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SOME REMARKS ABOUT THE FAMILY K OF MODAL SYSTEMS

WLODZIMIERZ RABINOWICZ

1 Introduction K-systems can be defined as follows:

Dl. S is a /f-system -df S is deductively equivalent to some system S'

such that:

a. S' is an extension of the propositional calculus (PC)

b. S' is governed by the following rules of inference: the rule of

uniform substitution, modus ponens (MP), and RL(HQf =Φ \-La)

c. The following formulas are axioms of S':

Al. L/>D/> |

A2. L(p D q) D (Lp D Lq) \ S4-axioms

A3. Lp^LLp J
A4. LMpZ)MLp

d. Every other axiom of S' is an S5-thesis

e. S5 is not contained in S'.

The following formulas have been used in the construction of Af-systems:

Gl. MLp^LMp

D2. L(Lp D Lq)vL(Lq D Lp)
Jl . L(L(p D Lp)-Dp)-Dp

HI. p L(Mp-Dp)

F l . L(L/> 3 ?)v (ML^ D/>)

Rl. p D (ML/? D Lp).

As far as I know, only nine nonequivalent ^-systems have been so far

described (see [2], [4], [7], [11], and [12]):

Kl = {S4; A4}

K2 = {S4; A4; Gl}
K3 = {S4; A4; D2}
Kl.l = {S4; J l }
K2.1 = {S4; J l ; Gl}
K3.1 = {S4; J l ; D2}
K1.2 = {S4; Hi}
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K3.2 = {S4; A4; Fl}

K4 = {S4; A4; Rl}.

A system S is a proper part of a system S' (symbolically: S' —• S) iff S is

deducible from S' but S' is not deducible from S. Sobociήski [12] has proved

that the following proper-part relations hold between the known K- systems:

K1.2

K4 -K3.2

I I
K3.1 -K3

I \
K2.1 -K2

Kl.l - K l

Diagram A

Using the following S5-theses:

LI. MLp D L(Mq .-q-D MLp)

L2. p D L{Mq.~q D Mp)

Ml. /) D (LMpvMLpvL(MpΌ p)),

we can construct five new /("-systems:

KL = {S4; A4; Ll j

KB = {S4; A4; L2}

Kl.1.1 = {S4; A4; Ml}1

K2.1.1 = {S4; A4; Ml; Gl}

K3.1.1 = {S4; A4; Ml; D2}.

That KL-K3.1.1 are K-systems can easily be shown. Since they are

extensions of S4 and have A4 as an axiom, conditions a, b, and c of Dl are

satisfied. This applies even to condition d, since LI, L2, and Ml are

S5-theses. (In the field of S4 they follow trivially from the Brouwerian

axiom: p D LMp.) That S5 is not contained in KL-K3.1.1 (condition e) will

be proved later. In the second section, I will show that the proper-part

relations holding between KL-K3.1.1 and other /C-systems can be repre-

sented in Diagram B.

I will now present Kripke-type semantics for all the /C-systems in Dia-

gram B. Δ is a Kripke-type semantics iff Δ is a class of ordered triples

(W, R, V) ("models") such that W is a nonempty set (of "possible worlds"),

R is a dyadic relation defined over the members of W ("accessibility

relation"), and V is a valuation function satisfying the standard conditions

(see, for example, [3], p. 73). I will define different semantics by imposing

different conditions on R.
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K1.2 • KB

K4 ^ K3.2

I I
K3.1.1 -K3.1 - K 3

I i I i
Kl. l .Ί- K2.1.1 -K2.1 • K2 • KL

K l . l ^ — - Kl

Diagram B

Relevant conditions on R: wt, Wj, . . . are members of W. Universal
quantifiers are omitted whenever it is possible. We first introduce some
definitions:

D2. 0 = {wi \(Ξu)j)(wiRWj >W{ Φ Wj)} (O is a set of "open" worlds)

D3. C = W - O (C is a set of "closed" worlds)

D4. Bwi = {κ\K is a smallest set of worlds such that: (a) wι e K, and
(b) for every Wj, if W RWJ and, for every wkeK, WjRw^ or wkRu)j , then
Wjβ K.} (BWi is a set of "branches" with respect to w{.)

