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Three Existence Principles in a Modal

Calculus Without Descriptions

Contained in A. Bresson's MCV

EUGENIO GIOVANNI OMODEO

1 Introduction In this paper an axiomatization is provided for an inter-
preted modal calculus similar to MCV. Several variants of this axiomatization—
which I have striven to make as concise as possible—are also proposed.*

Essentially, we extend the logical calculus without descriptions that was
defined and named KK in [8] by adding to it the axiom of choice. Recall that
Kx is equivalent to MCV deprived of four axioms (namely, AS 12.20, AS 12.23,
AS25.1, AS45.1 in [ 1], pp. 46, 48, 95, 184).

The existence principle for functions (AS 12.17 in [1], p. 45; AS.3.16
in [8]) does not appear among the axioms of our calculus, which are no
stronger than those of MCV'. Nonetheless, our short version of the axiom of
choice makes it possible to infer that principle, along with the most customary
version of the axiom of choice. More interestingly, it allows us to simplify
considerably the axiom that was introduced in [8] in order to eliminate descrip-
tions from MCV (named, in its new formulation of this paper, the "existence
principle for descripta").

The axiom about the existence of predicates (AS 12.19 in [1], p. 46) has
also been simplified in this paper and the new version is shown to be as strong
as the original one.

A formal analogue for the concept of elementary possible case (or 'T-
case") is defined within our calculus. Although we are making no assumptions
about the plurality of F-cases, the new definition seems to be as powerful as
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the one first stated by Bressan ([1], pp. 197-202). In fact our calculus is
compatible with the nonexistence of a contingent proposition (AS 12.23 in
[ l ] , p . 4 8 ) .

Another axiom of MCV has not been taken into account, concerning the
number of individuals in different F-cases ([ 1 ], p. 95, AS25.1). From a semanti-
cal standpoint, we are interpreting our calculus along the directions given in [ 1 ]
(pp. 96-97). I would make a conjecture similar to that made in [1] (pp. 271-
272) in connection with the calculus MC'V. I think that our calculus has a
property of relative completeness with respect to the extensional semantical
system hinted at above, similar to that enjoyed by MCV (see [ 1 ], pp. 269-270).

The modal language without descriptions considered in this paper differs
from the one considered in [8] because implication is adopted as the only
primitive connective. Using implication and a logically false statement, all
other connectives can be defined ([5], p. 78). Our choice of implication as the
only primitive connective makes a more concise axiomatization of the sen-
tential calculus available.

Finally, the axioms about universal and modal quantification have been
replaced by axioms that are independent of recursive notions such as "free
occurrence of a variable within a wff", "modally closed wff", and "term free
for a variable in a wff".

2 Semantical preliminaries In this section we define a modal language
whose terms are partitioned into infinitely many distinct types. Some useful
shorthand notations are introduced by means of metalinguistic conventions to
stand for terms or well-formed formulas (wffs). The following concepts are
defined: (intensional) designatum of a term or a wff, logical truth (or falsity)
of a wff. We single out a logically false wff and a list of logically true wff
schemas. Although we are adopting D as a primitive connective instead of ~
and A, our language can be identified with the largest sublanguage of Bressan's
MLV that is devoid of descriptions ([1], pp. 10-12).

As preliminaries to the notions of designatum and logical truth, we intro-
duce the following concepts: elementary possible case (or "F-case"), extension,
quasi-intension (QI), cy-valuation. Our definitions do not match those given in
[1] (pp. 18-21) in three respects:

(a) We are not assuming that there are at least two F-cases
(b) We are not assuming that the set of extensions of a particular type is

the same in every F-case (in this respect our semantical analysis is
similar to that outlined in [ 1 ], pp. 96-97)

(c) We uniformly define the QFs of any particular type as being functions
defined on the set of F-cases.

Throughout this paper we use n as a metavariable running over positive
integers, while v stands for a fixed positive integer.

The set rv of the term types is defined recursively as follows:

Definition 2.1 (a) 1, . . ., v belong to rv and are called individual types.

(b) If t[ e TV for / = 0, 1, . . ., n then the following two (n + l)-tuples both
belong to TV\ (tu . . ., tn, 0>, which is denoted by (tu . . ., tn) and is called a
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relator type; and (tl9 . . ., tn, t0), which is denoted by (tu . . ., tn :t0) and is called
a functor type.

Definition 2.2 The primitive symbols of our language are: the variables vtn

with t e TV\ the constants ctn with t e rv\ the symbols for universal and modal
quantification V and TV; the connective for implication D; the identity symbol
= ; the parentheses and the comma.

Notation 2.1 (a) We regard ( ) , [ ], and {} as three typographical variants
of the same pair of primitive symbols, called parentheses.

(b) Usually variables are represented by the metalinguistic symbols x, xn,
y, z, f g, F, and G. Occasionally other Latin or Greek letters are used for the
same purpose. The signs X and Y stand for finite nonempty strings of distinct
variables separated by commas.

(c) The sign U stands for either TV or an expression of the form (Vx)
(which is called, as usual, a universal quantifier); Q stands for a finite, possibly
empty, string of universal quantifiers and APs.

