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PROOFS OF THE NORMALIZATION AND CHURCH-ROSSER
THEOREMS FOR THE TYPED λ-CALCULUS

GARREL POTTINGER

Introduction This paper contains new proofs of the normalization
theorem and Church-Rosser theorem for the typed λ-calculus. Both results
are obtained as corollaries of a theorem which shows that a certain kind of
reduction sequence must always contain a normal term.1 The proof of this
theorem proceeds via an assignment of ordinals. A knowledge of ordinal
arithmetic sufficient for understanding this assignment2 will be pre-
supposed, and detailed arguments for various assertions about alphabetic
change of bound variables will not be given. Apart from these matters the
paper is self-contained.

1 The calculus Terms are built up from variables x, y, z, xu . . ., the
operator λ, and the grouping indicators ) and ( according to the following
rules.3

1. x is a term.
2. If t and u are terms, then (tu) is a term.
3. If t is a term, then (λxt) is a term.

Henceforth t, u, v, tl9 . . . are to be terms. Omitted parentheses are to
be restored according to the convention of association to the left, and a dot
is to be construed as a left parenthesis which has its mate as far to the
right as possible. The formulas of the propositional calculus which can be
built up from propositional parameters p, q, r, s, pl9 . . ., the connective D,
and the grouping indicators will be used as type symbols. In what follows
A, B, C, Al9 . . . are to be type symbols. ζ=9 will be used to express
identity. τ 0 is to be a function which maps the set of variables onto the set

1. It is not shown that every reduction sequence must contain a normal term.

2. Rubin [l,pp. 175-219] is enough.

3. The use/mention conventions of Curry will be employed—all symbols written down are in the
metalanguage and the objectlanguage is never displayed.
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of type symbols and satisfies the condition that for every A, {x: τo(x) = A} is
denumerable. r is to be the smallest function satisfying the following
conditions.

1. For all x, τ(x) = τo(x).
2. For all t, u, A, and B, if r(t) M ^ B a n d τ(u) = A, then τ(tu) = B.
3. For all x and t, if T is defined for t, then r(λxt) = τ(x) ^ τ(t).

t is a typed term iff T is defined for t. From now on t, u, v, tu . . . are
to be typed terms.

Let *#* be an occurrence of x in t. *ΛΓ* is bound iff *#* falls within a
part of £ of the form λxu. Otherwise, *ΛΓ* is free, x is free in t iff there is
a free occurrence of x in ί, and # is bound in t iff there is a bound occur-
rence of x in t. u is free for x in t iff there is no y such that y is free in u
and some free occurrence of x in t falls within a part of £ of the form λyv.
[u/x/t] is to be the result of replacing every free occurrence of x in t by an
occurrence of u. It is easy to show that if r(u) = τ{x), then [u/x/t] is a typed
term and τ([u/x/t]) = r(t).

t =la u iff there is a term λxv and a variable y such that (1) 3; is free
for x in 1;, (2) y is not free in v, and (3) M is a result of replacing an
occurrence of λxv in t by an occurrence of λy[y/x/v]. t=au iff there exist
Vι, . . ., vn(l ^ n) such that υx = t, vn = u, and for all i< n, Vι = l α vi+1.

(λxt)u is a β redex, and if # is not free in t, then λ#. tx is an 77 redex.
If M is free for x in ί, then (λ#ί)w is a contractible redex and if λ% .&; is an η
redex, then λx. tx is a contractible redex. If (λxt)u is a contractible redex,
then [u/x/t] is the contractum of (λxt)u, and if λΛΓ.to is a contractible
redex, then t is the contractum of λx. for.

£ > u iff w is a result of replacing an occurrence in ί of a contractible
redex by an occurrence of the contractum of that redex. If t > u, then the
redex occurrence replaced in passing from t to u is contracted in passing
from t to u. A reduction is a sequence of terms υu . . ., vn(l ^ n) such that
for all i < n, Vi =a Vi+ι or vι > t>, +i. A reduction of t to u is a reduction
tfi, . . ., tfn such that V! = t and vn-u. t^u iff there is a reduction of ί to w.
^ is read 'reduces to', t = u iff there exist z;1? . . ., vn(l ^n) such that
Vι = t, vn = u, and for all i < n, v{ ^vi+1 or vi+i ~^V{. t is normal iff no
redex occurs in t.

2 Normalization Define c(t) as follows.

Case 1: Let t = x. Then c(t) = 0.

Case 2: hett = t1t2. Then c(ί) = c(ίχ) + c(ί2) + 1.

