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FOUNDATIONAL PROBLEMS OF NUMBER THEORY

YVON GAUTHIER

I want to address myfcelf in this paper* to the thesis that realism is a
viable philosophy of mathematics and I am going to attack the thesis by
examining number theory and by proposing a foundational framework that
purports to explain fundamental results in arithmetic and analysis without
having to resort to realism. My main philosophical target or pretext will
be Hilary Putnam's philosophy of mathematics (the pre-Marxist one).

1 Putnam is said to have argued that ontological realism can be combined
with an empiricist epistemological attitude which would assimilate mathe-
matics to theoretical physics at least as far as hypothetico-deductive
reasoning and inductive confirmation of hypotheses are concerned. For
example, it would be legitimate according to Putnam, to accept the truth of
Fermat's last theorem and Goldbach's conjecture on the ground that these
hypotheses have been tested sufficiently to warrant our acceptance—
Fermat's last theorem asserts that it is impossible to find a natural
number with a power greater than two such that it is the sum of two other
natural numbers with the same power, e.g., a cube cannot be the sum of two
cubes, etc. . . . and Goldbach's conjecture says that every even number
from six onwards can be represented as the sum of two prime numbers
other than two. Now if one is interested in number theory, one knows that
in the case of Goldbach's conjecture related problems have been solved
e.g., "Every sufficiently large odd number is representable as the sum of
three odd primes" and "Almost every even number is representable as the
sum of two odd primes."1

But I want to go a little further: an important theorem by Dirichlet
says that if a and b are relatively prime (such that they have no common
divisor, 1 excepted), there are infinitely many primes of the form ax + b,
that is in any arithmetical progression. Dirichlet gave a proof of that
statement using analytical methods (L-functions or Lolomorphic functions

*I am indebted to Bas C. van Fraassen, Gonzalo Reyes and Georg Kreisel for helpful comments.
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of complex analysis, infinite series, limits, and so on), but there are more
recent elementary methods (methods that use only arithmetical properties,
approximations instead of limits, for example) by Selberg, Zassenhaus, and
others. These methods are constructive in contrast to the transcendental
methods of analysis. Before attempting to draw a philosophical lesson from
these results of number theory, let me point two problems for which there
is not as yet a pinch of a hint.

Conjecture No. 1 There are infinitely many primes of the form x2 + 1, e.g.,
2 , 5 , 1 7 , 3 7 , 1 0 1 . . .
Conjecture No. 2 There are infinitely many pairs of primes (3.5), (5.7),
(17.19).

(The list of unsolved problems in number theory includes at least 250
items, following H. Hasse). I remark here that all the problems, solved or
unsolved, that I have mentioned, have to do with infinity. I could have
mentioned also Euclid's proof of the infinity of primes or the elementary
proof by Selberg and Erdδs of the prime number theorem which asserts
that the ratio of the number of primes in a large set x to x/\og x tends to
the limit 1 as x tends to infinity, that is

lίm - p - = 1.

2 I am interested in the significance these results have for foundations of
mathematics. All the results I have referred to have been obtained by
elementary methods (except the results on Goldbach's conjecture). My
approach is the following: infinity in number theory does not refer to an
actual infinity, an infinite set or a closed totality. It does not refer either
to a potential infinity, which, in my view, is an ambiguous concept, if not a
contradictory one—my contention is that, because potentiality always
supposes actuality, at least in the Aristotelian sense, the concept of
potentiality has only a chronological, not an ontological content, but this is
a different matter. Rather, the fundamental idea conveyed by the word
infinity in number theory is that of a process, a process which produces the
series of numbers according to a rule specified by the construction of the
number-concept and the form of its definition. I call a process finite, if it
has finite bounds pre- and post-positionally determined (I exclude infinite
bounds); a process is effinite if it does not have finite bounds and I maintain
that all we can use is that truly negative concept of effinite (from
ex-finitus), meaning beyond the finite, outside the finite. An effinite
process is a process which a finite performance with initial and terminal
states cannot exhaust. My concept of process cannot be reduced to a
processing Turing machine, possibly with no end state (or to any other
characterization of recursive functions). Of course, I do not accept
Church's Thesis which identifies effectively computable functions with
recursive ones. Kreisel has given an example2 of a constructive function
which is not mechanical: we have HA, Heyting arithmetic which is
constructively valid, pn represents a constructive proof of a formal
derivation n (with Godel number) in HA
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0, if n is not a derivation of any closed formula of the form 3xc4
0, if pwdoes not provide a specific numerical instance satisfying <?/,

" e.g., 3Xa4 has been inferred from "ix<A
. x + 1, if x is the number verifying <A which is provided by pn.

