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LUKASIEWICZ, LEIBNIZ AND THE ARITHME TIZATION
OF THE SYLLOGISM

DAVID MARSHALL, Jr.

Jan Yukasiewicz wrote three separate treatises on the subject of
Aristotle’s assertoric syllogism. One appears as the final chapter of
Elements of Mathematical Logic (1929) and is very brief. It shows that all
the laws of conversion, of the square of opposition and all twenty-four valid
moods of the syllogism (there are, in all, forty-eight theorems) can be
demonstrated with the help of twelve theses from the sentential calculus
(which he calls the theory of deduction), four axioms, two definitions, two
undefined terms and three rules of inference. In 1939 he gave a more
detailed paper on the syllogism at Cracow, a summary of which was
published after the war in Polish. His definitive study, Arvistotle’s
Syllogistic, appeared in 1950. In this last treatise, he uses the same
axioms, rules of inference, definitions, and undefined terms as the earlier
one, but makes important additions. The assertoric system is now shown
to be capable of a nontrivial, infinite extension, so that the number of
theorems is increased from forty-eight to aleph,, and there are proofs of
the consistency, independence, and completeness of the axioms. The proof
of completeness introduces a rejection procedure, suggestions of which
Tukasiewicz found in the text of Aristotle,’ but which he himself was the
first to formalize. It had been the wont of Aristotle to exhibit the invalidity
of the invalid moods by adducing for the variables a set of values taken
from the real world which seemed, empirically, to verify the premises
while falsifying the conclusion. The tentative character of this method is
obvious. RIukasiewicz’ procedure is axiomatic. There is one syllogistic
form which is rejected axiomatically, and one rule of rejection which he
owes to his pupil, J. Stupecki.

Assuming, with Yukasiewicz, four figures, there are, in the unextended
syllogistic, 256 formal assertoric moods, twenty-four of which are valid.

1. Cf. An. Pr. 262 2-9. Cf. also the comments of W. D. Ross in Aristotle’s Prior
and Posterior Analytics, Clarendon Press, Oxford (1949), pp. 28-29.
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The impression one gets in reading his different treatises, is that he
supposed his four axioms of assertion capable of a decision procedure for
the unextended system, but not for the infinitely extended one. This would
be the case if none of the 232 rejected moods were formally consistent with
the axioms. We should then say that it is the infinite extension of the
system that makes the axiom of rejection necessary. It will be shown,
however, in the course of this paper, that such is not the case. There are
rejected syllogistic moods in the unextended system formally consistent
with ZLukasiewicz’ axioms. Without the axiom of rejection, they are
incapable of a decision procedure even for the unextended system. In
showing this, I shall also demonstrate that the axiom of rejection is
independent of the other four. I shall then describe an arithmetic model,
due to Leibniz, proving all five consistent.

Fukasiewicz’ four axioms are:

Aaa

Iaa
CKAbcAabAac
CKAbcIbalac

The first two of these are ordinarily interpreted to mean: ‘All a is a’
and ‘Some a is a’ respectively; the last two being then the moods Barbara
and Datisi. I shall interpret them as follows: The primitive forms Aab and
Iab are propositions in simple arithmetic:

Aab=(@>b>0v(@a=b>0v(e=06=0)
Iab=@>b>0v@=06>0v(@=5b=0v@<bd>0)

in which @ and b are positive integers greater than or equal to 0.

This translation has a vague intuitive correspondence to Aristotle’s
‘All a is b’ and ‘Some a is b’, provided the latter be taken in a purely
intensional way. ‘All Greeks are men’ can be taken to mean, among other
things, that the intension of ‘Greek’ is greater than that of ‘man’ and that
that of both is greater than 0; hence: a > b > 0. Sentences like ‘All men
are capable of laughter’ can be taken to mean that the intension of both
terms coincide; hence: @ =b > 0. The third member of the disjunction
corresponds to sentences of a non-aristotelian type like: °‘All square
circles are quadrilateral triangles’. Taking a contradictory intension as no
intension we get: a = b = 0. There are, of course, other possibilities, but
these three suffice and I shall take Aab to read as a disjunction with three
members. The particular, ‘Some a is b’ can be taken to be the same as the
universal except in this one respect that it can be true even if the intension
of b is greater than that of a. ‘Some men are Greeks’ is an example.
Hence a fourth disjunct: a <b > 0.