Case 3: Let ί Ξ XΛ:^. Then c(0 = c(^) + 1.

cCA) is to be the number of occurrences of => in A.

Let t be a redex. Qγ(t) is defined as follows.
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Case 1: t is an η redex. Then Q^t) = 0.

Case 2: t is a β redex. Let t = (λxtι)t2. Then Qγ{t) = c(τ(λxtι)).

t is a predicative redex iff either t is an 77 redex oτ t = (λxtjtz and for
every redex u, u occurs in t2 only if Q^u) < Qι(t).

t >pu iff t > u and w is a result of replacing an occurrence in t of a
predicative redex by an occurrence of the contractum of that redex.

Vi, . . ., υn is a predicative reduction iff #1, . . ., vn is a reduction and
for all z < ft, if #t > vi+1, then #, > P # f + 1 . A predicative reduction of t to u
is a reduction of t to w which is a predicative reduction, t ^pu iff there is
a predicative reduction of t to w.

Where 1 ̂  ft, let Λ(ft, t) be the number of occurrences of redexes u in t
such that gΊ(w) = ft. Consider a term ί, let 0 < nx < . . . < nm be the natural
numbers such that Λ{nγ,t), . . ., Λ{nm,t) are not 0, and define:

W r t _ JuΛ* *(*!„,*) + . . . + ωni Λ(nut) + c(ί), if m ^ 0
ffU)Ξ(θ,ifmΞO

Lemma 2.1 If t >pu, then Q{u) < Q(t).

Proof: Let *^* be the redex occurrence replaced in passing from t to u,
and let *vf* be the term occurrence which replaces *#*.

Case 1: v is an η redex. Then c(u) < c(t). hetv=λx.vrx,letτ(vr)=A^>B9

and let c(A D JB) Ξ W. According to the definition of r, τ(λx .v'x) = τ(vr).
Hence, β(n, u) ^ <R(n, t) and for \^mφn, β{m, t) = <R(rn, u). It follows that4

g(u) < Q(t).

Case 2: υ is a ]3 redex. Let v Ξ ( ^ i ^ a , let r(\xυ 1) = A ^> B, and let
c(A ^> B) = n. Since c(A) < ft, c(5) < ft, and 1; is a predicative redex,
Λ(n, u) = <R{n, t) - 1 < <R(n, t) and for all m, n< m only if <R(m, u) Ξ Λ(m, t).
It follows that4 £(«) < Q{t).

Let σ = {tu t2, . . .) be an infinite sequence of terms, σ is a reduction
sequence {for tj iff for all i, U > ti+ι or t{ =ati+1. σ is a predicative
reduction sequence iff for all i, t{ > p ^ +i or ί, =α ̂ + 1 . σ is a complete
reduction sequence iff σ is a reduction sequence and for all i, if U is not
normal, then there is a j such that i < j and tj > tj+1. Henceforth~σ,
σi, . . . are to be reduction sequences.

For σ = (tl9 t2, . . .) define:

X(σ) = the cardinality of {i: t{ > ti+i}

Theorem 2.2 If σ is a complete, predicative reduction sequence, then <£(σ)
is finite.

4. To see this, one must know that if α x = ω n in + . . . + ω^ 1 ix + i0 and a2 = ω njn + . . . +

ω^1 j \ + / O , where 0 <βλ <. . . < β w , then, where k is the greatest number such that ik ψj^,

«! < α 2 i f ifz < 4 This can be proved from Lemma 9.1.1 of Rubin [1] and the monotonicity

laws for + and <.
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Proof: Theorem 2.2 follows from Lemma 2.1 via transfinite induction on
Q(t) (i.e., transfinite induction up to ωω).

Corollary 2.3 [Normalization theorem] There is a normal u such that
t ^Pu; a fortiori there is a noϊmal u such that t^u.

Proof: Evidently a complete, predicative reduction sequence for t exists.
By Theorem 2.2 such a sequence must contain an appropriate u.

3 The Church-Rosser theorem Define:

[t] H {u: t =a u}

Consider the sequence Σ = ([ίj, [t2], . . .). Σ is a reduction sequence
{for [tj]) iff for all i, t{ is the last item of Σ or there exist #€[*,-] and
ti+lte [ti+1] such that t\ > ti+1r. Σ is a predicative reduction sequence iff for
all i, either [ίf ] is the last item of Σ or there exist t\e [ti] and £, +1r e [ti+1]
such that tj >p ti+1t. Henceforth Σ, Σ u . . . are to be reduction sequences of
this sort. Define:

i = {Σ: Σ is a predicative reduction sequence for [t]}

Lemma 3.1 i is finite.