The mechanical counterpart to this would be

( 0, if n is not a derivation in HA of any closed formula 3xc4
f'n = \ x + 1, otherwise for x as the argument of d in the shortest deriva-

(tion of a formula of the form &4x.

I wish to give a more abstract characterization of process, allowing
for abstract and intensional operations like constructions. I call stasis the
intensional equivalent of state, initial and terminal states become preposi-
tional and postpositional bounds. A non-terminating process is effinite,
that means it cannot be numbered and it cannot be conceived as a set. Only
finite multiplicities can be formed as sets, that is totalities or unities seen
as containing all their members. An effinite process can be quantified
upon, but it cannot be totalized: what I want to say is that one is entitled to
refer to all natural numbers, meaning effinitely many, but one cannot form
the set of all natural numbers, make a whole of them, since this would
amount to having terminated a non-terminating process or exhausted an
inexhaustible process. For me, then, when all qualifies a non-finite
multiplicity, it signifies an every-expanding process and not a set or a
totality. (I have indicated elsewhere how the universal quantifier can give
rise to the idea of infinite multiplicities as sets or completed totalities; the
intuitionistic notion of species has also to be modified here.)

3 This conceptual framework would, in my mind be sufficient for non-
analytical methods in number theory. But let us suppose that certain
analytical methods do not have an elementary counterpart (e.g., Vino-
gradov's method for Goldbach's problem). How can we explain those
results in our conceptual framework? Analytical methods involve es-
sentially the use of all or every for infinite multiplicities, for example, in
the definition of such properties as continuity and analyticity; real and
complex analysis rest upon non-denumerable infinities.

Take the simple example of the definition of continuity: we have X and
Y as metric spaces, E c χt peE and f:E-*Y: then we say that / is
continuous at p if

VxeEVe > 0 3δ > 0 [(dx(*, p)< σ) - (dy(/(x), /(/>)) < e)]

Analytical concepts seem to require a transcendental frame of
reference, i.e., existence of infinite sets of numbers (transfinite cardinals).
My point of view is here again the effinite. The process I want to consider
is abstract: let us assume a stasis, the intensional equivalent of a state; a
process on or over such a stasis, I call a metastasis. A continuous function
would then be a metastasis, a continuous functional a third-order stasis
(the notion of a measurable cardinal similarly requires a third-order
stasis).
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How can we differentiate between my approach and the classical one ?
The classical approach allows for arbitrary properties or subsets of a
given infinite set. Nowhere do I postulate the existence of completed
effinite sets or of universal properties. On the contrary, all constructions
are supposed to be incomplete. Only infinite sets and local properties can
be considered as complete constructions, their universal analogues belong
to ideal structures. For the sake of clarity, let us compare the above
description with second-order number theory and set theory. Higher-order
logic admits quantification over predicate or function symbols by assuming
a completed universe of subsets of a given infinite set: we have the
second-order induction postulate for number theory

VX(X(0) *Vy(X(y) -> X(Sy)) -> V y X(y))

or the second-order comprehension axiom for set theory

Vα VX 3x Vy [y e x <r> (y e a ΛX{y))]

In both cases, the set of all natural numbers and the set of all their
subsets are assumed.

From my viewpoint, these assumptions are unnecessary; they, in fact,
lead to ambiguous, dialectical and possibly paradoxical structures (not
constructions). Since our constructions for processes, stases and the
effinite guarantee us all what we need-remember that "a l l " leads into the
ef finite or out of the finite and that at the same time we do not need "a l l "
instances of our construction, simply because we have only a finite number
of stipulations or directions for our constructions—hierarchical theories of
types, ranks, and levels are extensionally—disguised intensional theories;
they do not involve new operations, only fuller ranges for the given
operations and this makes for over-saturated realism.