Now we want to define the set 77 of the terms having the type t, for
every t e rv. All the sets 77 are simultaneously characterized by the following
recursive definition:

Definition 2.3 For every t erv\

(a) Vtn £ 27 a n d Ctn € Tv
t

(b) if tt e rv and A/ e Tv
t{ for i = 1, . . ., n, and furthermore A e Tftl tn-t),

thenA(A1 , . . . ,A, I)e77.

Definition 2.4 The set of wffs, or expressions of the type 0, is the smallest
set W such that:

(a) if Ao e 77 and A! e 77, where t e T", then Ao = At e W
(b) if ti e rv and A/ e Tf. for / = 1, . . ., «, and A e T(tl tn),

 t h e n

A(Ah...,An)eW
(c) if p e W and q e W, and U is a universal quantifier or N, then

(pDq)e Wand Up e W.

Notation 2.2 (a) p, pn, q, r, and s stand for wffs

(b) Unless it occurs as part of a longer wff, (p D q) is often abbreviated
pDq.

(c) By means of the sign =^, we shall introduce into our language short-
hand notations for wffs. For instance we set

(V*!, . . ., xn)p =df (VxO . . . (\fxn)p,
(p^nq)=dfN(pDq), and
A0=nA1=^7VA0=A1 .

The left-hand side of any metadefinition of this kind can replace an occurrence
of the right-hand side within a wff.
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Convention 2.1 (a) When two or more of the signs x, y, z, f g, F, and G
occur within the same wff schema, they are supposed to stand for pairwise
distinct variables. Furthermore, / and g (respectively F and G) always stand for
functor (relator) variables.

(b) Whenever p and v occur within the same wff schema, v being one of
the signs z, /, and F, we assume that the variable represented by v does not
occur in p.

We assume that the reader is familiar with the notions of free (bound)
occurrence of a variable within a wff and knows the meaning of the statement
"the term A is free for x in p" .

Definition 2.5 A wff p is said to be (Vx)-closed (or just x-closed) if x has
no free occurrences in p\ N-closed, or modally closed, if it has the form Nq, or
either of the two forms (s D r) and (\/x)r where both s and r are TV-closed.

Notation 2.3 (a) When for no variable y occurring in x - A does the quanti-
fier (V>0 occur in p, then we denote by p\x

A the result of replacing x with A in
all of its occurrences in p.

(b) When A is free for x in p, then we denote by px
A the result of replacing

x by A in all of its free occurrences in p.

In order to attach meanings to terms and wffs, we first consider a non-
empty domain F (whose elements are called Y-cases) and v functions Du . . ., Dv

from F to nonempty sets.
By the following recursive definition, the set QI? of the quasi-intensions

of type t and the set £7(7) of the extensions of type t relative to y are simul-
taneously defined for t e TV U {0} and 7 e F.

Definition 2.6 (a) £©(7) *s the set of truth values {0, 1! (where 0 stands for
"true" and 1 for "false"), for all 7 e F

(b) £,"(7) = Dt(y) for all 7 e F and t = 1, . . ., v
(c) Qlv

t is the Cartesian product \ \ E?(y), for all t e rv U {0}

(d) if tu . . ., tn e T\ t e rv U {0}, and 7 e F, then £<}lf...,f/I,r>(7) is the class

of all functions from f\ Q1^ into £^(7).

Definition 2.7 Let J be the set of all variables and constants and IC(n =
Iv = QI(. A member of 0 Is is called a cv-valuation. For every variable x, we

denote by ~x the equivalence relation that holds between two cy-valuations if
and only if they differ at most in x.

In connection with a devaluation V each term or wff A will now be
assigned a quasi-intensional designatum, i.e., a QI desy(A)—in short A—having
the same type as A.

Definition 2.8 For every 7, A(7) is defined by the following designation
rules:
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if A is then A(y) is

vtn or ctn V(A)(y)
A0(A1? . . ., A,) A0(7)(A1? . . ., Ap)
Ao = Ax 0 if and only if A 0 (T) = A^7)
(pDq) d-p(y))-q(y)
Np or (\/x)p max (p(7)) or max (desK'(P)(T))> respectively.

7er v'~xv
We^say that p is logically true (respectively: logically false) if desy(p)(y) - 0
(desy(p)(y) = 1) for every choice of Du . . ., Dv, T, V, and all 7 e F.

After observing that (VVQ)!, ^11)̂ (1)1(̂ 11) is logically false, we give the
definition:

Definition 2.9 { =df (Vi;(1)1, ^11)̂ (1)1(̂ 11)

~P =dfPDi
(Pohp^. . . /\ pn)=df ^ ( P o D ( P i D ( - • • (PH D ^ ) • • •)))

(P = Q) =df [(P 1 q) A (̂  Dp)]
(P=n^)=df/Mp=«)

Op =rf/ - N ~ p

ax)p=dr~(\/x)~p
(3!%)p =d/ [(lx)p A (3z)(Vx)(p 3 x - - z ) ]
O ^ ) P =df lGx)p A (3z)(Vx)(p D x = n z)]

where Convention 2.1 applies.

The proof of the following proposition is left to the reader:

Proposition 2.1 Every wff which is an instance of any of the following
schemas is logically true (see Notations 1-3 and Convention 1).

