Notre Dame Journal of Formal Logic Volume XVII, Number 2, April 1976 NDJFAM

AN HERBRAND THEOREM FOR PRENEX FORMULAS OF LJ

KENNETH A. BOWEN

For formulas of the intuitionistic predicate calculus which are in prenex normal form there is a very simple analogue of the Herbrand Theorem for the classical calculus.* Let A be such a formula and let B be its (open) matrix. We assume that all the quantified variables in the prefix of A are mutually distinct (if not, one can always pass to a suitable equivalent variant of A). Let $x_1, \ldots, x_n(y_1, \ldots, y_n)$ be all the variables which are existentially (universally) quantified in the prefix of A. A special instance of B is a formula of the form

$$B_{x_1,\ldots,x_n}[a_1,\ldots,a_n],$$

where a_1, \ldots, a_n are terms such that for $i = 1, \ldots, n$, a_i does not contain any of the variables y_1, \ldots, y_n which occur to the right of $\exists x_i$ in the prefix of A. We will show that the sequent $\Rightarrow A$ is provable in LJ, cf. [1], if and only if for some special instance B' of B, the sequent $\Rightarrow B'$ is provable in LJ.

Lemma (cf. [3] and [4]) The following hold:

a) If $\Rightarrow \exists xA$ is provable in LJ, then for some term $a, \Rightarrow A_x[a]$ is provable in LJ.

b) If $\Rightarrow \forall xA$ is provable in LJ, then for any variable y which is either x or does not occur free or bound in A, $\Rightarrow A_x[y]$ is provable in LJ.

Proof: By Gentzen's Hauptsatz for LJ, if $\Rightarrow \exists xA$ is provable, it has a cut-free proof. Since sequents in LJ can contain at most one formula in the succedent, the only possible inferences (other than Cut) leading immediately to $\Rightarrow \exists xA$ are Thinning and \exists -IS (Note: we understand the rule \exists -IS to be as stated for the system G3 of [2]; i.e., in the \mathfrak{Fa} of \exists -IS of [1], \mathfrak{a} may be a free variable or term). Since LJ is consistent, \Rightarrow is not derivable, and hence $\Rightarrow \exists xA$ must have followed by an application of \exists -IS from a premiss

^{*}This research was supported in part by ARPA Grant Number DAHC04-72-C-0003.

of the form $\Rightarrow A_x[a]$, where *a* is some term. Similarly, if $\Rightarrow \forall xA$ is provable in LJ, the only possible rule (other than Cot) leading immediately to $\Rightarrow \forall xA$ is \forall -IS, and hence $\Rightarrow A_x[z]$ must be provable in LJ for some variable *z*. Since substitution is a derived rule in LJ, it follows that $\Rightarrow A_x[y]$ is provable for any *y* as described.

Note that the converses of a) and b) both obviously hold.

Theorem If A is in prenex normal form with matrix B, then $\Rightarrow A$ is provable in LJ if and only if for some special instance B' of B, $\Rightarrow B'$ is provable in LJ.

Proof: If $\Rightarrow B'$ is provable in LJ where B' is a special instance of B, then $\Rightarrow A$ follows from $\Rightarrow B'$ by successive applications of the rules \forall -IS and \exists -IS. On the other hand, if $\Rightarrow A$ is provable, then successive applications of parts a) and b) of the Lemma above yield the desired result.

Let $LJ^{=}$ be the system LJ extended by adding each of the following open sequents as axioms, where p and f range over all *n*-ary (for any *n*) predicate and function letters to be used:

$$\Rightarrow x = x$$

$$x_1 = y_1, \dots, x_n = y_n \Rightarrow fx_1 \dots x_n = fy_1 \dots y_n$$

$$x_1 = y_1, \dots, x_n = y_n, px_1 \dots x_n \Rightarrow py_1 \dots y_n.$$
(*)

By examining the original proof of the Hauptsatz for LJ in [1], one can verify that if a sequent is provable in $LJ^=$, it is provable with a proof whose only cuts are on cut-formulas which occur in one of the sequents of (*) above. Thus in such a normal proof, no cut-formula can contain quantifiers. With this observation, it is easy to see that the Lemma and Theorem above extend to $LJ^=$.