4 It is time to draw some philosophical implications from our analysis of
those few mathematical concepts. Conceptual analysis has had the task,
traditionally, to critizise concepts either from the point of view of common
sense (philosophical or not), linguistic analysis or more generally from the
standpoint of a more or less explicit philosophical scheme. Personally, I
privilege a construetivist viewpoint, which strives for total explicitness. In
this view, concepts are either constructed or structured. A constructed
concept is finitely integrated, that is, it refers to actual intellectual
experience, a structured concept is finitely derived from elementary
constructions.3 That is to say, not all of our experience is constructed, that
part of it which is common structure can be traced back to past construc-
tions in the history of man's intellectual, conscious and linguistic (which is
not always conscious) experience. Here, experience tout court would be
meaningless.

Concepts are construction-absolute, if they refer to direct intuitive and
evidential intellectual experience, completion-absolute if they are intended
to refer to possible experience. Completion-absolute concepts are clearly
not constructed, but rather structured concepts (most concepts of the
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philosophical tradition are of this kind, the Absolute, Being, the World,
etc. . . .). How does this relate to the realist ontology and the empiricist
epistemology, allegedly held in conjunction by Putnam? In our version of
number theory with finite and effinite processes, numbers being free
creations of the mind (as Dedekind liked to put it), can be formed into any
finite set of numbers; the process of forming a set is itself an idealization
which consists of considering as a unity a gathering of well-defined objects
of our thought or our intuition (as Cantor liked to put it). Rational and real
numbers are gotten in the usual way. Putnam seems to think, in his
Philosophy of Logic,4 that we need the sets of all natural, rational, and real
numbers as completed totalities. I have argued to the contrary. The
concepts of such totalities are completion-absolute, they do not have any
actual reference; they are intended to refer to possible or ideal experience
of rather to the possible completion of experience, but in this case as in
most cases the completion is excluded by our constructions. Universal
quantification is still permissible, provided we do not bag the "all" of
quantification into a whole, all, as we have seen, meaning effinitely many.
(Maybe we should use a new symbol " ϊ " for that universalization which
does not yield a universe). Putnam is obsessed by the amount of set
theory that is needed in physics. On his realistic account of physics,
Putnam maintains that the notion of distance requires the existence of
functions from space-points to reals. But Putnam, being after nominalism
here, shows only that the linguistic formulation of nominalism is in-
adequate, not that realism is a necessary condition for expressing the
statements of physics. For we could construct distance in such a way as to
allow only finite measurements (or numericalizations, as Putnam says)
without having to recognize reals as completed numbers.5

Onto logical realism (the realist ontology of mathematics here), then,
seems to contain unnecessary assumptions. The objections Putnam raises
against nominalism do not register against constructivism,6 since con-
structivism does permit the introduction of abstract operations of various
complexity. What I have attempted to show is that in order to quantify over
numbers and functions on them, one is not forced to consider "al l" as a
whole or to put all numbers in what I call "the ontological bag".

5 Finally, I briefly address myself to the second part of Putnam's thesis,
the empiricist epistemology of mathematics! While the realist ontology
was intended to deal with the status of mathematical entities, the empiricist
epistemology is interested in the status of mathematical statements.
Mathematical statements that have been proven are certainly true. Putnam
wants to go further; for him, statements which do not have yet any proof,
but have been sufficiently tested should also be considered true (the case of
Goldbach's conjecture or Fermat's theorem), simply because the amount of
empirical evidence supporting them is considerable. In my opinion, such a
view is mistaken. Take, as an example, the continuum hypothesis. A great
number of people, let us say before Cohen, were inclined to think that it
was true. Now most logicians tend to believe that it is false, although
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Cohen's proof does not have any bearing on its truth or falsity and still, one
could say that it has been sufficiently tested. A simple number-theoretic
statement like Fermat's theorem is more easily tested in terms of finite
values of its variables than a transfinite number-theoretic statement which
has no finite value or computational meaning. But the number of unsolved
problems in elementary number theory should be an indication that testing
is not sufficient. For example, Vinogradov's result "that each sufficiently
large odd number is representable as a sum of three odd prime numbers"
contains the phrase "sufficiently large" which has no computational
meaning. We can say that a constructive proof is a conclusive test; but any
test which does not amount to a proof is just a "counter-counterexample."
Intuitionistically, if one has not tested the falsity of a given statement one
cannot conclude to its truth, the principle of the excluded middle being
"excluded" for non-finitely valued statements.