On this interpretation the verification of fukasiewicz’ first two axioms
is intuitively easy.

Aaa=@<a<0)v(i@=a>0)v(ea=a=0)
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The first disjunct is necessarily false and of the remaining two one must be
true. a is necessarily equal to itself and is either greater than or equal to
0. Similar considerations will apply to the second axiom.

Ina=(a>a>0)v(i@a=a>0v(a=a=0v(@<a>0)
Either the second or the third disjunct must be true.

The verification of the last two axioms is more complicated and must
be shown in detail. The translation of axiom 3 is as follows:

CKAbcAabAac = b>c>0)v(b=c>0)v(b=c=0)

(@a>b>0)v(i@a=b>0)v(a=>b=0)
ergo(a>c>0)v(a=c>0)v(a=c=0)

The premises state that one of nine pairs of disjuncts is true. The
argument as a whole states that for each pair one disjunct in the conclusion
is true. In some cases the pair of premised disjuncts will contradict each
other making the argument trivial. If it is not trivial, I shall indicate which
disjunct in the conclusion verifies it.

b>c>0)-@>b>0—(@>c>0)
(6>c>0)-(a=b >0 —(a>c>0)
(6>c¢c>0)-(a=0b = 0)— contradiction
(b=c>0):-(@>b>0—(a>c>0)
(b=c>0) ‘(a=b>0) —(a=c>0)
(b=c¢c>0)-(a= b= 0)— contradiction
(b=c=0)-(a>b>0)— contradiction
(b=c=0) - (a= b>0)— contradiction
(b=c=0)-(a=b=0—(a=c=0)

The translation of axiom 4 is as follows:

CKAbclIbalab = B>c>0)vb=c>0v(=c=0)
B>a>0)vb=a>0vb<a>0v(d=a=0)
ergo (@ >c>0v@=c>0)v@<c>0)vi(a=c=0)

i}

il

Here twelve cases must be examined.

B>c>0)-b>a>0—@>c>0v@=c>0v@<c>0)
B>c>0)-(b=a>0)—(a>c>0)
B>c>0) - B<a>0—(@>c>0)
(8>c¢c>0)-(b=a= 0)— contradiction
B=c>0-b>a>0—->@<c>0)
(b=c>0)-(b=a>0)—(a=c>0)
(b=c>0)-b<a>0)—(a>c>0)
(b=¢c>0) (b= a= 0)— contradiction
(b=c=0)-(b>a>0)— contradiction
(b= c=0)-(b=a>0)— contradiction
(b=c=0)-(b<a>0)— contradiction
(b=c=0)(b=a=0)—(a=c=0)
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This interpretation exhibits as valid all the asserted theorems of the
system, i.e., all the laws of conversion and of the traditional square of
opposition, as well as the twenty-four valid moods of the syllogism. It also
exhibits as valid several rejected moods. The following is an example:

CKAcbAablac = (c>b0>0)v(c=b>0)v(c=b=0)

(@a>b>0)v(ie=b>0)v(e= b= 0)
ergo(@a>c>0vi@=c>0)v@a<c>0)v(a=c=0)

Nine cases must be examined:

(c>0>0-@>b>0—@>c>0v(@=c>0v@<c>0)
(c>b0>0)-(a=0>0—(a@a<c>0)

(¢c>b5>0)-(a= b= 0)— contradiction
(c=b>0)-(a@a>b>0—(a>c>0)

(c=b>0)-(a=b>0—(a=c>0)
(c=b>0).(a= b= 0)— contradiction
(c=0b=0)-(a>b>0)— contradiction
(c=0=0)-(a=b>0)— contradiction
(c=b6=0)-(a=b=0)—(a=>b=0)

This invalid mood is, therefore, formally consistent with Fukasiewicz’
four axioms. That it is indeed invalid is easily seen if we interpret Aabd
and Jab as a = b and a > b respectively. We would then have

(c=b)-(@=0)— (a>c)

It is the form that Tukasiewicz rejects axiomatically. Since it is formally
consistent with his axioms of assertion, its rejection cannot be deduced
from them and is, therefore, independent. Fukasiewicz himself has shown
that it is consistent with them, and the way he did appears to involve an
interesting historical misapprehension.