Al Qi[(pDq)Dr]D[(rDp)D(sDp)]\
A2 Q{{^P)
A3 Q[U(pDq)D(UpDUq)]
A4 Q{p D (Vz)p)
A5 Q[(\/x)pDp\x

A]
A6 Q(Np D p)
A7 Q[(Np D Nq) D N(Np 3 Nq)]
A8 Q[(.\/x)NpDN(\/x)p]
A9 N(\/x,y)\x=ny = (VF)[F(x)DF(y)]}
A10 iV(Vx,^, z)[x=y D(y=zDz=x)]
All MVF, G ) l F = G = (VAr)[f(Ar) = G(JT)]}
A12 NQff,g)[f=g = (\/xmX) = g(.X)}
A13 g(3z)iV[(3>')pD(3^)(z=>'Ap)]
A14 <2(3F)(VJf)|[F(X)Dp]A [pZ)NF(X)]\
A15 MVF)(3/)(VX)[(3>')F(X> y) 3 F(X, f{X))}

3 Syntactical preliminaries In this section we start considering the modal
calculus whose only inference rule is modus ponens (or MP) and whose axioms
are all the instances of the schemas Al to A15 listed in Section 2. We con-
centrate, for now, on the first set of Axioms Al to A12. It turns out readily
that every theorem that can be inferred by exclusive use of these axiom
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schemas can also be derived in Bressan's calculus MCV by use of AS12.1-
AS12.15 (see [1], pp. 42-44). Less trivially, the axiom schemas AS12.1-
AS12.15 of MCV are deducible in our calculus. The following, in particular, are
theorems (they are proven as Proposition 3.1(i), (vi), (vii), and (viii), respec-
tively, and in the discussion preceding Proposition 3.2):

(a) every instance of a tautology of ordinary (extensional) sentential
calculus (hence AS 12.1-3 of MCV, which are tautological schemas,
follow)

(b) the universal specification schema (AS 12.8 of MCV), which includes
our A5 as a subschema

(c) every wff of the form p D Up, where p is {/-closed (hence AS 12.6-7 of
MCV, which are obtained from this schema by replacing (\/x) and TV
for U, follow)

(d) the wff schemas expressing the usual properties of identity: re-
flexivity, symmetry, transitivity, and interchangeability of terms
which are strictly identical (AS 12.10-13 of MCV).

(Those among AS12.1-15 of MCV which are not mentioned in (a)-(d) above
occur also among A1-A12.)

These results will make all of the theory developed in [ 1 ], Nn. 29-33, available.
In particular, we may use the deduction, generalization, equivalence, and
replacement theorems; and rules G and C can be employed to shorten deduc-
tions.

Definition 3.1 The notation pl9 . . ., pm h q, where m > 0, indicates that q
belongs to the smallest set, £>, of wffs that contains the axioms and the pz's
and satisfies the MP-closure property: p, p D q e (^implies q e C/. If \~q holds,
q is said to be a theorem. The notation p \—\q indicates that both \~p D q and
\~q~D p hold.

Depending on the class of axioms one chooses, the definition above
characterizes various calculi, i.e., various interpretations for the relation,
denoted by h, of deducibility of q from pu . . ., pm. We have chosen Al to
A15 to be our axioms, but we are often interested in considering different sets
of axioms. In particular, when we say that a new wff schema S2 is equivalent to
one, say Su of the old schemas Al to A15 we mean that h is invariant under
the replacement of S2 for SV

Proposition 3.1 Consider a calculus (whose only inference rule is MP) where
hAi holds for i = 1, . . ., 8 and \~Qp holds whenever p is an axiom. Then:

(i) every substitution instance of a tautology is a theorem
(ii) / / \~q, then \~Qq; if \~r D s, then \~QrDQs
(iii) I—I is an equivalence relation on the set of wffs
(iv) if s is obtained from r by replacing p with q in one or more of its

occurrences in r, then: p \—\q implies r \ \s, hence \~r implies \~s
(v) if neither o/(Vx) and z occurs in p, then (Mx)p h H (Vz)p^
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(vi) // A is free for x in p, then h(V' x)p 3 p ^
(vii) if p is x-closed, then p \—I (\fx)p
(viii) if p is N-closed, then p I—\Np.

Proof: When Q is empty, Al and A2 constitute a well-known complete
axiomatization for an ordinary extensional sentential calculus based on the
connective D and the false constant <£. (see [5], p. 140). Thus (i) holds. The
clauses (ii), (iii), and (iv) are proven by ordinary methods. The main steps of a
proof that h(Vx)p D (\fz)p\x are:

(1) (\/z)((yx)pDp\x
z) [A5]

(2) (Vz, x)p D (\/z)p\x [(1),A3]
(3) (Vx)p D (Vz, x)p [A4]
(4) (\/x)pD(\/z)p\x

z [(2), (3), (i)]

The converse proof is symmetrical: since p\x\z
x is p, thus (v) is proven. In order

to prove (vi) and (vii), let £ be the number of occurrences of V, N, and D in p.
We define [p:q] recursively for every q: if ^ = 0, then [p:q] =df P\ if P is Nr,
then [p:q] =df N[r:q]; if p is r D s1, then [p:^?] =j/ [r:^] D [s:g]; if p is (\/v)r,
then [p:t?] =jy (Vz)[r:(ViOg]z? where z is the first variable having the same type
as v that does not occur in either [r\(\/v)q] or q. By easy induction on^, one
proves that:

(a) p and [p'.q] have the same free variables and for no variable y that
occurs in q, does (V>0 occur in [p'.q]

(b) if A is free for x in p and for no y that occurs in x - A, does (V>0
occur in [p:q], then p^ I—I [p:q}\.

