Proof: Suppose t is not normal, and let #},...,%, and £,..., ¢, be
predicative reductions of # to #, and u,, respectively. Since ¢ is not normal
and u, and u, are normal, there exist i, and i, such that ¢}, >p#; 4, and
t,>p t3,4+1. Consider the least such, and é,. ¢ =, t;, and ¢ =, t{,. It can be
shown that =, is symmetric and transitive, so it follows that 15,1-1 =4 t?z. From
this it can be shown that there exist #,, v,, and v, such that ¢ =, ¢,, #, >pv, =,

tj 41, and ¢, >pvy =4 t;,41. This suffices.

Lemma 3.3 If t >pu, and t >pu,, then theve is a v such that u, >pv and
ug ZF) V.

Proof: Let the redex occurrences contracted in passing from ¢ to #, and u,
be *t£,* and *f,*, respectively.

Case 1: *{,* and *{,* do not overlap. Let v be the result of contracting the
occurrence of f, in %, which corresponds to *{,*. v is also the result of
contracting the occurrence of % inu, which corresponds to *f,*, sou, >pv
and 4, >pv. This suffices.

Case 2: *j* and *£,* overlap.
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Case 2.1: *i{* and *I,* coincide. Then u, = u,. Let v =u;. u, 2p u, = v and
Uy Zp Uy =V, SO %, =p v and u, >p v.

Case 2.2: *f,* and *£,* do not coincide. Without loss of generality it may
be supposed that *{,* properly contains *#,*.

Case 2.2.1: ¢ is an 7 redex. Let v be the result of contracting the
occurrence of f, in u; corresponding to *Z,*. v is also the result of
contracting the n redex occurrence in u, which arises from *{ * by
contracting *¢,*, It follows that 4, >pv and u, >pv, which is sufficient.

Case 2.2.2: t, is a B redex. Let #, = (\xt")t’. The contractum of ¢, is
[£2/x/t']. Let *x[#*/x/t']* be the occurrence of [¢*/x/t'] which replaces *£ *,
let *)xt'* be the left half of *f*, let *t'* be the occurrence of #' which
follows the first occurrence of Ax in *Axt'*, and let *t** be the right half
of *¢,*,

Case 2.2.2.1: *f,* falls within *#**. Let the occurrences of x in *#'*
replaced by occurrences of #* in passing from *£* to *¢*/x/t']* be
*x*, ..., *x*, and let the occurrences of #* which replace *x*,, . . ., *x*,
be *t**,, ..., *t>*,. Let *f,*,, ..., *t,*, be the occurrences of #, in
*t%* .. ., *t*%, corresponding to *#,*, and let v be the result of contracting
*t, %1, « o ., ¥y%,. v is also the result of contracting the predicative B redex
occurrence in u#, which arises from *i;* when *{,* is contracted, so
u, Z2p v and u, =p V.

Case 2.2.2.2: *{,* falls within *xxt'*,

Case 2.2.2.2.1: x is not free in #, or *£,* falls within a part of *#'* of the
form xxt®. Let v be the result of contracting the occurrence of £, in u,
which corresponds to *#*. v is also the result of contracting the predica-
tive B redex in u#, which arises from *#* by contracting *#,*, so u, =pv
and u, =p v.

Case 2.2.2.2.2: x is free in #, and *#,* does not fall within a part of *#'* of
the form xxf. Then *#* is replaced by an occurrence of [#*/x/f,] in
passing from £ to u;. Let the occurrence in question be *[#*/x/t,]*.

Case 2.2.2.2.2.1: £, is an n redex. Then so is *[#/x/t,]*, because ¢, is
contractible. Let v be the result of contracting *[#?/x/f,]*. v is also the
result of contracting the predicative § redex which arises from *#,* by
contracting *¢,*, so u, =2p v and u, =p v.