Leibniz had made several attempts to arithmetize the syllogism, i.e.,
to find arithmetic translations of the four propositional types of the square
of opposition that would make all the valid assertoric moods into truths of
arithmetic and all the invalid ones into arithmetic falsities. The last
attempt that he made was the only successful one. It was never published
until 1903% and in this edition RFukasiewicz came across it.* The rules of
translation are as follows: Every proposition has a subject and a predicate
term. Each term is assigned an ordered sequence of two relatively prime
numbers, the first positive, the second negative. If each number assigned
the predicate term divides the corresponding number of the subject term,
the proposition is of the form: ¢‘All @ is b’. The negation of this form, i.e.,

2. L. Couturat, Opuscules et Fragments inédits de Leibniz, F. Alcan, Paris (1903),
pp. 77-82. In the account which I shall give of this interpretation, the numbers
assigned to terms will be written as products of primes to facilitate checking.

3. Cf. Jan kukasiewicz, Avistotle’s Syllogistic, Clarendon Press, Oxford (1950), p.
126, footnote.
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a proposition of the form ‘Some a is not b’ will be given if one of the two
conditions is not met. For example, let us assign to the term ‘sapiens’ the
numbers: 2°x5, -3x7, and to ‘pius’ 2x5, -3. The proposition ‘Omnis sapiens
est pius’ will be translated: 2%x5, -3x7; 2x5, -3. The reason is that 2x5
divides 2°x5 and -3 divides -3x7. On the other hand, ‘Quidam pius non est
sapiens’ is rendered: 2x5, -3; 2%5, -3x7, because 2°x5 does not divide 2x5
and because -3x7 does not divide -3; either condition would have sufficed.
If two of the non-corresponding numbers (i.e., the positive assigned one
term and the negative assigned the other) have a common divisor, the
proposition is of the type ‘No ¢ is b’. If this is not the case, i.e., if neither
pair has a common divisor, the proposition is of the form ‘Some a is b’.
For example, let ‘miser’ be assigned 5, -2x7 and ‘fortunatus’ 11, -3%. Then
2x5, -3; 5, -2x7 will mean ‘Nullus pius est miser’ because 2x5 and -2x7
have a common divisor; and 11, -3%; 5, -2x7 will mean ‘Quidam fortunatus
est miser’ because neither do 5 and -3® nor -2x7 and 11 have a common
divisor. The syllogism

Omnis sapiens est pius.
Nullus pius est miser.
Nullus miser est sapiens.

can now be verified. Its translation is:
2%x5, -3x7; 2x5, -3
2x5, -3; 5, -2x7
5, -2xT; 2%x5, -3x7

In the major premise, each number in the predicate position divides the
corresponding number in the subject position. In the minor premise, the
first number in the subject position and the last number in the predicate
position have a common divisor, which is 2. The premises are, therefore,
verified. The last number in the subject position in the conclusion, and the
first number in the predicate position also have the common divisor 2;
hence the conclusion is verified as well. It must be admitted that this is a
difficult way to verify the validity of syllogisms. But it exhibits as valid all
the laws of conversion, of the square of opposition, and all the valid moods
of the assertoric syllogism. It does the same for Lukasiewicz’ four axioms
of assertion and also, as he himself takes pains to point out,* for his axiom
of rejection. This proves all five consistent.

Presumably for these reasons, and also because there is nothing in the
printed text indicating dissatisfaction of the part of the author, fukasiewicz
seems to have thought that Leibniz not only wrote it, but also suscribed to
it. L. Couturat, who saw the manuscript, seems to have found some hand-
written evidence that Leibniz himself found his system unsatisfactory.

4. Ibid., pp.- 126-129. The interpretation that Lukasiewicz gives is not Leibniz’ but a
slightly modified variant. He drops the requirement that one of the numbers
assigned a term be negative.
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Having translated, we are told, the two premises of the invalid mood AOO of
the third figure, he found that instead of falsifying the conclusion, he had
verified it. ‘And so’, writes Couturat, ‘he crossed it out, noticing that his
method did not succeed in showing this syllogism to be invalid.” ‘Hence,
this system of notation is invalid.” ‘Leibniz seems to have abandoned it,
presumably because of its defects and its complexity.’®

When Couturat edited the fragment, he did not deem the crossed-out
mood worthy of inclusion in the printed text. In his own book, La Logique
de Leibniz (Paris, 1901), he gives an example which may be the original.
It is the following:

Omnis pius est felix.
Quidam pius non est fortunatus.
Quidam fortunatus non est felix.