Using these conventions we can define:

Refl. w{Rwi reflexivity
Trans. WIRWJ -WjRwkZ) WiRwk transitivity
Fin. (3wj)(WjRwj -Wj e C) finiteness
Conv. WIRWJ -WjRwk D (^w^(u)jRwγ*wkRw^) convergence
Conn. WiRwj -WiRwk^ {WjRwkvwkRu)j) connectedness
Antisymm. W(RWJ -w-Rwi z> W{ - Wj antisymmetry
BrFin. Ke Bwi D Card^) < tf0 branch-finiteness
Short. w{RWj -WjRWk -W{ Φ Wj Wj Φ wk D wke C shortness
StrShort. WIRWJ -Wi Φ WJ D WJ e C strict shortness2

CIConn. W{RWJ -WjRw^ -Wj e O -w^e C D WjRwk closed-world
connectedness

O S y m m . U\RWJ -Wjβ O D WjRwi open-world symmetry

Every /C-semantics satisfies the following i?-conditions: Refl., Trans., and
Fin. Additional conditions are:

Kl none
K2 Conv.
K3 Conn.
Kl. l Antisymm. and BrFin.
K2.1 Antisymm., BrFin., and Conv.
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K3.1 Antisymm., BrFin., and Conn.
Kl.1.1 Short.
K2.1.1 Short, and Conv.
K3.1.1 Short, and Conn.
K1.2 StrShort.
KL CIConn.
KB OSymm.
K3.2 OSymm. and Conv. (or Conn.)
K4 StrShort and Conv. (or Conn.)

Informal interpretation of some K-semantics: Every K-ms (model struc-
ture) can be treated as a set of worlds such that: (a) every world is
accessible to itself, (b) the accessibility relation is transitive, and (c) from
every world some closed world is accessible. This is, by the way, an
exhaustive characteristic of a Kl-ms.

A Kl . l . l -ms is a set of worlds such that to every open world
accessible to some other open world only closed worlds are accessible. A
K3.1.1-ms is a chain of worlds of type ^ 3 . A K1.2-ms is a set of worlds
such that to every open world only this world itself and closed worlds are
accessible. If we additionally stipulate that the number of these closed
worlds equals 1, we get a K4-ms.

A KL-ms is a set of worlds such that every closed world is accessible
to every open world. We get a KB-ms by an additional stipulation that the
accessibility relation between the open worlds is symmetric.

From a KB-ms results a K3.2-ms if we limit the number of the
accessible closed worlds to 1. (If we, instead, stipulate that there is only
one open world, we get a K1.2-ms. Both stipulations taken together give us
a K4-ms.)

It is easy to show that, for every system K{ represented in Diagram B,
and for every formula α, if a is a thesis of K{ then a is Ki -valid. (We have
only to prove that our Ki-semantics validates all the axioms of K{ and that
the rules of inference are Ki -validity-preserving.) We can now complete
our proof that KL-K3.1.1 are Af-systems. We prove that S5 is contained in
neither of these systems by constructing a falsifying KL (KB, Kl.1.1,
K2.1.1, K3.1.1)-model for the Brouwerian axiom:

W = {wl9 w2},R = {(wl9 Wι), {wι, w2), (w2, w2)}, V(p, Mil) = 1, V(p, w2) = 0.

It is an equally easy job (but a more tedious one) to prove the following
result:

Tl Every Ki-semantics is minimal with respect to Diagram B.

A if;-semantics is minimal with respect to Diagram B =^. For every
system Kj represented in Diagram B such that Ki Φ KJ and K{ -/* Kj, there
is a formula, α, such that a is an axiom of Kj and a is Ki -invalid (i.e., there
exists a Ki -model which falsifies a).