The key steps in a proof of (vi) are:

(1) p I—l[p:x = A] [(b), withx substituted for A and x - A for q, and (a)]
(2) (\/x)p hH(Vx)[p :x = A] [(1), (iv)]
(3) t(\/x)[p:x = A] D[p:x = A]\x

A [(a), A5]
(4) [p:jc = A]!J HHp^ [(b), (iii), and (a)]
(5) tfx)p hHpl [(2),(3),(4),(i)]

The key steps in a proof of (vii) are:

(1) p f-H[p:(Vx)p] [(b), where A is x]
(2) (\fx)p hH(Vx)[p:(Vx)p] [(D,(iv)]
(3) (Vx)[p:(Vx)p] HH[p:(Vx)p] [(vi), where A is x9 and A4]
(4) p r-H(Vx)^ [(iii), (1), (3), (2)]

(in (1) and (3) we are using the fact that x has no occurrences in [p:(\fx)p],
by (a)).

As a preliminary toward the proof of (viii) observe that if px =df Nq and
Pi ~df (Pi ^ f), then the following are tautologies: px D (p2 ̂  )̂> (Np2 ^ p2) ^
((Pi D (P2 D 0 ) D (Pi D (Np2 ^ A'))). Using these and A6, we derive the first of
the following:

(1) \~Nq D [N(Nq D r) D r]
(2) \~Nq D ONq [special case of (1), with <£ replacing r]
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(3) £ \~-\Ni [A2,A6]
(4) I—Nq DN^Nq [ A7 with { replacing r, (3), (iv)]
(5) \~ONq DNONq [(4) with ~Nq replacing q]
(6) \~ONq D Nq [by transposition of (4), using (i)]
(7) tNONqDNNq [(2), (6), (iv)]
(8) \~NqDNNq [(2), (5), (7), (i)]

Now (viii) follows easily, by induction on the number of occurrences of D and
V in p, using (8), A6, (iv), A7, and A8.

To conclude this section we make a few remarks about Axioms A9 to
A12. It turns out easily that A9 could be replaced in our calculus by the
following pair of schemas:

A9' (\fx)x =n x, where x has an individual type
A9" (Vx, y, F){x =n y D [F(x) Dn F(y)]\ .

The deduction of A9 from A9' and A9" involves the use of Al l , A12, and
A14. In fact from A9', Al 1, and Al 2 we derive that \~x =n x, where x can have
any type. Hence it follows that

H(Vj>)[FO0 = x =ny] D {[Fix) D F(y)] Dx=ny}.

On the other side, by use of A14, we find that

\-(3F)(\/y)[F(y)=x=ny].

Thus

H3F)HF{x)DF(y)] Dx =ny\

whence we infer that

\-(\/F)[F(x)DF(y)]Dx=ny

because F does not occur in x =n y. The converse implication easily follows
from A9". We note also that, thanks to Al 1 and A12, we might set the restric-
tion on A10 that x, y, and z have an individual type. It is well-known that A10
is equivalent to:

Al0' N(y/x, y)(x =yDy=x);
A10" N(Vx, y, z)[x = y D (y = z D x = z)].

Using A9;/ and A10' one derives \~x =n y D (\/F)[F(x) = F(y)]. Hence, hx =n

y D (p =py) (i.e., AS 12.13 of MCV is a theorem of our calculus), because A14
yields that h(3F)(Vx)[F(x) =p].

A final result about identity is the following, whose proof we omit:

Proposition 3.2 If y does not occur in the term A, which in turn is free for
y in p, then

(i) (3^)(A=n^AP) \—\pk
(ii) (3fx)/7 I" Wx)(p Dq) = (lx)(p A q)].

4 The existence principle for attributes—Formal characterizations of the actual
elementary possible case and of extensions In this section we consider a
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few equivalent versions of the axiom schema A14 on the existence of attributes.
A14 enables us to characterize, within our calculus, both the actual elementary
possible case and the extensions of any particular type. These characterizations
play an important role in subsequent sections (see proofs of Propositions 5.3,
6.1, and 6.2). One of the variants of A14 that we are going to consider, namely
A14", is identical with the axiom schema AS12.19 of MCV (cf. [1], p. 46).
Thus the present section incidentally shows that any of our versions of A14
could replace AS 12.19 in MCV.

Definition 4.1 Let F, G, c, x, and e be variables of the respective types
t, t, (1), 0, and (0), where t = (tu . . ., tn). Furthermore let H and y be the first
two variables of the respective types t and 6 which are distinct from F and x,
respectively. Finally, let X stand for the expression xu . . ., xn, where Xj is the
first variable of the type tj that does not occur in xl9 . . ., Xj-X (/ = 1, . . ., n).
We define:

FCG=df(\/X)[F(X)DG(X)]
FCnG=dfNFCG

MConstt(F) =df (\/X)[OF(X) D NF(X)]
MMint(F) =df (Vi/)(F C H D F C n H)

AEC(c) =d{ [MMin(l)(c) A (\fvn)c(vn)]
Exe(e, x) =df \MMin(e)(e) A (My)[e(y) =x=y]\.

