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AN HERBRAND THEOREM FOR PRENEX FORMULAS OF LJ

KENNETH A. BOWEN

For formulas of the intuitionistic predicate calculus which are in pre-
nex normal form there is a very simple analogue of the Herbrand Theorem
for the classical calculus.* Let A be such a formula and let B be its (open)
matrix. We assume that all the quantified variables in the prefix of A are
mutually distinct (if not, one can always pass to a suitable equivalent
variant of A), Let xl9 . . ., xn(y\, . . ., yn) be all the variables which are
existentially (universally) quantified in the prefix of A. A special instance
of B is a formula of the form

BXl,...,Xn[al9 . , « » ] ,

where aι, . . .,an are terms such that for i = 1, . . ., n, aι does not contain
any of the variables ylf . . ., yn which occur to the right of 3x% in the prefix
of A. We will show that the sequent =^>A is provable in LJ, cf. [1], if and
only if for some special instance Br of B, the sequent =ΦBr is provable in
LJ.

Lemma (cf. [3] and [4]) The following hold:

a) If =Φ3xA is provable in LJ, then for some term a, =^Ax[a] is provable
in LJ.
b) If ==>VxA is provable in LJ, then for any variable y which is either x or
does not occur free or bound in A, =$>Ax[y] is provable in LJ.

Proof: By Gentzen's Hauptsatz for LJ, if =Φ3xA is provable, it has a
cut-free proof. Since sequents in LJ can contain at most one formula in the
succedent, the only possible inferences (other than Cut) leading immediately
to =$>3xA are Thinning and 3-IS (Note: we understand the rule Ξ3-IS to be
as stated for the system G3 of [2]; i.e., in the Sα of 3-IS of [l], α may be a
free variable or term). Since LJ is consistent, =̂> is not derivable, and
hence =Φ3xA must have followed by an application of 3-IS from a premiss
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of the form =^>Ax[a], where a is some term. Similarly, if ==>VxA is
provable in LJ, the only possible rule (other than Cut-) leading immediately
to =ΦVxA is V-IS, and hence =Φ>ΛΛΓ[̂ ] must be provable in LJ for some
variable z. Since substitution is a derived rule in LJ, it follows that
=^4x[j>] is provable for any y as described.

Note that the converses of a) and b) both obviously hold.

Theorem If A is in prenex normal form with matrix B, then =^A is
provable in LJ if and only if for some special instance Bτ of B, =>B' is
provable in LJ.

Proof: If =ΦBr is provable in LJ where Br is a special instance of B, then
=ΦA follows from =ΦB' by successive applications of the rules V-IS and
3-IS. On the other hand, if =>A is provable, then successive applications
of parts a) and b) of the Lemma above yield the desired result.

Let LJ= be the system LJ extended by adding each of the following open
sequents as axioms, where p and / range over all ^-ary (for any n)
predicate and function letters to be used:

=Φx = x

xx = yl9 . . ., xn = yn=^fxι . . χn =fyι . . . yn (*)

X\ = 3>l> •> Xn = yn> PX\ Xn =^>PVl . - - yn

By examining the original proof of the Hauptsatz for LJ in [l], one can
verify that if a sequent is provable in LJ=, it is provable with a proof whose
only cuts are on cut-formulas which occur in one of the sequents of (*)
above. Thus in such a normal proof, no cut-formula can contain quantifiers.
With this observation, it is easy to see that the Lemma and Theorem above
extend to LJ=.

The usefulness of the Theorem of course is reduced by the fact that not
all formulas of LJ or LJ= possess prenex normal forms. The following are
known to be provable (cf. [2], pp. 162-163) where A contains no occurrence
of x.

=Φl3xB = VxiB.
==>AΛVXB = Vx[A*B], = > A Λ 3 Λ Γ £ = 3X[AAB]. ( s ) t j |*

=ΦAw3xB = 3x[AwB]. { '
==>Vx[A => B] = A 3 VxB, ==>Vx[B D A] = 3xB => A.

None of the remaining classical equivalences for prenex normal form are
provable in LJ. However, the following two implications hold:

(t) 3x[A z> B] =ΦA 3 3xB.
(ft) A v VxB =Φ Vx[A v B].

Surprisingly, these two implications can be reversed in the following weak
sense:

(f 0 // =ΦA 3 3xB is provable in LJ and A has no strictly positive sub-
formula beginning with 3 in the sense of [4], then =Φ3x[Ao> xβ] is
provable in LJ*
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(tt f ) V =^Av VxB is provable in LJ, then =ΦVx[A v B] is provable in LJ.

Let us first argue for (ff'); so assume ==>A v VxB has been proved in LJ.
As observed in [1], then either =^>A or ==>VxB must be provable in LJ. In
the latter case, we must have =ΦB provable in LJ by the Lemma above.
Then in each case we proceed:

v - lo v -\b

^Vi[A v5] ==>VX[AVB]

For (tr)> we first observe that from the provability of =ΦΆ ̂  3xB, it
must follow that A =Φ3xB is provable in LJ. If any terms occur in either
A or 3xB, then by Corollary 7(ii) of [4] (cf. also [3]), for some term a,
A =ΦBx[a] is provable in LJ. Then we proceed:

Λ=^Bx[a] D _ i s

°^**M EMS
=>3x[A D E]

If neither A nor 3*2? contains any terms, then by Corollary 7(iii) of [4],
A=ΦVxB is provable in LJ. Then we proceed:

A => VxB ^ (**) *81[2]

=Φ>Λ 3 VΛΓi? A D VΛ I? = ^ V^[A D B] ^ !
Cut

==>Vx[A D 5] VΛΓ[A =) 5 ] =Φ 3ΛΓ[A D ^ ] c

=>3x[A => 5]

Thus we have:

if A contains no strictly positive subformula beginning with 3, then
=ΦA D 3xB is provable in LJ iff =>3x[A ^ J5] zs provable in LJ,

and

=5>A v VxB is provable in LJ iff =ϊ>Vx[A vB] is provable in LJ.

These principles somewhat extend the range of formulas which can be
reduced to prenex normal form. That such a reduction, even of the latter
weak type, is not possible for the classical equivalence VxA^>B^
3x[A ^ B] can be seen by constructing a counter-model using Kripke's
semantics for LJ.
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