Notre Dame Journal of Formal Logic Volume XVII, Number 2, April 1976 NDJFAM

AN HERBRAND THEOREM FOR PRENEX FORMULAS OF LJ

KENNETH A. BOWEN

For formulas of the intuitionistic predicate calculus which are in prenex normal form there is a very simple analogue of the Herbrand Theorem for the classical calculus.* Let A be such a formula and let B be its (open) matrix. We assume that all the quantified variables in the prefix of A are mutually distinct (if not, one can always pass to a suitable equivalent variant of A). Let $x_{1}, \ldots, x_{n}\left(y_{1}, \ldots, y_{n}\right)$ be all the variables which are existentially (universally) quantified in the prefix of A. A special instance of B is a formula of the form

$$
B_{x_{1}, \ldots, x_{n}}\left[a_{1}, \ldots, a_{n}\right],
$$

where a_{1}, \ldots, a_{n} are terms such that for $i=1, \ldots, n, a_{i}$ does not contain any of the variables y_{1}, \ldots, y_{n} which occur to the right of $\exists x_{i}$ in the prefix of A. We will show that the sequent $\Rightarrow A$ is provable in LJ, cf. [1], if and only if for some special instance B^{\prime} of B, the sequent $\Rightarrow B^{\prime}$ is provable in LJ.

Lemma (cf. [3] and [4]) The following hold:
a) If $\Rightarrow \exists x A$ is provable in LJ, then for some term $a, \Rightarrow A_{x}[a]$ is provable in LJ.
b) If $\Rightarrow \forall x A$ is provable in LJ, then for any variable y which is either x or does not occur free or bound in $A, \Rightarrow A_{x}[y]$ is provable in LJ.

Proof: By Gentzen's Hauptsatz for LJ, if $\Rightarrow \exists x A$ is provable, it has a cut-free proof. Since sequents in LJ can contain at most one formula in the succedent, the only possible inferences (other than Cut) leading immediately to $\Rightarrow \exists x A$ are Thinning and \exists-IS (Note: we understand the rule \exists-IS to be as stated for the system G3 of [2]; i.e., in the $\mathfrak{F a}$ of $\exists-I S$ of [1], a may be a free variable or term). Since LJ is consistent, \Rightarrow is not derivable, and hence $\Rightarrow \exists x A$ must have followed by an application of \exists-IS from a premiss

[^0]of the form $\Rightarrow A_{x}[a]$, where a is some term. Similarly, if $\Rightarrow \forall x A$ is provable in LJ, the only possible rule (other than Cut) leading immediately to $\Rightarrow \forall x A$ is $\forall-I S$, and hence $\Rightarrow A_{x}[z]$ must be provable in LJ for some variable z. Since substitution is a derived rule in LJ, it follows that $\Rightarrow A_{x}[y]$ is provable for any y as described.

Note that the converses of a) and b) both obviously hold.
Theorem If A is in prenex normal form with matrix B, then $\Rightarrow A$ is provable in LJ if and only if for some special instance B^{\prime} of $B, \Rightarrow B^{\prime}$ is provable in LJ.
Proof: If $\Rightarrow B^{\prime}$ is provable in $L J$ where B^{\prime} is a special instance of B, then $\Rightarrow A$ follows from $\Rightarrow B^{\prime}$ by successive applications of the rules $\forall-I S$ and $\exists-I$. On the other hand, if $\Rightarrow A$ is provable, then successive applications of parts a) and b) of the Lemma above yield the desired result.

Let $L J=$ be the system $L J$ extended by adding each of the following open sequents as axioms, where p and f range over all n-ary (for any n) predicate and function letters to be used:

$$
\begin{align*}
& \Rightarrow x=x \\
& x_{1}=y_{1}, \ldots, x_{n}=y_{n} \Rightarrow f x_{1} \ldots x_{n}=f y_{1} \ldots y_{n} \tag{*}\\
& x_{1}=y_{1}, \ldots, x_{n}=y_{n}, p x_{1} \ldots x_{n} \Rightarrow p y_{1} \ldots y_{n} .
\end{align*}
$$

By examining the original proof of the Hauptsatz for LJ in [1], one can verify that if a sequent is provable in $L J^{=}$, it is provable with a proof whose only cuts are on cut-formulas which occur in one of the sequents of (*) above. Thus in such a normal proof, no cut-formula can contain quantifiers. With this observation, it is easy to see that the Lemma and Theorem above extend to $\mathbf{L J}=$.