Remarks 4.1 (a) Usually we omit the subscripts and write just MConst,
MMin, and Ex instead of MConstt, MMint, and Exe.

(b) Intuitively MConst(F) (to be read as "F is modally constant") says
that the extension of F is independent of the F-case; MMin(F) (to be read as
"F is modally minimal") says that F is empty in all F-cases, except at most the
actual F-case; AEC(c) says that c may represent the actual elementary case or
F-case (this formula roughly corresponds to Bressan's formulax e EIR A X = 1;
see [1], pp. 197-202): an equivalent definition for AEC would be

A E C ( c ) =df (\/k)[Q/vn)k(vn) = c C n k ] .

Ex{e, x) says that e may represent the extension of x in the actual F-case, since
e denotes, in the actual F-case, the set of all QFs that share the same extension
with 3c; in every other F-case, the empty set.

(c) Note that the identity symbol does not occur in the definiens of
either MMin(F) or AEC(c). We will see by the end of this section that if we set

u=Av=dfWH)[H(u)DH(v)],

then

h x = y = ( 3F , G)lMMin(F) A MMin(G) A
(\fz)[(F(z) = z =A x) A (G(z) = z=*y)]A
0z)F(z)=A0z)G(z)!

holds in MCV.

This incidentally shows that identity is eliminable from MCV. The eliminability
of identity from MCV by use of the description operator was discovered by
Schorch (for an alternative proof see [2], N16).
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Below we state three alternative versions of A14 (here Convention 2.1
applies):

A14' Q(lF)\MMin(F) t\(\IX)[F{X)=p]\
A14" Q(lF){MConst(F) A (\/X)[F(X)=p]\
A14'" (I) QOF)(yX)[F(X)=np]

(II) N(lv{1)l)AEC(v{1)l).

It is trivial (by the way MConst is defined) that A14" yields A14. It is also
easy to derive A14'"(I) from either A14 or A14'. In fact both A14 and A14'
(along with Al l ) yield readily that

\-N(^F)(\/X)[F(X)=p],

Now we can apply A13 to get A14"'(I).
We are going to show that A14 yields A14'"(II) (see Proposition 4.1);

A14'yields A14" (see Proposition 4.2); A14"' yields A14'(see Proposition 4.4).
Hence the equivalence of the four schemas above will follow. In our proofs we
may make free use of A14'"(I).

The adoption of A14"' as an axiom schema seems especially attractive
when assumptions are made about the plurality of F-cases. In fact A14";(II)
can be easily strengthened so it will express such assumptions. For instance, the
existence of a contingent proposition can be stated by

(lvilH)[AEC(vm) A 0 ~ AEC(v(l)l)].

Notice also that A14'" (unlike A14, A14', or A14") allows us to replace A13
by its subschema

(\/F)(3z)N{(3y)F(y) D (3y)[z =y AF(y)}\.

Proposition 4.1 A14 yields A14'"(II).

Proof: Set:

P =df \(.Vx)k(x)AN[(lx)k(x) D (\/x)k(x)]\
Pi =df (VAO \[F(k) Dp]A[pD NF(k)]\
Pi =df (Vx)lc(x) = n (\/k)[F(k) D (3x)k(x))\
Pi =dfCQk
P4=dfO~cQk
Ps=df(y/x)[k'(x)=ncCk]

where x, c, k, k', and F stand for vn, f(i)i, (̂1)2. "(I)3J
 a nd y((i))i> respectively.

The main steps in a proof are:

(1) Pi,P2 H(Vx)c(x)
(2) pu...,p5\-t
(3) px,...,pAV\ [(2),A14'"(I)]
(4) Pi, Pi H ~ ( p 3 A p4) [(3), deduction thm.]
(5) PX, P2 \~ [(Vx)c(x) A (V*)(c C k D c Cn k)] [(1), (4)]
(6) \~Oc)AEC{c) [(5),A14'"(I),A14]
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Proposition 4.2 A14' yields A14".

Proof: The main steps in a proof are:

(1) MMin(F),OF(X)^F(X),(\fY)\G{Y)=n [~F(X) f\F(Y))\ h {
(2) MMin(F) h (VX)[OF(X) D F(X)] [(1), A14'"(I)]
(3) MAfm(F)?(VZ)[F(Z)-/7],(VZ)[G(x)-n0F(^)] h

WConstiG) A (VX)[G(X) = OF(Z)] A (VAr)[OF(Ar) = F(X))\
(4) AfM>7(F), (VX)[F(X)=p] h (3G){MConst(G) A (VAT)[G(Ar) - p ] !

[(3), A14'"(I), deduction thm.]
(5) (3G)\MConst(G) A (\/X)[G(X)=p]\ [(4), A14']

Proposition 4.3 A14'"(I) yields

Y-O[AEC(c) A p] D N[AEC(c) D p ] .