It has been proved by Segerberg [8] and Zeman [14] that KI, K2, K3,
Kl . l , K3.1, and K4 are complete for their respective semantics. In
Section 3 I give the completeness proofs for K1.2, KB, and K3.2.3
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It is known (see McKinsey [4]) that: (a) Kl has exactly 10 (distinct)
modalities: -, M, L, LM, ML and their negations.4 Since the formula:
LMa = ML a, is a K2-thesis and K2 contains Kl, we get the result that
(b) K2 has at most 8 modalities. We can easily prove that (c) K4 has at
least 8 modalities by constructing falsifying K4-models for the following
equivalences: a = Ma, a = La, a = LMa, Ma = La, Ma = LMa, and
La = LMa. In the same way we prove that: (d) K1.2 has at least 10
modalities. Both proofs are omitted here.

Results (b) and (c) imply that (e) K2, K4 and all systems between K2
and K4 have exactly 8 distinct modalities. Since K1.2 contains Kl, (a) and
(d) imply that: (f) K1.2 has the same number of modalities as Kl. This
applies also to all systems between K1.2 and Kl. We get therefore the
following result:

T2. A. All systems contained in K1.2 and containing Kl have exactly 10
distinct modalities. B. All systems contained in K4 and containing K2 have
exactly 8 distinct modalities.

However, T2 ought to be qualified. It holds only for systems which have ~
and L (or M) as primitive operators. It is, of course, possible to construct
K-systems with other modal primitives. In Section 4 I present two such
systems, K1.2.G and K4.G, which are deductively equivalent to K1.2 and K4,
respectively. I shall prove that K1.2.G (K4.G) has 6 (4) distinct modalities.

2 Position O/KL-K3.1.1 in the family K

T3 Diagram B adequately represents the logical relations between
K-systems.

Proof: As we know, Sobociήski has proved that Diagram A is correct.
Given this result, it remains only to prove the following lemmas:

1. K3.1.1 is properly contained in K4.
2. K2.1.1 is properly contained in K3.1.1 (and therefore even in K4).
3. Kl.1.1 is properly contained in K1.2 and K2.1.1 (and therefore even in

K3.1.1 and K4).
4. Kl. l is properly contained in Kl.1.1 (and therefore even in K2.1.1 and

K3.1.1).
5. K2.1 is properly contained in K2.1.1 (and therefore even in K3.1.1)
6. K3.1 is properly contained in K3.1.1.
7. KB is properly contained in K3.2 and K1.2 (and therefore even in K4).
8. KL is properly contained in KB and K2 (and therefore even in K2.1,

K2.1.1, K3, K3.1, K3.1.1, K3.2,
K1.2, and K4).

9. Kl is properly contained in KL (and therefore even in KB).
10. KL is independent from Kl. l and K l . l . I . 5

11. KB is independent from K2, K3, Kl . l , K2.1, K3.1, Kl.1.1, K2.1.1, and
K3.1.1.

12. Kl.1.1 is independent from KL, KB, K2, K3, K2.1, K3.1, and K3.2.
13. K2.1.1 is independent from KB, K3, K3.1, K3.2, and K1.2.
14. K3.1.1 is independent from KB, K3.2, and K1.2.
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It is easy to ascertain that in order to prove 1-14 it is sufficient to show

that the following hold:

a. Ml is a K1.2-thesis.

b. J l is a Kl.l . l-thesis.

c. L2 is a: (1) K3.2- and (2) K1.2-thesis.

d. LI is a: (1) KB- and (2) K2-thesis.

e. There exist falsifying Kl.l.l-models for: (1) LI and (2) Gl.

f. There exist falsifying K3.1.1-models for: (1) L2 and (2) HI.

g. There exist falsifying: (1) K3.2- and (2) K3.1-models for Ml.

h. There exists a falsifying KB-model for J l .

i. There exists a falsifying K1.2-model for Gl.

j . There exists a falsifying K2.1.1-model for D2.