The usefulness of the Theorem of course is reduced by the fact that not all formulas of LJ or $\mathrm{LJ}=$ possess prenex normal forms. The following are known to be provable ($c f$. [2], pp. 162-163) where A contains no occurrence of x.

$$
\begin{gather*}
\Rightarrow \neg \neg \exists x \equiv \forall x\urcorner B . \\
\Rightarrow A \wedge \forall x B \equiv \forall x[A \wedge B], \quad \Longrightarrow A \wedge \exists x B \equiv \exists x[A \wedge B] . \tag{**}\\
\Rightarrow \forall \vee \exists x B \equiv \exists x[A \vee B] . \\
\Rightarrow \forall[A \supset B] \equiv A \supset \forall x B, \quad \Longrightarrow \forall x[B \supset A] \equiv \exists x B \supset A .
\end{gather*}
$$

None of the remaining classical equivalences for prenex normal form are provable in LJ. However, the following two implications hold:

$$
\begin{align*}
\exists x[A \supset B] & \Rightarrow A \supset \exists x B . \\
A \vee \forall x B & \Rightarrow \forall x[A \vee B] .
\end{align*}
$$

Surprisingly, these two implications can be reversed in the following weak sense:
$\left(\dagger^{\prime}\right)$ If $\Rightarrow A \supset \exists x B$ is provable in LJ and A has no strictly positive subformula beginning with \exists in the sense of [4], then $\Rightarrow \exists x[A \supset x B]$ is provable in LJ.
$\left(\dagger^{\prime}\right)$ If $\Rightarrow A \vee \forall x B$ is provable in LJ , then $\Rightarrow \forall x[A \vee B]$ is provable in LJ .
Let us first argue for (\dagger^{\prime}); so assume $\Rightarrow A \vee \forall x B$ has been proved in LJ. As observed in [1], then either $\Rightarrow A$ or $\Rightarrow \forall x B$ must be provable in LJ. In the latter case, we must have $\Rightarrow B$ provable in $L J$ by the Lemma above. Then in each case we proceed:

$$
\begin{array}{ll}
\Rightarrow A \vee-\mathrm{IS} & \nRightarrow B \vee-1 S \\
\Rightarrow A \vee B \\
\Rightarrow-1 S & \Rightarrow A \vee B \\
\Rightarrow \forall x[A \vee B] & \Rightarrow \forall x[A \vee B]
\end{array}
$$

For (\dagger^{\prime}), we first observe that from the provability of $\Rightarrow A \supset \exists x B$, it must follow that $A \Longrightarrow \exists x B$ is provable in LJ. If any terms occur in either A or $\exists x B$, then by Corollary 7(ii) of [4] (cf. also [3]), for some term a, $A \Rightarrow B_{x}[a]$ is provable in LJ. Then we proceed:

$$
\begin{aligned}
& A \Rightarrow B_{x}[a] \\
& \Rightarrow A \supset B_{x}[a] \\
& \Rightarrow-1 S \\
& \Rightarrow \exists x[A \supset B]
\end{aligned}
$$

If neither A nor $\exists x B$ contains any terms, then by Corollary 7(iii) of [4], $A \Rightarrow \forall x B$ is provable in LJ. Then we proceed:

Thus we have:
if A contains no strictly positive subformula beginning with \exists, then $\Rightarrow A \supset \exists x B$ is provable in LJ iff $\Rightarrow \exists x[A \supset B]$ is provable in LJ ,
and
$\Rightarrow A \vee \forall x B$ is provable in $\mathbf{L J}$ iff $\Rightarrow \forall x[A \vee B]$ is provable in LJ.
These principles somewhat extend the range of formulas which can be reduced to prenex normal form. That such a reduction, even of the latter weak type, is not possible for the classical equivalence $\forall x A \supset B \equiv$ $\exists x[A \supset B]$ can be seen by constructing a counter-model using Kripke's semantics for LJ.

REFERENCES

[1] Gentzen, G., "Investigations into logical deduction," in The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam (1969), pp. 68-131.
[2] Kleene, S. C., Introduction to Metamathematics, North-Holland, Amsterdam (1952).
[3] Kleene, S. C., "Disjunction and existence under implication in elementary intuitionistic formalisms," The Journal of Symbolic Logic, vol. 27 (1962), pp. 11-18.
[4] Prawitz, D., Natural Deduction, Almqvist \& Wiksell, Stockholm (1965).

Syracuse University
Syracuse, New York

[^0]: *This research was supported in part by ARPA Grant Number DAHC04-72-C-0003.