Proof: The main steps in a proof are:

(1) O[AEC(c)Ap]9O[AEC(c)/i~p],Wx)[k(x)^ [AEC(C)NP]\ K ,
where neither k nor x occurs in p

(2) O[AEC{c)Kp],O[AEC{c)*~p] V{ [(1), A14;//(I)]

(3) \-~\O[AEC(c)Np]i\ O[AEC(c)i\~p]\ [(2), deduction thm.]

which is equivalent to our thesis.

Proposition 4.4 A14'" yields A14\

Proof: The main steps in a proof are:
(1) AEC(c) t(\/X)\[AEC(c)/\p] DG(X)} D (VX) \[AEC(c) /\p] Dn G(X)\

[Prop. 4.3]
(2) AEC(c),(\/X)\F(X)=n

 [AEC(C)AP]\ \-(\/X)[F(X)=p]
(3) AEC(c), (VX)iF(X)=n [AEC(c)/\p]\ t \MMin(F)/\(\/X)[F(X)=p]\

[(1),(2)]
(4) hA14' [(3)?A14"/(I)?A14///(II)]

Now we state various results to be used in the subsequent sections (we
omit the proof, which is rather mechanical).

Proposition 4.5

(i) MMin(F), MMin(G), F=G \~F=nG
(ii) V-{^F)\MMin(F)N(yX)[F{X)=p}\
(iii) \-(l?e)Ex(e, x)
(iv) \-{^c)AEC{c)
(v) (3c)[AEC(c)Ap] \--\{\fc)[AEC{c)-Dp]
(vi) E x ( e , X j ) , E x { e , x 2 ) \ ~ x x - x 2

(vii) Ex(ex, xx), Ex{e2, x2), xx = x2 \~ ex =
n e2.

Observe in particular that Proposition 4.5(i) can be obtained from the
following proposition, by putting F and G for $ and ̂ , respectively.

Proposition 4.6 / / <l> and "if are terms of the same type, then we have
MMin(F\ MMin(G), $ = ̂ [ F = G D n $ = fl h $ =n ^ .
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Proof: Let H, X be a string of distinct variables separated by commas, none of
which occurs in $ = ̂ , such that OH)(\/X)[H(X) =n $ = ̂ ] is well-formed.
Since this formula is a theorem (cf. A14'"(I)), it is sufficient for us to derive
<|> =n xj, from ^ hypotheses:

(1) (\/X)[H(X)=n<S> = *]
(2) MMin(F)
(3) MMin(G)
(4) $ = ̂
(5) F = G D n $ = ̂

The main steps in a proof are:

(6) (VX)H(X) [(0,(4)]
(7) FCH.GCH
(8) FCnH,GCnH [(7), (2), (3), def. ofMMrc]
(9) (3Jf)#tr)Dn* = ¥ [(01

(10) ~<I> = SfDn(VX)~^(X)
(10 OfX)~ H(X)Dn (VX)[~F(X) A ~G(*)] [(8)]
(12)(VIW(I)DnF=G [ ( 1 1 ) , A l l ]
(13) ~ $ = * D n $ = * [(10), (12), (5)]
(14) $ = n ^

To obtain (6) and (9) we have used the hypothesis that none of the variables in
X occurs in 4? = ty.

We are ready, now, to prove the fact, hinted at in Remark 4.1(c), that
identity is eliminable from MC by use of the descriptor i. Since A9 is a
theorem schema in MC, it is sufficient for us to show that

\-x = y = (3F, G){MMin(F) A MMin(G) A (VZ)[(F(Z) = z =n x)
A (G(z) = z =n j;) A Oz)F(z) =n Oz)G(z)}.

I recall that in MC the following are theorems:

(1) (\/z)lF(z) = z=nx]Dx = (iz)F(z)
(2) (\/z)[G(z) = z=ny]Dy = (u)G(z)

so that

(\/z)\[F(z)=z=nx]A[G(z)=z=ny]\, (iz)F(z) = (iz)G(z) \~x = y

whence it readily follows that the second member of the equivalence above
yields the first member. From (1) and (2) we derive also

(Vz) \[F(z) =z=nx)A [G(z) = z =n y]\, x = y h (iz)F(z) = (iz)G(z).

From this and the analogue of Proposition 4.6, with (iz)F(z) and (iz)G(z)
replacing $ and ty, respectively, we obtain

x=y, MMin(F), MMin{G), (Vz) i[F(z) = z =n x] A [G(Z) = z =n y]\

h (iz)F(z) =n Oz)G(z)
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because F = G D n (iz)F(z) = (iz)G(z) is a theorem of MCV. Hence we see that
the first member of the equivalence under inspection yields the second member;
in fact, A14' is a theorem schema of MCV (because, as we have seen in this
section, the axiom schema A14" of MCV yields A14') and therefore

h ( 3 F , G)(MMin(F) A MMin(G) A ( V Z ) { [ F ( Z ) =Z = n x] A [ G ( Z ) = Z = n y]\).

5 77ie axiom of choice and the existence principle for functions Our version
of the axiom of choice is A15. In this section, five schemas that slightly differ
from Al 5 are shown to be equivalent to it. The version of the axiom of choice
that was adopted in MCV is derived as a theorem in our calculus (see Proposi-
tion 5.3).

MCV includes an axiom schema concerning the existence of functions (cf.
[ 1 ] , AS12.17, p. 45); this had to be restated in [8] , when descriptions were
eliminated from MCV. By use of A15, we derive in our calculus both those
schemas on the existence of functions (see Proposition 5.2).