Given that Diagram A is correct, the logical relations between a-j and 1-14

are as follows:

a & f2 => 1

3 = ^ 2 6

a & f 2 & i =̂ > 3

b & g2 =Φ 4 & 5 & 6

cl & c2 & h & i ==> 7

b & c2 & dl & d2 & fl & i => 8

el ==> 9

b & dl & el & h ==> 10

b & c2 & fl & h & i ==> 11

cl & dl & el & e2 & gl & g2 => 12

cl & fl & f2 & gl & g2 & i & j ==> 13

cl & fl & f2 & gl & g2 =Φ 14.

Proof of a:

( l )p D L(Mp Dp) Ml

(2) p D (LMpvMLpvL(Mp Dp)) (1), PC

Proof of b:

( l ) p D (LMpvMLpvL(Mp D/>)) Ml

(2) LMp D MLp A4

(3)/> D (MLpvL(Mp -Dp)) (1), (2), PC

(4) /> D (MLpvM(L(Mp z> p) -p))

(3), PC, ̂ D M i [ i / L ( M i D p ) . / > ] , P C

(5) MLp D M(L(Mp Z) p)-p) T7

(6) /> D M(L(Mp D />) ί ) (4), (5), PC

(7) -/) D M(L(M ~ pD ~p)' ~p) (6) [/)/-/)]

(8) ~p-DM(L(pD Lp) ~p) (7), ^ ( M ~ /? D ~/>) Ξ (/> D L/>) x Eq 8

(9) - p D ~L(L(p DLp) DP)

(8), I T M ( / > . ~ ? ) S ~L(/> 3 q)[p/L(p D Lp), ^/p] x Eq.

(10) L(L(p D Lp) Dp) Dp (9) x Transp.
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Proof of c 1:

(1) ~(MLq D ~p) D L(L ~ p ^ q) F l L/>/~/>], PC

(2) MLq.p-D L(L ~ pΌ q) (1), PC

(3) p D LM(Mq.~q =) M/>) T

(4) p D ML(Mq ~q D M/>) p (3), A4[p/M<? ~<7 D M/>], PC

(5) p D L(L - /? D (Mq-~q D Λf/>)) (4), (2) [q/Mq>~q D Λf/>] x Syll.

(6) L(L ~ p D (Mq.~q Ό Mp)) D L(Mq ~qZ) Mp) T

(7)p 3 L(Mq-~q D M/>) (5), (6) x Syll.

Proof of (c2):

( l ) p D ((MLqvq)'-qZ) p) - LM((MLqv q) - ~q ~D p) T

(2) /> 3 (LMp 3 L/)) HI, A2 [/>/M/>, ^//>] x Syll.

(3) p - LMp D Lp (2) x Imp.

(4) Lp 3 /> LMp T

(5) Lp ̂ p-LMp (3), (4), PC

(6) ~L ~p^pv~LM~p (5) [/>/~/>], PC

(1) Mp = pvMLp (6), Def M, \^~LM ~ p = MLp

(8)/)D L((MLqvq) ~q-Dp) (1), (5) [p/(ML^v^)-^i)]x Syll.

( 9 ) p L{Mq ~q Dp) (8), (7) [/>/?] x Eq

(10) L(Mq-~q^) p) D L(Mq'~q^) Mp) T

(11) p D L(M<7 " v ^ D Mp) (9), (10) x Syll.

Proof of (dl):

(1) MLp z> L(M<7 ~ ? D MMLp) L2 [p/MLp]

(2) MLpZ) L(Mq ~q Ό MLp) (1), ^ M M L p = MLp x Syll.

Proof of (d2):

(1) MLp D (M<7 ~<7 =) MLp) PC

(2) LMp D (M^ - ^ D MLp) A4, (1) x Syll.

(3) LLMp D L (M^ - <7 D MLp)

(2) x RL, A2 [p/LMp, q/Mq -~qΌ MLp] x MP

(4) LMp D L (M<? - q z> MLp) (3), ^ LLp = Lp |>/Mp] x Eq

(5) MLp D L(Mq ~ # D MLp) Gl, (4) x Syll.

