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A NOTE ON TURING MACHINE REGULARITY
AND PRIMITIVE RECURSION

NICHOLAS J. de LILLO

1 Introduction The purpose of this paper is to present an explicit
Turing machine Z which computes any function which is defined by means
of primitive recursion from two given computable functions. The formula-
tion of Z uses results of Davis [l] and Mal'cev [3], with the added feature
that Z yields outputs in a standard form, such outputs usable as inputs in
subsequent Turing machines which can be activated after Z has completed
its computation. Such machines as Z are defined as n-regular, for a
positive integer n. The course of a computation in Z follows along lines
suggested by Davis [2], for a similar computation using abstract programs
instead of Turing machines.

2 Preliminary concepts We will assume a general familiarity with [l],
explicitly defining only those concepts which are absolutely necessary for
the continuity of this discussion. A Turing machine1 is any non-empty and
finite set of quadruples, any one of which assumes the form (i) qiSfikQh or
(ii) qiSjRqi, or (iii) #;Sy L#/, where i, j , k, I are positive integers. The
symbols qiy qt are elements of a finite set Q, called the internal states of
the machine; the symbols S; , Ŝ  are elements of the set A = {1,5} disjoint
from Q and called the alphabet of the machine; the symbols L and R are
distinct symbols not in QUA. It is understood that no two distinct
quadruples of a given Turing machine begin with the same first two
symbols. The usual meanings are attached to the quadruples: (i) is the
instruction which, when the state of the machine is qι and the symbol Sy is
being scanned, erases Sy and prints S& in its place, the machine then moving
to state qι\ (ii) instructs the machine to move one square to the right and
change to state q\ when the machine is in state qι and scans a square with
S; printed there; (iii) is the instruction similar to (ii), except the machine
moves one square to the left.

1. Using the terminology of [ 1 ], this paper will deal only with simple Turing machines, but these
results can easily be generalized to the case of relative computability.
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Let T be a fixed Turing machine. Then θ(J) will denote the largest
subscript of an internal state symbol appearing in T. Furthermore, for any
natural number m, T will denote the Turing machine obtained from T by
adding m to the value of each subscript of an internal state symbol of T.
By an instantaneous description of T we mean any finite string of symbols
from QUA containing exactly one element of Q, and where this element of
Q is not permitted to be the rightmost member of the string. In any
instantaneous description a, we regard the symbol appearing immediately
to the right of the internal state symbol #*• of a as the symbol being scanned
by T when T is in state #,. If a, β are instantaneous descriptions of T, we
write a —» β(T) (or simply a -* β when T is understood) to signify that β is
the result of an application to of of a single quadruple of T. If, for a given
instantaneous description β of T, there is no instantaneous description γ of
T such that β —• y(T), we say that β is final with respect to T. Any finite
sequence al9 . . ., an of instantaneous descriptions of T such that αf —>
&i+i(T) for 1 ̂  i < n, and such that an is final with respect to T, is called a
computation in T with resultant (or output) an. We denote this by
Resτ(αi) = an.

The set of natural numbers will be denoted by N, and iVwwill denote the
set of all n-tuples of elements of N. If x > 0, we define 1* (respectively B*)
to be string of length x of the symbol 1 (respectively B) of A. We also
define 1° and B° to be the empty string. If ne N, we define ή to be 1Λ+1, and
if ( « ! , . . . , On)eNn, we define (alf . . ., an) to be the string laι+1Bla2+ιB . . .
βfn+1 we will consider instantaneous descriptions of T of the form
qi(aι, . . ., #„) as usable inputs of T. For any instantaneous description a of
T, we define [a] to be the number of occurrences of the symbol 1 in α.

If n is a fixed positive integer, then T is called n-regular if (1) there is
a positive integer p such that

Resjί^β!, . . ., α»» = qθ{j)Φu , bP>

whenever ^esjiq^ai, . . ., an)) is defined, and if (2) T has no quadruple
beginning with qθ{1).

A function F whose domain is a subset of Nn and having values in N is
called partially computable if there is some Turing machine T such that for
any {au . . . , « „ ) in the domain of F, it is the case that

F(aly . . .,an) = [Resjte^β!, . . ., On))].

Thus, for an input of the form a = #i(«i, . . .,««), T will yield an output for
just those w-tuples ( β u . . ., an) which happen to be members of the domain
of F; otherwise, T will hot yield an output for the input of. Furthermore, F
is called a total function if its domain is all of Nn, and is called computable
if it is partially computable and is total. If F is (partially) computable via
the Turing machine T, then we say that T (partially) computes F.