The numerical translations are:

pius = 2x5, -3
fortunatus = 23, -11
felix = 5, -1
which gives:
2x5, -3; 5, -1
2x5, -38; 2°, -11
2%, -11; 5, -1

The middle term occupies the subject position in both premises so that the
syllogism is clearly in the third figure. The premises verify the conditions
for the A and O propositions respectively, and the conclusions for the O.
These values, therefore, exhibit the syllogism as valid. Does this mean that
Leibniz’ system of notation is deficient? Couturat is no doubt right in
thinking Leibniz was dissatisfied with it. But we may wonder whether he
was right in saying that this is because of its ‘defects’. ¥f.ukasiewicz has
shown that the system is not invalid but valid. It is true that there are sets
of values that can cause it to exhibit as valid the invalid mood shown above.
There are others that exhibit it as invalid. What is required for rejection?
If we translate the three terms of the example given above as follows:

pius = 2%7, -3%x5
fortunatus = 2%, -3°
felix = 2, -3°

we get:
247, -3%5; 2, -3
2%¢7, -3°x5; 2%, -3°
22, -3% 2, -8°

5. L. Couturat, La Logique de Leibniz, F. Alcan, Paris (1901), p. 334.
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In this translation, the premises are of the type A and O respectively, and
the position of the middle term identifies the third figure. But the numbers
in the conclusion do not fulfill the conditions required by an O proposition
so that the mood AOO of the third figure is shown to be invalid. The
argument for rejection should be as follows: if invalidating instantiations
can be produced, the mood is invalid; it is valid if they cannot. It would not
be difficult to show that no invalidating instantiation can be produced for the
valid mood given above.

Leibniz’ system is, therefore,not a failure but a success. Is it possible
that he failed to notice it? If, as RLukasiewicz claims, no rejection
procedure was ever formalized until his own in 1950, earlier logicians who
used the procedure were following their good instincts. Formally, one
invalidating instance is enough. On this point, the instincts of Aristotle did
not fail him. What are we to say of Leibniz? Were his instincts inferior ?
Does it not seem better to assume that the reason he abandoned his
attempts at arithmetization is the one he gave—that it made practical
application too difficult? Leibniz, one of the earliest to attempt a recon-
ciliation of the Christian churches, was preoccupied to find an unimpeach-
able method for resolving issues at debate. He dreamed of arithmetic
solutions to all questions. This was one, at least, of the driving forces
behind the Ars Combinatoria and behind his numerous attempts at arith-
metizing the syllogism. He was hardly the man to fail at such an attempt:
but technical success was accompanied by the realization of impractica-
bility. And so he turned his thoughts to other matters.

This view has the advantage of some textual support, but more
profound considerations, it seems, must incline us to believe that while
Couturat was certainly wrong in thinking the system of notation a technical
failure, he may well have been right in thinking that Leibniz conceived of it
as such. It is one of the striking characteristics of Leibniz’ philosophy that
he held all true propositions to be analytically true and all false ones to be
analytically false. If we assume that this is false (as it seems we must),®
we may say that in this matter his conscious views inhibited the play of his
instincts, so that they failed him indeed where Aristotle’s did not. The very
attempt to arithmetize the syllogism is as foreign to the philosophy of
Aristotle as it is natural to that of Leibniz. Sentences in simple arithmetic
do not obviously contain variables so that their truth or falsity seems
immediately given. Prima facie, at least, the science seems to be without
propositional functions. This is presumably the characteristic that caused
Leibniz to think an arithmetization of the syllogism desirable. If so, the
experience must have been something of a disappointment, for the arith-
metization that he finally came up with is not, as L. Couturat points out,” an
example of arithmetic, but of algebra. Instead of numbers, it contains

6. Cf. B. Russell, Critical Exposition of the Philosophy of Leibniz, George Allen and
Unwin, London (1900), p. 18.

7. Couturat, La Logique de Leibniz, p. 337.
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variables whose values are numbers. Even this would have been acceptable
if the algebra in question had been such as to yield none but isomorphic
instantiations; i.e., none but confirming ones for the valid moods and for
the invalid ones, none but counter-examples. Finding for the variables of
his system a single set of values that made the premises and conclusion of
an invalid mood simultanteously true must have caused Leibniz to think that
he had failed to accomplish his task. In this respect, Couturat may well be
right. If he is, Lukasiewicz, in showing that the ‘arithmetization’ is a
complete success, has in effect rescued it from its author’s rejection.
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