We prove e-j by constructing the appropriate falsifying models:

e: W = {wu w2, w3, w±], R = {(wl9 w2), (wu w3), (w3, wj, (wl9 w^)},9

V(p, w2) = V(q, w,) = 1, V(q, w3) = V(p, w,) = 0.

fl: W = {wl9 w2, w3}, R = {(wlf w2), (w2, w3), (wι, W3>},

V(p, Wj) = 1, V(p, w2) = V(q, w2) = V(p, w3) = 0, V(q, wA) = 1.

f2: W = {wlf w2, u)3}, R = {(«Ί, w2), (w2, w3), (wl9 w3)},

V(p, Wj) = F(p, w3) = 1, F(p, w2) = 0.

gl: W = {wu w29 w3}, R = {(wl9 w2), (w2, Wj)9 (wl9 w3), (w2, w3)},

V(p, wj = 1, V(p, w2) = 7(p, MI3) = 0.

g2: W = {wu w29 w3, wA}9 R = {(wl9 w2)9 (w2, w3), (w3yw4), (wl9 w3), (wl9 wj

(w2, wA)}, V(p, u>0 = V(p, w3) = l, V(p, w2) = V(p, w,) = 0.
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h: W= {wl9 w29 w3], R = {(wu w2), (w2, ^L>, (MΊ, ^3>, (w29 M>3>},

V(p, wL) = 0, V(p, w2) = V(p, w3) = 1.

i: ψ = {Wl> w2> w3}, i? = {(wl9 w2), (wl9 w3)}, V{p, w2) = 1, V(p, w3) = 0.

j : W= {wl9 w2, w3, w4}, R = {(wl9 w2), (wu w3), (wl9 w^, (w2, w4>, (ws, wύ},

V(p, w2) = F(P, w4) = V(q, w3) = 7(?, w,) = 1,

n^,^2) = v(p,w3) = o.
This completes our proof of T3.

3 Completeness I will give now Henkin-type proofs that K1.2, KB, and
K3.2 are complete for the given semantics. I will show, namely, that for
any formula, a, if a is consistent with respect to K1.2 (KB, K3.2), we can
construct a verifying K1.2 (KB, K3.2)-model for a (or, equivalently, that
every K1.2 (KB, K3.2)-valid formula is a thesis of K1.2 (KB, K3.2). My
proofs will strongly rely on those given in [3], pp. 149-159, for T and S4.

The following lemmas have been proved there for any system S which
is an extension of PC (and therefore for all K-systems). Let Γt be a
maximal consistent set relative to S10 and let a and β be wffs of S.

Lemma 1 a and ~a are not both in Γ, .
Lemma 2 Either a e Γ; or ~αe i y If \^ayaeTi.
Lemma 3 If a e Γ, and either (a D β)e Γ, or ι^(αD β), β e Γf .

These lemmas and even other results proved in [3] will be used in what
follows.

A. K1.2 Let a be a formula consistent relative to K1.2. Beginning with
Γio = W}, we construct an initial maximal consistent set Γ\ in the same way
as it has been done in [3]. We construct further maximal consistent sets
according to the following plan:

For every already constructed Γt and for every formula Mβ e Tiy such
that ~β e Γ t , we define a set Γ / 0 = {β, γl9 . . ., γn9 rw+1, . . .}, such that, for
every yi9 yf e Γ / o iff LΎi e IV In [3] a proof is given that, for every system
S which contains T, i y s consistency relative to S entails Γy0

?s consistency
relative to S. It follows that Γ; o is consistent with respect to K1.2.
Starting with Γ / 0 we construct a maximal consistent set Γ ; by the usual
methods.

For every Γ, and Γ ; , if Γ ; is formed from Γ, in the described way, Γ ;

will be called a "subordinate" of I\ . If Γ, is an ancestor of Γ; with respect
to the relation of subordination, we shall say that Γ ; is a "subordinate*"
of Γ, .

We define Γ as the smallest set whose members are Tι and all its
subordinates*.