If I express Fermat's last theorem in the following form

(F) Vw > 2 Vxyz{xn + yn Φ zn)

then I can classically define a natural number m by having

(0, if F
m = \

(1, otherwise

but this is not constructive, since F is not decided. So, let us suppose that
we have a constructive proof of Fermat's theorem, which is certainly not
excluded. Then I could define constructively or recursively a number m
and the classical and the constructive definitions would coincide. But, in
the absence of a proof, constructive or non-constructive, I cannot do better
classically, even with all the individual value-tests that I can imagine,
since F has not been proven.

Kreisel points out to the same problem from another angle in his
review of Putnam's paper "Mathematics without Foundations".7 In connec-
tion with Fermat's problem, Putnam wants a modal translation of a
counterexample to Fermat's last theorem which is stated as follows

D [ A x ( S , P ) D F ( S , P ) ]

(for Ax a set of axioms of reduced number theory, S, sum and P, product).
The statement says that it is necessary that if we have a counterexample to
Fermat's last theorem, then the negation of Fermat's last theorem is
implied by a set of axioms of reduced number theory. But Putnam fails to
notice, as Kreisel points out, that such a Σ? sentence does not extend to aΠf
sentence of the arithmetical hierarchy, i.e., for a sentence of the form

P(cA) <"> Q#! . . . Qxn RU, * ! , . . . , Xn)

where R is recursive and Q#z is V% (3xi for a Σ? sentence) and, of course,
does not extend to second-order validity. All this suffices, in my opinion,
to show the implausibility of Putnam's thesis that empirical evidence can
establish the truth of a mathematical statement. What Putnam is trying to
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say in his empiricist epistemology is that our belief in the truth of F is
based on an inductive argument, but I have argued that the probability of the
belief is not the measure of the truth of a mathematical statement.
Inductive evidence never amounts to mathematical truth.

6 I have attempted to show that number theory8 is given a natural
interpretation in a constructivist framework and that constructivist founda-
tions of mathematics fare better than realism or empiricism. Despite the
machinery I have introduced, constructivism is far from being completely
justified. But in matters philosophical, complete justification is not
attainable, as philosophical programmes seek for the most comprehensive
understanding of the most extensive experience. Constructivist philosophy
is not completely constructible, it has to be constructed ad effinitum.

POSTSCRIPT

Historically, the approach sketched here can be linked with the
investigations of Hermann Weyl in his book Das Kontinuum (Leipzig, 1918).
Weyl wants to build analysis on elementary categories (Grundkategorien) of
objects to which are added properties and relations as ideal elements
through substitution and iteration. Weyl thought that in this way he could
escape type construction which led, for him, to an artificial and useless
system (op. cit., p. 23).

It is interesting to note that Godel in his paper "Ueber eine bisher
noch nicht benίitzte Erweiterung des finiten Standpunktes" (Dialectica, vol.
12 (1958), pp. 280-287), uses essentially the same procedures, substitution
and iteration (or recursion) on finite types, to obtain his proof of the
consistency of classical arithmetic. GϋdeFs interpretation of number
theory with functionals (extended to analysis by Spector and others) is no
more strictly constructive in WeyFs sense: Weyl requires in his strict
procedure, "engeres Verfahren", that the existential quantifier be applied
only on the objects of elementary categories (op. cit., p. 21). Functionals
of finite types make essential use of quantification on variables of arbitrary
type (see GδdePs paper, op. cit., p. 284). Kreisel has also proposed in
'Ordinal logics and the characterization of informal concepts of proof"
(International Congress of Mathematicians > Edinburgh (1958), pp. 289-299)
a more abstract scheme where enters the notion of finitist proof, which
evidently is not finitist (i.e., combinatorial), but abstract or "ideal".

Our own notion of "metastasis" provides an intensional framework for
such a scheme: it is not a type structure, but a system of reflection levels,
whereby operations on the primary level of the effinite series of natural
numbers are seen to correspond to abstract performances; levels or strata
are never supposed to be completed extensionally. Intensional closure
suffices to guarantee the passage from one level to the other. Operations,
not properties, are of the essence. Whether or not such a framework gives
rise to a coherent theory of the continuum remains for the moment an open
question.9 But it is certainly consistent with the constructivist ideal.10
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NOTES

1. These results have been proven by Vinogradov. See K. Prachtar Primzahlverteilung, Springer,
Berlin (1957), pp. 177 and ss. These results have not yet been constructivized.