3 Main result We prove the following

Theorem Let n be a positive integer. If f is a total function of n + 1
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variables, and is defined by primitive recursion in terms of the computable

functions g, h, of n and n + 2 variables, respectively, i.e., if for any

(xι, . . ., xn) e Nnand te N,

f(xu . . ., Xn, 0) =g(xu . . ., Xn),

f(xu . . ., Xn, t + 1) = h(xu . . ., Xn, t, f[xγ, . . ., Xn, t)),

then there is an (n + 1)-regular Turing machine Z which computes f. More

precisely, for any (xl9 . . ., xn, y) e iV*4"1.

Res z(^(^, . . .,xn,y)) = qθ{Z)f
ix^"^y\

Proof: Suppose G is a Turing machine which computes g, and H is a Turing

machine which computes h. By results of [l], we may assume that G is

w-regular, and that H is (n + 2)-regular. Indeed, using results of [l], there

then exists an (n + 1)-regular Turing machine Vi such that, for any

<*i, . .,*n, y)eNn+\

Resyfι(qι(xu . . ., Xn, y)) = qP(g(xu . . ., x«), y, xl9 . . ., xn)

= <Ip(f(xi, - ., Xn, 0), y, Xi, . . ., xn).

where p = θίVj. Similarly, using the fact that H is (n + 2)-regular, there is

an (n + 2)-regular Turing machine H such that, for all t, y, xu . . ., xne N,

Res\\(q1(f(x1, . . ., xn, t), y, xl9 . . ., xn))

= Vθ(H)(h(χl> ' ' '> X»> t>ΛXl> ' ' -> χn> *))> y> Xu - - ->Xn)
= aθ(H)(f(Xl> - - •>> Xn,t + 1), y, XU . . ., Xa).

In addition, there is a Turing machine H such that, for every

t, y, xu . . ., xneN,

Resf id^^/^, . . ., xn, t), y, χl9 . . ., xn))
= lB2qθ(^)(f{xι, . . ., xn, t + 1), y, xu . . ., xn).

In particular, H may be regarded as the Turing machine which first

moves left to erase the leftmost 1 of the input \B?qι(f(xι, . . ., xn> t),

y, xl9 . . ., xn), then moves right until a 1 is found. H then performs the

identical computation which H performs on Qiifixi, . _I, xn, t), y, xl9. . .9Xn).

After this last computation has been completed, H then moves left to

reprint a 1 three squares to the left of the leftmost 1 of the resultant β of

the H-computation. Finally, H moves right until it scans the leftmost 1

of β.

Now set k = θ(H(u+3)), where u = p + 10 + 2w, and let W be the following

set of quadruples:

qpiiqp qp+ϋiBqp+w
qpBlqp+ι qp+10BRqp+9

qp+ιBlqp+ι qp+7+2iBRqp+7+2(i+i) j for

qp+ιlRqp+2 qp+Ί+2(i+ι)lBqp+1+2(i+l) + 1 >each i,

qp+2BRqp+3 qp+7+2ti+ι)+ιBRqp+7+2U+i)) 1 ̂  i ̂  n

qP+slBqp+4t 4>+8lL<7«+i
qp+4BRqp+5 qu+ιBlqu+2
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qp+5B R qp+6 qu+31L qu+3

qp+β 1 Byp+i qu+3^ R qu+4

qp+7B R qp+8 qu-iBBqk+ι

qp+8BRqp+9

Let E be the following set of quadruples:

qk+ιB L qk+ί qk+*B R qk+7

qk+i 1 L Qk+2 qk+δB R qk+5

^Jfe+a^L^A+a Qk+sBUk+i
Vk+sB I qk+4 qk+iB R ^ + 7

tffc+41£^+5 ^ + 7 1 1 ^ + 8 .

Finally, let Z = V! U H u + 3 ) U W U E U {qkllqp}. We claim that Z is a

Turing machine which computes / . Note first that θ(Z) = k + 8, and that

there is no quadruple of Z beginning with 6(7.). Hence the second property

of (n + l)-regularity is satisfied by Z. The, first property of (n + 1)-

regularity will be verified if we can show that for any ($l9 . . ., xny) eNn+ι,

Resz(q1(x1, . . ., xn, y)) = qθ(Z)Λ^u , *n, y)>

This will be done by tracing a computation in Z beginning with an input of

the form #i(#i, . . ., xn9 y). First of all,

qλ{xu . , Xn, y) — . . — qP(f(xι, - ., xn, 0), y, xu . . ., xn)

(using Vx).