Further definitions:

O =jf a subset of Γ such that, for every Γf e Γ, Γ,- e O iff there is some wff,
δ, such that {Mb ~ δ) e T{ (or, equivalently, iff there is some Γ7 e Γ,
such that Tj is a subordinate of Γ, ).

C=df Γ - 0 .
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Lemma 4 Every subordinate of Γ, belongs to C.

(It follows from Lemma 4 (by the definition of C and the construction of Γ)

that every member of Γ is either identical with I\ or is its subordinate.)

Proof (by reductio ad absurdum): Suppose that Γt is a subordinate of Tι

and Γf / C . Then there is some wff, δ, such that (Λfδ ~δ)e ΓV Besides,

by construction of Γ\, there is some wff, β, such that:

(a) (Mβ-~β) e I\, and

(b) β e IV

As we already know, the following formula is a K1.2-thesis:

p 3 L(Mq ~q D p).

By substitution, we get:

(c) fe~β D L(Mδ ~δ 3 ~β).

By Lemma 3, (b) and (c) imply that

(d) L(Mδ-~δ D ~β) e Γ\.

Therefore, by the construction of Γ\,

(e) (Mδ ~δ D ~β) e ΓV

By hypothesis, (Λfδ ~δ) e Γ, . Therefore, by Lemma 3, (2) implies that

(f) ~ β e Γ V

But this is contradicted by (b) and Lemma 1.

Lemma 5 For every T{ e Γ, either Γ, e C or there is some Γy such that

Tj is a subordinate of Γ, and Γ7 e C.

Lemma 5 follows trivially from Lemma 4.

We construct now a K1.2-model (w, R, V) on the basis of Γ. Let

W = Γ. Γj ΛΓy =̂ / Γ, = Tj or Γ; is a subordinate of Γ, . This definition

makes R a reflexive relation. Lemma 5 warrants that R is finite. By

Lemma 4, R is strictly short and transitive. We define the valuation

function V in a standard way.12 (W, R, V) is then clearly a K1.2-model.

The completeness-theorem for K1.2:

T4. If W, R and V are defined as above, then, for any wff β of K1.2 and

for any Γ, e W, V(β, I » = liffβe Γ, . Otherwise, V(β, T{) = 0.

T4 is proved by induction on the construction of wffs of K1.2 in exactly the

same way as the analogous theorem for the system T (see [3], pp. 157f).

We conclude that (W, R, V) is a verifying K1.2-model for our initial

formula a, since T4 guarantees that V(a, Γ\) = 1.

B. KB We construct Γ in the same way as before. The only difference

is that we now make members of Γ maximal consistent relative to KB.

Definitions of O and C remain unchanged.
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Lemma 6 C Φ p.

Proof (by reductio ad absurdum): Suppose that C = p. In such case, Γ = 0.
We prove first that, if Γ = 0, then for every T{ e Γ and for every wff, a,

I. (a D LMa) e Γf , and

II. {ML -a D -Ma) e Γ, .

Proof of I: By Lemma 2, either α e Γ, or — a e Γ\ .

a. Suppose that ~α e I\ . Then, by PC and Lemma 3, (a D LMα) e Γ, .

b. Suppose that:

(1) a e Γ, .

In such case, (α D LMa) e T{ iff LMα e Γ\ . Suppose, then, that LMa / Γ, .
By Lemma 2,

(2) - L M α e Γ/.

Since the following formula:

(3) -LMa -D M ~ Ma,

is a thesis of T and therefore even of KB, we get (by Lemma 3) the
following result:

(4) M - Mae Γ, .

(1) and the KB-thesis: of D ~~Ma, imply, by Lemma 3, that

(5) --Mae Γ f .

(4) and (5) imply (by the construction of Γ) that there is some Γ; e Γ, such
that Tj is a subordinate of Γ\ and

(6) -Ma e Γ, .

By hypothesis, Γ7 e 0. In other words, there exists some wff, δ, such that

(7) (Mδ ~ δ ) e Γ ; .

By substitution in L2, we get:

(8) lκBα=)L(Mδ ~ δ D Ma).