Proof: Consider fas a tree, and apply Theorem 2.2 and Kδnig's lemma.

Define:

Jl(t) = the maximum of the lengths of members of t

Lemma 3.2 If t ^pul9 t ^pu2, and u1 and u2 are normal, then either t is
normal or there exist tl9 vl9 and v2 such that t=atl9 tx>pVi^pux and
t\ >pV2 ^pU2.

Proof: Suppose t is not normal, and let t{, . . ., t^ and £ ? , . . . , tl2 be
predicative reductions of t to uλ and u2, respectively. Since t is not normal
and uγ and u2 are normal, there exist iγ and i2 such that t)γ >pt]ι+ι and
ή2 >pt2

i2+ι. Consider the least such iλ and i2. t =a t]ι and t =α ίf

?

2. It can be
shown that =α is symmetric and transitive, so it follows that t\x =a t]r From
this it can be shown that there exist tu υu and v2 such that t =a tl9 tλ >p^i ~a

t\ι+ι, and tι >pv2 =a t*2+i* This suffices.

Lemma 3.3 If t >pML and t >pu2, then there is a v such that uγ ^pV and
u2 ^pv.

Proof: Let the redex occurrences contracted in passing from t to uλ and u2

be **!* and *ί2*, respectively.

Case 1: *tλ* and *ί2* do not overlap. Let υ be the result of contracting the
occurrence of t2 in uλ which corresponds to *£2* v is also the result of
contracting the occurrence of tx in u2 which corresponds to *tχ*, so uγ >pv
and u2 >pv. This suffices.

Case 2: *tχ* and *ί2* overlap.
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Case 2.1: *tx* and *ί2* coincide. Then uγ = u2% Let υ = ul9 ux ^p uγ = υ and
u2 ^p Mi Ξ v, so Mi ̂ p v and M2 ^p t>.

Case 2.2: *ίx* and *£2* do not coincide. Without loss of generality it may
be supposed that *ti* properly contains *ί2*.

Case 2.2.1: tγ is an η redex. Let υ be the result of contracting the
occurrence of t2 in uγ corresponding to *ί2*. υ is also the result of
contracting the η redex occurrence in u2 which arises from *tγ* by
contracting *ί2*. It follows that uι>pv and u2 >pv, which is sufficient.

Case 2.2.2: tγ is a β redex. Let ^ Ξ {λxf)f. The contractum of ίL is
\f/x/f\ Let ̂ F/x/t1]* be the occurrence of [f2/*/*1] which replaces *^*,
let *λxί1* be the left half of % * , let *£** be the occurrence of f which
follows the first occurrence of λx in *λxf*, and let *ί2* be the right half
of **!*.

Case 2.2.2.1: *ί2* falls within *ί2*. Let the occurrences of x in *ίx*
replaced by occurrences of t2 in passing from *ίx* to *[ί2/Λ :A1]* t>e

*ΛΓ*!, . . ., *^*«, and let the occurrences of t2 which replace *x*l9 . . ., *^*«
be *t2*l9 . . ., *^2*w. Let *t2*l9 . . ., *t2\ be the occurrences of t2 in
*ί2*1 ? . . ., *̂ 2*w corresponding to *ί2*, and let υ be the result of contracting
*̂ 2*i> •? *̂ 2*« ^ is also the result of contracting the predicative β redex
occurrence in u2 which arises from *ίx* when *ί2* is contracted, so
uγ ^p z; and u2 ^p z;.

Case 2.2.2.2: *t2* falls within *X^X*.

Case 2.2.2.2.1: x is not free in t2 or *ί2* falls within a part of *f1* of the
form λΛ:ί3. Let z; be the result of contracting the occurrence of t2 in uγ

which corresponds to *£2*. v is also the result of contracting the predica-
tive β redex in u2 which arises from *tλ* by contracting *ί2*, so % ̂ p z;
and u2 ^p z;.

Case 2.2.2.2.2: x is free in t2 and *ί2* does not fall within a part of +*1* of
the form λxί3. Then *ί2* is replaced by an occurrence of [f/x/t2] in
passing from t to %. Let the occurrence in question be *[t?/x/t2]*.

Case 2.2.2.2.2.1: t2 is an η redex. Then so is *[f/x/t2]*9 because tλ is
contractible. Let υ be the result of contracting *[t2/x/t2]*. v is also the
result of contracting the predicative 0 redex which arises from *^* by
contracting *£2*, so uλ^p υ and u2 ^p v.