2. See G. Kreisel "Church's Thesis: a kind of reductibility axiom for constructive mathematics"
in Intuitionism and Proof Theory, ed. by Kino, Vesley and Myhill, North Holland, Amster-
dam (1970), pp. 124-124. See also, G. Kreisel, "Lawless sequences of natural numbers,?.'
Composiΐio, vol. 20 (1968), pp. 222-248, in particular, pp. 227-235. Kreisel makes also the
basic distinction between mechanically effective and humanly effective (called m-effective
and ^-effective respectively by Kreisel). See "Which number-theoretic problems can be solved
in recursive progressions on Π}-paths through 0?" in The Journal of Symbolic Logic, vol. 37
(1972), pp. 311-334. Although some recent results by Prawitz and Mints, in particular on the
functional equivalence of derivations and proofs, seem to cast doubt on KreiseΓs intended
use of the example, as Kreisel himself told us in conversation, it remains that the abstract
(intensional) notion of proof is not reducible to the mechanical calculus of derivations.
Whence the intrinsic value of the example.

3. See my "Constructivisme et structuralisme dans les fondements des mathematiques" to be
published.

4. Harper Torchbooks (1971).

5. As for Putnam's treatment of predicative set theory, it assumes infinite sets to be definable
without having to give a procedure to produce them.

6. Putnam has difficulties with conventialism, which is weaker than constructivism, for it does
not justify conventions.

7. See H. Putnam "Mathematics without foundations," Journal of Philosophy (1967), pp. 5-22.
KreiseΓs Review is in The Journal of Symbolic Logic, vol. 37 (1972), pp. 402-404.

8. I have not examined algebraic number theory in this paper, but, from my point of view,
algebraic concepts are structural ones, although some degree of constructivization can be
achieved there. See Andre Weil's remark in his Basic Number Theory, Berlin-Heidelberg-
New York (1967), p. V, on the unification of prime field completions (real-number and
p-adίc fields) through adele rings. For the combined (and harmonious) use of algebraic and
analytic methods, see Jean-Pierre Serre Cours d'arithmetique, Paris (1971). We have empha-
sized here problems in prime number theory. There are other problems in number theory
which have an analytic solution, but do not have as yet an elementary one. One such problem
is the so-called Dirichlet's class-number formula for quadratic forms

B-A
C(-p) = —

where C is the class of reduced forms of discriminant -p, B the sum of all the quadratic
non-residues and A the sum of all the quadratic residues (mod p).Dirichlet gave a proof of
the equation using infinite series. The fact that this formula does not have an elementary
proof is dramatized by the remark that it simply asserts the equality of two natural numbers
(see H. Davenport, The Higher Arithmetic, 3rd Ed., London (1968), pp. 146-148). This does
not affect, however, our foundational scheme where infinistic methods are "effinitized".

9. Hermann Weyl's approach to the foundations of analysis has been pursued by P. Lorenzen,
Einfuhrung in die operative Logik und Mathematik, Zweite Auflage, Springer-Verlag, Berlin-
Heidelberg-New York (1969), who uses the notion of "Sprachschichten" or "language
strata". For a still, different constructivist approach to analysis, see E. Bishop's Foundations
of Constructive Analysis, McGraw-Hill, New York (1967), where "complemented sets" play
an essential role. Finally, Brouwer's treatment of the continuum has been developed by
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R. E. Vesley in "The intuitionistic continuum," chapter III of The Foundations of Intuition-
is tic Mathematics by S. C. Kleene and R. E. Vesley, North-Holland Co, Amsterdam (1965).

10. It should be noted finally that there are interesting parallels between WeyΓs ideas and Hu-
bert's fϊnitist constructivism. In his paper "Ueber das Unendliche", Mathematische Annalen,
vol. 95 (1926), Hubert speaks of the introduction of ideal elements in mathematics in a
manner similar to WeyΓs (the example of Rummer's ideals). But the general metamathemat-
ical certainty (Sicherheit) explains the choice of our topic. It should also be pointed out that
Skolem's construction of elementary arithmetic through the use of primitive recursive func-
tions follows a fϊnitist line; the radical elimination of quantifiers or "apparent" variables
does not provide a sufficient basis for analysis however (see "The foundations of elementary
arithmetic established by means of the recursive mode of thought, without the use of appar-
ent variables ranging over infinite domains" in J. van Heijenoort From Frege to Go'del,
Cambridge, Massachusetts (1967). The approach sketched here could be called an "effmitist"
extension of the fϊnitist standpoint.
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