Case 2.2.2.2.2.2: f,is a B redex. Let #, = (\yt*)#*. Then *Z,* is replaced by
a term occurrence *[£*/x/xyt*][#*/x/t*]* in passing from ¢ to u,. Applying
Corollary 2.3, let #° be a normal term such that # =p #°, let #° be a normal
term such that [£°/x/t*] =p °, and let rxy¢" be the term which arises from
[#*/x/ yt*] by replacing every occurrence of ¢° introduced in passing from
e to [##/x/ayt*] by an occurrence of £°. Let Ayt® be such that Avt” =, xyt®
and (Ayt®)#® is a contractible redex. Because ° is normal, (\y#®)#° is also a
predicative redex.
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v is to be the result of replacing *[#*/x/ xyt*][#*/x/#*]* by an occurrence
of [#°/x/t®*] and replacing all occurrences of #* introduced in passing from #
to u, which fall outside *[#*/x/ayt’][#*/x/t*]* by occurrences of #. It is
clear that u, 2pv.

Also, u; Zpv by first reducing the occurrence of # corresponding to
*t?% to an occurrence of £°, then proceeding via =4 as in the passage from
awt” to ayt® and contracting the redex occurrence in the resulting term
which arises from *£,*, and finally predicatively reducing to occurrences of
#° the appropriate occurrences of [£°/x/#'] in the term so obtained. Hence,
u, Zpv and u, =p v.

Lemma 3.4 If t =pu,, t 2pu,, and u, and u, arve novmal, then u, =, u,,

Proof: By induction on L(¢). If ¢ is normal, then u, =4 4, by the symmetry
and transitivity of =,, so suppose ¢ is not normal. According to Lemma 3.2
there exist ¢,, v,, and v, such that ¢ =,¢,, t, >pv, =pu,, and £, >pv, =p U,.
Consider such #,, v,, and v,. Since ¢ =4,¢,, L(f) = L(¢,). Since f, >pv, and
t, >pvy, L(v,) < L(t) and L(v,) < L(#). By Lemma 3.3 there is a v such
that v; 2pv and v, 2pv. Applying Corollary 2.3, let v' be a normal term
such that » 2pov'. By Hyp Ind v' =4 u, and v' =, u,. Since =, is symmetric
and transitive, it follows that u, =, u,.

Lemma 3.5 If t is a contractible vedex and u is the contractum of t, then
theve is a v such that t zpv and u 2pv.

Proof: If t>pu there is nothing to prove, so suppose ¢ pu. Then {is a B
redex which is not predicative. Let ¢= (\xt))ts. u = [¢2/x/t]. Applying
Corollary 2.3, let #; be a normal term such that ¢, =p#;. Then (\x#,)¢, =p
Ot )th >plts/x/t.], and u = [¢./x/t,] =p [ts/%/t.). This shows that [t3/x/t,] is
an appropriate v.

Lemma 3.6 If t > u, then theve is a v such that t 2pv and u >pv.
Proof: Immediate from Lemma 3.5.
Lemma 3.7 If t = u and u is novmal, then t =p u.

Proof: Let t',...,t" be a reduction of ¢ to #. By Lemma 3.6 there exist
V1, . .., Uy—y such that t' 2pv, and # 2pv,, ..., " =pv,_, and t*>pv,_,.
Applying Corollary 2.3, let v{, . . ., v,-y be normal terms to whichv,, . . .,
v,-1, Tespectively, reduce predicatively. Then for all i (1 <i< ), t/>p
v;-yand ¢! 2pv{. By Lemma 3.4 for alli (1<i<nm- 1), v! =4 vipr. Also,
u 2p Uy-p and # is normal, so v,-;1 =¢ % by the symmetry of =,. Since =, is
transitive, it follows that v] =, u. Hence, ¢ >pv; =, u. It follows that ¢ >p u.

Corollary 3.8 [Church-Rosser theorem, first version] If ¢ >u,, ¢t > u,, and
u, and u, are normal, then u, =, u,.

Proof: Apply Lemmas 3.7 and 3.4.

Corollary 3.9 [Church-Rosser theorem, second version]| If ¢ = u, then
theve is a v such that t zv and u > v.
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Proof: Lett, ..., t,be suchthat ¢, =¢, ¢{,= u,and for all i< n, ¢; = {;4, or
t;y, = t;. Applying Corollary 2.3, let »,, . .., v, be normal terms such that
for all i (1<si<mn) t;>v;. By Corollary 3.8 for all ¢ (1 <i<mn) v; =, V;4,.
It follows that ¢ > v, and # > v,, which suffices.

REFERENCE

[1] Rubin,J. E., Set Theory for the Mathematician, Holden-Day, San Francisco, 1967.

Carnegie-Mellon University
Pittsburgh, Pennsylvania