Case 2.2.2.2.2.2: t2 is a β redex. Let ί2 Ξ (λyts)t4. Then *ί2* is replaced by
a term occurrence *\t2/x/\yf\\t2/x/t*Y in passing from t to wlβ Applying
Corollary 2.3, let ί5 be a normal term such that f ^ P ί5, let ί6 be a normal
term such that \f/x/f\ ^p ί6, and let λyf be the term which arises from
[t2/x/λyt3] by replacing every occurrence of t2 introduced in passing from
λyf to [f/x/λyf] by an occurrence of t5. Let λyf be such that λyf =a λyf
and (λyts)f is a contractible redex. Because f is normal, (λyf)f is also a
predicative redex.
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v is to be the result of replacing *\t2 /x /\yt\\? /x / f\* by an occurrence
of [f/x/t8] and replacing all occurrences of t2 introduced in passing from t
to uγ which fall outside *[t2/x/λyf] [t2/x/t*]* by occurrences of f. It is
clear that ux ^pv.

Also, u2^pv by first reducing the occurrence of t2 corresponding to
*ί2* to an occurrence of t5, then proceeding via =a as in the passage from
λyt7 to λyt8 and contracting the redex occurrence in the resulting term
which arises from *£i*, and finally predicatively reducing to occurrences of
t6 the appropriate occurrences of \f/x/f\ in the term so obtained. Hence,
ux ^p v and u2 ^p v.

Lemma 3.4 If t ^p ul9 t ^p u2, and uλ and u2 are normal, then uγ =a u2.

Proof: By induction on -C(ί). If t is normal, then uγ =au2 by the symmetry
and transitivity of =α, so suppose t is not normal. According to Lemma 3.2
there exist tl9 vu and v2 such that t =α tu tλ >pvγ ^puu and tλ >pv2 ^pu2.
Consider such tl9 v19 and v2. Since t =αίi, -C(ί) = -C(̂ i). Since tγ >p^i and
t\ >p^2, -C(̂ i) < 4(t) and £(v2) < J£(t). By Lemma 3.3 there is a y such
that Vi^pv and v2^pv. Applying Corollary 2.3, let υ1 be a normal term
such that v ^pv'. By Hyp Ind v* =a

u\ &nd ̂ f =α ̂ 2 Since =a is symmetric
and transitive, it follows that ux =a u2.

Lemma 3.5 If t is a contractible redex and u is the contractum of tt then
there is a υ such that t ^p v and u ^p υ.

Proof: If t>pu there is nothing to prove, so suppose t ^>Pu. Then t is a β
redex which is not predicative. Let t = (λxtι)t2. u = [t2/x/tγ\ Applying
Corollary 2.3, let t2 be a normal term such that t2 ^pt2. Then (λxtι)t2 ^p
(λxtM >p[t2/x/t1], and u = [tjx/t^ ^ P [tl/x/t^. This shows that [tί/x/tι] is
an appropriate υ.

L e m m a 3.6 If t > u, then there is a υ such that t^pυ and u^pv.

Proof: Immediate from Lemma 3.5.

L e m m a 3.7 If t^u and u is normal, then t ^p u.

Proof: Let ί1, . . ., tn be a reduction of t to u. By Lemma 3.6 there exist
vu . . ., vn-ι such that t1 ^pυγ and t2 ~>pυu . . ., f~

ι >pvn-γ and tn^pVn-ι.
Applying Corollary 2.3, let υ{,..., vn-ii be normal terms to which υu . . .,
i;n-!, respectively, reduce predicatively. Then for all i (1 < i < w), ίz ̂ p
vf -if and tι ^pv\. By Lemma 3.4 for all i (1 ̂  i < n - 1), i;/ =αf/+ir. Also,
w ̂ p vn-lt and w is normal, so υn-^ -au by the symmetry of =<*. Since =α is
transitive, it follows that υ[ =a u. Hence, t ^p υ[ =α u. It follows that t ^p w.

Corollary 3.8 [Church-Rosser theorem, first version] If t ^ul9 t ^u2, and
uγ and u2 are normal, then uγ =α u2.

Proof: Apply Lemmas 3.7 and 3.4.

Corollary 3.9 [Church-Rosser theorem, second version] If t = u, then
there is a υ such that t ^ υ and u ^ υ.
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Proof: Let tl9 . . ., tnbe such that tγ = t, tn= u, and for all i < n, t{ ^ ti+1 or
ti+ι ^ t{. Applying Corollary 2.3, let vu . . ., vn be normal terms such that
for all i (1 ̂  i ^ n) t{ ^ vit By Corollary 3.8 for all i (1 ^ i < ή) v{ =a vi+ι.
It follows that t^υn and u^υn, which suffices.
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