Consider the following six schemas (where Convention 2.1 applies):

A15 N{MF)Of)^X)[Oy)F{X, y) D F(X, / ( * ) ) ]
A151 N(\/F)Qf)(\/X)\(3y)F(X, y) D Oy)[f(X) =n y NF{X, y)]\
A1511 QGf)(VX)\(ly)p D (ly)[f(X) =ny A p]\
A15* Qi(VX)(3y)p D (3f)(\fX)(3y)[f(X) =n y A p]\
A15 iv NWF){(\/X)(ly)F(X, y) D (lf)(VX)(3y)[f(X) =ny A F(X, y)]\
A15V N(\/F)[(\/X)Qy)F(X, y) D (3f)(\/X)F(X, f(X))].

We claim that the above schemas are pairwise equivalent. The equivalence of
A15 and A151 (and similarly of A15V and A151V) is immediate from Proposition
3.2(i). The equivalence of A151 and A15 a (and similarly of A15 iv and A15m) is
proven using A14'"(I).

Finally, to show the equivalence of A1511 and A15 i u , observe that A1511

yields A15m because in general (using Al to A8) if x does not occur free in Qp,
then

Hlx)Q(pDq)D[QpDQx)Qq].

Conversely,

Proposition 5.1 Al5Ui yields A15U.

Proof: Let us show, using Al 5m, that

(\/X)(\fy)\G(X, y)=n [(3y)p D p]} KA1511

where G and / d o not occur in p . Thus, by A14'"(I), it follows that h A 1 5 u .
The main steps in a deduction are:

(1) (\/X)(3y)G(X,y) [from the hypothesis]
(2) (lf)(\/X)(ly)[f(X)=ny*G(X,y)] [0),A15ffi]
(3) (lf)(\/X)(3y){f(X) =n y A [(3y)p D p]\

[(2), hypothesis, equivalence thm.]
(4) (3f)(VX)\ay)p D (3y)[f(X) =ny Ap]\

where (4) follows from (3) because [q h (r D p)] \r r D (q /\ p).
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Proposition 5.2 If f does not occur in p or A, then

(i) \-(\/X)(3?y)Np D Of)(VX)Oy)N[f(X) = y A p]
(ii) h(3/)(V*)/(JO=nA
(iii) h(3/)(VX)/(Z)=A

Proof: A15W readily yields (i). From (i) and the theorem \~(3i'y)y =n A one
derives that

}~Of)(.VX)(3y)N{f(X) = y A y = A]

whence (ii) and (iii) follow.

Wenotethat(ii)and(iii)areThm.40.1.(46)2and AS12.17in [1] (pp. 166
and 45): although the existence axiom for functions (AS12.17 of [ 1 ]) has no
close resemblance with any of our axioms Al to A15, nevertheless it can be
deduced as a theorem of our calculus thanks to the version A15 of the axiom
of choice.

In the proposition below and within its proof, the following abbreviating
definitions apply, where x, F, G, <£>, ̂ , and / are distinct variables having the
respective types t, (t), (t), ((/)), ((0), and (((*)):/):

Pi=4r(VF)[*(F)D(3x)F(*)]
Pi =df (V*XV*)(VF) {[/(*) =n x A ¥(F) A £*(,)(*, F)\ D F(x)\
P3 =df (VJC)IG(X) = (3*X3F)[/(*) =n x A *(F) A £•*(,)(*, F))\
PA =df (VFXVG) j[*(F) A *(G) A (3X)(F(X) A G(JC))] DF=G\
Ps =df (VF)l*(F) D (3ft)[F(x) A G(JC)]J

Proposition 5.3 h(p, A p4) 3 (3G)ps.

Proof: The main steps in a proof are:

(1) Pi r - (3 /> , [Prop. 4.5(vi), A15ffi, Prop. 3.2(ii)]
(2) P, r-(3/)(3GX/»2 A p3) [(1), A14'"(I)]
(3) p2) p3, *(F) h (3x)[F(x) A G(x)] [Prop. 4.5(iii)]
(4) pj. Ps, P4, *(^) I" (3 ?x)[F(x) A G(x)] [(3), Prop. 4.5(vii)]
(5) p4 h(3/)(3GXP2 A p3) 3 OG)p5 [(4)]
(6)Pi,p4 l-(3G)p5 [(2), (5)]

The above proposition readily yields

HPi A PA) => (3C)(VF){*(F) D O ^ I F W A G(X)1!

which is the version of the axiom of choice that was adopted in MCV.

6 The existence principle for descripta In this section we show that Al 3 is
equivalent to each of the following two schemas:

A13 ; Q[N(3y)p D (3z)N(3y)(z = y A p)]
A13" Q[N(liy)pDOz)Nay)(z = y/\p)].

In A13? A13r, and A13/; we follow Convention 2.1 and may assume, with no
loss in generality, that y has an individual or relator type (see Proposition 6.2).

There is a striking analogy between A13' and the version A15m of the
axiom of choice. Note also that A13 turns out to be a theorem in MCV, since
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A13" is readily derived in MCV using the main axiom about descriptions
(AS38.1(I)in [ l ] ,p . 154).