The usefulness of the Theorem of course is reduced by the fact that not all formulas of LJ or $LJ^{=}$ possess prenex normal forms. The following are known to be provable (*cf.* [2], pp. 162-163) where A contains no occurrence of x.

$$\Rightarrow \exists xB \equiv \forall x \exists xB.$$

$$\Rightarrow A \land \forall xB \equiv \forall x[A \land B], \qquad \Rightarrow A \land \exists xB \equiv \exists x[A \land B].$$

$$\Rightarrow A \lor \exists xB \equiv \exists x[A \lor B].$$

$$\Rightarrow \forall x[A \supset B] \equiv A \supset \forall xB, \qquad \Rightarrow \forall x[B \supset A] \equiv \exists xB \supset A.$$

(**)

None of the remaining classical equivalences for prenex normal form are provable in LJ. However, the following two implications hold:

$$\exists x [A \supset B] \Longrightarrow A \supset \exists x B.$$

Surprisingly, these two implications can be reversed in the following weak sense:

(†') If $\Rightarrow A \supset \exists xB$ is provable in LJ and A has no strictly positive subformula beginning with \exists in the sense of [4], then $\Rightarrow \exists x[A \supset xB]$ is provable in LJ. $(\dagger\dagger')$ If $\Rightarrow A \lor \forall xB$ is provable in LJ, then $\Rightarrow \forall x[A \lor B]$ is provable in LJ.

Let us first argue for $(\dagger\dagger')$; so assume $\Rightarrow A \lor \forall xB$ has been proved in LJ. As observed in [1], then either $\Rightarrow A$ or $\Rightarrow \forall xB$ must be provable in LJ. In the latter case, we must have $\Rightarrow B$ provable in LJ by the Lemma above. Then in each case we proceed:

$$\frac{\Rightarrow A}{\Rightarrow A \lor B} \lor -IS \qquad \qquad \frac{\Rightarrow B}{\Rightarrow A \lor B} \lor -IS \\ \Rightarrow \forall x [A \lor B] \qquad \qquad \Rightarrow \forall x [A \lor B] \qquad \qquad \Rightarrow \forall x [A \lor B]$$

For (\dagger') , we first observe that from the provability of $\Rightarrow A \supset \exists xB$, it must follow that $A \Rightarrow \exists xB$ is provable in LJ. If any terms occur in either A or $\exists xB$, then by Corollary 7(ii) of [4] (cf. also [3]), for some term a, $A \Rightarrow B_x[a]$ is provable in LJ. Then we proceed:

$$\frac{A \Longrightarrow B_x[a]}{\Longrightarrow A \supset B_x[a]} \supset -1S$$
$$\frac{\Longrightarrow A \supset B_x[a]}{\Longrightarrow \exists x[A \supset B]} \exists -1S$$

If neither A nor $\exists xB$ contains any terms, then by Corollary 7(iii) of [4], $A \Longrightarrow \forall xB$ is provable in LJ. Then we proceed:

$$\frac{A \Longrightarrow \forall xB}{\Longrightarrow A \supset \forall xB} \supset -1S \qquad \stackrel{(**)}{\vdots} \qquad \qquad *81[2]$$

$$\xrightarrow{\Rightarrow A \supset \forall xB} \qquad A \supset \forall xB \Longrightarrow \forall x[A \supset B]} Cut \qquad \qquad \vdots$$

$$\xrightarrow{\Rightarrow \forall x[A \supset B]} \qquad \forall x[A \supset B] \Longrightarrow \exists x[A \supset B]} Cut$$

Thus we have:

if A contains no strictly positive subformula beginning with \exists , then $\Rightarrow A \supset \exists xB$ is provable in LJ iff $\Rightarrow \exists x[A \supset B]$ is provable in LJ,

and

 $\Rightarrow A \lor \forall xB \text{ is provable in } \mathsf{LJ} iff \Rightarrow \forall x [A \lor B] \text{ is provable in } \mathsf{LJ}.$

These principles somewhat extend the range of formulas which can be reduced to prenex normal form. That such a reduction, even of the latter weak type, is not possible for the classical equivalence $\forall xA \supset B \equiv \exists x [A \supset B]$ can be seen by constructing a counter-model using Kripke's semantics for LJ.

REFERENCES

[1] Gentzen, G., "Investigations into logical deduction," in *The Collected Papers of Gerhard Gentzen*, North-Holland, Amsterdam (1969), pp. 68-131.

KENNETH A. BOWEN

- [2] Kleene, S. C., Introduction to Metamathematics, North-Holland, Amsterdam (1952).
- [3] Kleene, S. C., "Disjunction and existence under implication in elementary intuitionistic formalisms," *The Journal of Symbolic Logic*, vol. 27 (1962), pp. 11-18.
- [4] Prawitz, D., Natural Deduction, Almqvist & Wiksell, Stockholm (1965).

Syracuse University Syracuse, New York