(i) Suppose that y = 0. Then

qp(f(xi, ., *w> 0), 0, ΛΓI, . . . , # „ > - » . . .
_ ^ / ( x ! , . . . * * o ) 5 3 5 χ 1 + i 5 BBx»+ιqk+ι B = αx, (using W).

Applying E to α^, either of two possibilities exist as the resultant of a

computation in E beginning with α ;̂ namely,

( B2qk+8f(Xi, , Xn, 0)B3BXl+1B . . . BBXn+1B, in case

/(#!, . . .,ΛΓJ > 0,

B3qk+*f(xu . . . ,*„, 0 ) 5 5 5 ^ + 1 5 . . . BBX»+1B, if

/(^x, . . .,xn) = 0.

Each of these resultants is final with respect to Z. Hence, if we

disregard initial and terminal blocks of Γs, we get

ReszG^Ofi, . . ., xn, 0» = qθ(Z)f(Xi, ., ^», 0),

which is the desired result when y = J). Note that, in this case, the machine

H("+ 3 )

 W a s never activated. Indeed, H ( w + 3 ) would not be activated unless the

function h were used in evaluating /, which is not the case if y = 0.

(ii) Now suppose y > 0. Then, after NΛ has completed its computation,
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qP(f(χi, - , *», Q)> y,χί9 . ., χn> -+ . . .

-» lB2qu+4(f(xu . . ., xn, 0 ) , y - l9xl9 . . ., x n ) ( u s i n g W), =

- . . . - lB2qk(f(xu . . . , * „ , l ) , y - l,xl9 . . . , * „ ) ( u s i n g H U + 3 ) ) ,
- » . . . - » lB2qp(f(xl9 . . ., x», 1 ) , y - l9xl9 . . ., # w ) ( u s i n g q k l l q p ) ,
- . . . - l £ V ( x i > ' X w ' y ) 5 3 . B x i + 1 £ BBx»+1qk+ιB,

iterating the sequence, W, Ή ( " + 3 ) , qkllqp, until y = 0.

Let j5= l ^ / ^ i ' ' ^ ' ^ 3 ^ * ! * 1 ^ . . . BBXn+1qk+ιB. Then, using the qua-
druple qk+1Blqk+i as many times as is applicable, we get either

β - qk+ιlB
5BXl+1B . . . BBXfl+ιB = /31?

if /(Λά, . . ., ΛΓW, y) = 0, or

β - l ^ l ^ 1 ' — ' ^ ^ " V A + I I ^ 3 ^ * 1 " 1 " 1 ^ BBXn+ιB= β2,

itfixiy . . ., #„, y) > 0.

(a) Suppose f{xx, . . ., xn, y) - 0; then, using the remaining quadruples of E,

βγ-> . . . — B3qk+8lB
bBXl+ιB . . . BBXn+ιB

= B3qk+8f(x^ . .,xn,y)B5Bxι+1B . . . BBx«+ιB.

(b) Suppose /(#!, . . ., xn, y) > 0; then, using the remaining quadruples of E,

A, - - B2qk+8f(xu . . .,xn,y)B3BXl+ιB . . . BBX«+1B.

The resultants obtained in (a) and (b) above are each final with respect
to Z. Thus, omitting initial and terminal block's of Z?'s, we get

Resz(^1<^1, . . . , * » , y)) = qθ(Z)f(χu . . ,*», 3>)

whenever 3; > 0.

This completes the proof of (ii), and thus the proof of the Theorem is
complete.

4 Additional notes In case y > 0, the machine Z decreases the value of
y by 1 whenever W is activated. The quadruple q^\qp acts as a recycling
instruction, demanding a repetition of the sequence W, H ( ί / + 3 ) as many times
as is necessary to obtain y = 0. When y = 0, the machine E acts as an
exiting mechanism, yielding an output in the standard form qθ(z)Λχι> •>

The leftmost 1 in the instantaneous descriptions al9 βl9 β2 plays the
role of a marker", in the sense that it prevents an infinite leftward
movement of Z via the quadruple <fe+12?Lgk+1, in case y > 0 and/(# 1 ? . . .,
χm y) = 0. This 1 is then erased by E as part of its computation.

Finally, if Z is augmented by the single quadruple qk+8lBqk+Q, then the
resulting machine Z f has the property of (n + l)-regularity, and, in addition

[Resz, (<?!<#!, . . ., χn, y»] =/(#i, . ., Xn, y),

for every (xl9 . . ., xny y) e Nn+ι.
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