We would name the version A13" of A13 the "axiom on the existence of
descripta". In fact, it is possible to define a natural translation of MLV into our
language (see [8], N.4) and then regard A13" as an axiom which asserts the
existence of those objects designated by the descriptions of MLV'. The original
version of this axiom—somewhat different from those being considered here—
was proposed in [8] when descriptions were eliminated from MCV.

The proof of the equivalence of A13 and A13' is quite analogous to the
proof, given in Section 5, that A1511 and A15m are equivalent. In fact, the same
argument we used there to show that A1511 yields A15m shows also that A13
yields A13\ Conversely, to prove that A13' yields A13 let us demonstrate
(using A13' and mimicking the proof of Proposition 5.1) that

(yy)\G(y)=n[Oy)pDp]\ KA13,

where G and z do not occur in p. The main steps in a deduction are:

(1) N(3y)G(y) [from the hypothesis]
(2) (3z)N(3y)[z=y *G(y)] [(1), A13']
(3) (3z)N(3y){z = y A [(3y)p ^> p]\ [(2), hypothesis, equivalence thm.]
(4) (3z)N[(3y)p D (3y)(z = y A p)).

Trivially, A13' yields A13". The following lemma is a preliminary toward the
proof that A13" yields A13'.

Lemma 6.1 Assume that x, c, f and i are distinct variables having the types
£,(l),((l):O, andj((l):(t)), respectively. Let f, c, and i have no occurrences in p.
Then:

(i) N(3x)p \~ (\/c)(3x)N[AEC(c) D p]
(ii) NQx)p h Of)(\fc)N[AEC(c) D px

f{c)]
(hi) N(3x)p h (3i)(\/c)N{AEC(c) D (3x)[p A Ex(i(c), x)]\.

[Intuitively, (hi) asserts—under the hypothesis—the existence of an intension
that associates with every F-case y the extension of a £ satisfying p in 7.]

Proof: The main steps in a proof of (i) are:

(1) OAEC(c) D (3x)0[AEC(c) A p] [from the hypothesis]
(2) OAEC(c) D (1x)N[AEC(c) Dp) [(1), Prop. 4.3]
(3) (lx)N[AEC(c)Dp] [(2)]

From (i) we easily obtain (ii) using A15m and Proposition 3.2(i). Now observe
that N(3x)p h N(3e)(3x)[p /\Ex(e, x)] by Proposition 4.5(iii), if we choose an
e having no occurrences in p. Hence we get readily (iii), by substituting in (ii):
e for x, (3x)[/? A Ex(e, x)] for p.

Proposition 6.1 A13" yields A13'.

Proof: By Lemma l(iii), it suffices to prove that A13" yields

(\fc)N\AEC(c) D (3y)[p A Ex(j(c), y)]\ h (3z)N0y)(z = y A p).
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From the hypothesis, by Proposition 4.5(v) we derive

N(3y)(lc)[AEC(c) A p A EXQ(C), y)]

hence

NO xy){3c)[AEC{c) A p A Ex(i(c), y)] [Prop. 4.5(iv), (vi)]

Now we apply A13" to get

&z}N<3y)\z=y* (3c)[AEC(c) A p A Ex(i(c),y)]\

and finally (3z)N(1y)(z = y A p).

Proposition 6.2 NQg)p h (3f)N(3g)(f = g A p) /zo/ds eve« //we assume an
instance of A13 to be an axiom only for y and z variables of an individual or
relator type.

Proof: By Lemma 6. l(ii), it suffices to prove that

(Mc)N[AEC(c) D pg
Hc)] h (3f)N(3g)(f= g A p)

From the hypothesis, by Proposition 4.5(v) we derive

(VJfW(3c)[0(c)(Z) =n 4>(c)(X) A AEC{c) A pj ( c )] .

The subsequent main steps in a deduction are:

(1) (VX)N(3z)(3c)[z =n 4>(c)(X) /\AEC(c) A pj(c)]
(2) (VX)(3z)7V(3c)[z = 0(c)(X) A AEC(C) A ^ ( C ) ]

[(1) and either A13' or inductive hypothesis]
(3) (3f)(VX)N(3c)[f(X) = 0(c)(JT) A AEC(c) A p^(c)]

[(2),A15ffi,Prop.3.2(i)]
(4) (3/)N(Vc)(VX)U£C(c) D [/(X) = 0(c)(Jf) A pg

Hc)]\ [(3), Prop. 4.5(v)]
(5) Qf)N(\/c){AEC(c) D [/= 0(c) A pg

Hc)]\ [(4), A12]
(6) (3f)N(lc)0g)[AEC(c) A /= g A p] [(5), Prop. 4.5(v)]
(7) Of)NOg)(f=gj\p).
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Added in proof:

Proposition 2.2 Let p be the following wff:

A16 (3F)(\/x)N(3y)\x =y i\F(y) A (Vx)[(Oy = x f\OF(x))D x =n y]}

where x, y, and F are un, vn, and V(t)u respectively. Then ]5(y) = 0 holds

for all y e V if and only if the cardinality ofDt{y) is independent of y (t = \,

. • . ,v).

The wff A16 roughly corresponds to the axiom schema AS25.1 in [1],
p. 95, and is only mentioned here for the sake of completeness. Proofs are left
to the reader.