(1) and (8) imply, by Lemma 3, that

(9) L(Mδ ~ δ D Mα) e I\ .

Therefore, by the construction of Γ ; ,

(10) (Mδ ~ δ ^ Ma) e Γ ; .

(7) and (10) imply, by Lemma 3, that

(11) Mae Γ ; .

But this is contradicted by (6) and Lemma 1.
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Proof of II:

(1) (Ma D LMMa) e Γ, l[a/Ma]

(2) (KB (Λίcί =5 LMMa) D (Λf α D LMα) provable in S4

(3) (MaΌ LMa) eTi (1), (2), Lemma 3

(4) fjcB (Mα D LMα) D (ML ~ a D ~Mα) provable in T

(5) ( M L - α ^ - M α J e ^ (3), (4), Lemma 3

We prove now Lemma 6. If Γ = 0, then, for every Γ; e Γ, there exists some

wff, δ, such that

(1) Mb e Γ, and

(2) ~ δ e Γ t .

By substitution in I, we get:

(3) ( ~ δ D L I ~ δ ) e Γ, .

By Lemma 3, (2) and (3) imply that

(4) LM ~ δ e Γf.

By substitution in A4, we get:

(5) \ΓBLM ~ δ^> ML ~ δ.

By Lemma 3, (4) and (5) imply that

(6) ML ~ δ e I\.

By the same lemma, it follows from (6) and Il[α/δ] that

(7) ~ M δ e Γf .

But this is contradicted by (1) and Lemma 1. We conclude that Γ Φ 0, or,

equivalently, that C Φ fc.

We construct now a KB-model (W, R, V) on the basis of Γ. W and V

are defined as before.

ΓiRΓj =df (1) Γf = Γ y ,or (2) Γf- 0.

This definition guarantees that R is reflexive, transitive, and open-world

symmetric. It also implies, given Lemma 6, that R is finite. We can

therefore be assured that (W, R, V) is a KB-model.

Our proof of the completeness-theorem for KB is similar to the

analogous induction proofs for T and S4, given in [3], pp. 157ff. The crucial

difference is that now, in order to show that the theorem holds for L, we

have to prove the following lemma:

(a) For any Γ f and β, if T{ e 0 and L β e Γ , then for any Γ ; , β e Γ ; .

Given (a), the definition of R, and the fact that the T-axiom (L β D β) is a

KB-thesis, we can easily prove that V(L β, Γf ) = 1 if L β e Γ\ . (As to the

proof of the Only if' part see [3], p. 158.)

By construction of Γ, we get:
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(b) For any T{ and Γ ; , there exists some Tk such that T{ and Γ; are

subordinates* of Tk.

It is easy to see that (a) is implied by (b), given the following lemmas:

(c) For any Γ, e 0 and Tk, if Γ, is a subordinate* of Tk and L β e Γ, , then

LβeTk.

(d) For any Γ ; and Γk, ifTί is a subordinate* of Γk and Lβ e Γk, then β e Γ ;.

The proof of (d) is given in [3], p. 158. As for (c), we can prove it by

induction on subordination if the following condition holds:

(e) For any Γ\ e 0 and Γ ; , if Γ, is a subordinate of Γ ; and L β e Tif L β e Γ ; .

Proof of (e): We prove that, if L β 4 Γ ;, L β / Γ, . Suppose that Lβt/Tj. In

such a case, by Lemma 2:

(1) ~ L β e Γ 7 .

Since Γ; e 0, there is some wff, δ, such that

(2) (Mδ>~δ)eΓi.

As we know,

(3) ^ ~ L β D L ( M δ ~ δ =)M ~ L β ) .

By Lemma 3, (1) and (3) imply that:

(4) L(Mδ ~ δ DM ~ Lβ) e Γ7 .

Therefore, by the construction of Γ, ;

(5) (Mδ ~ δ D M~ Lβ) e Γf .

By Lemma 3, it follows from (2) and (5) that:

(6) M ~ L β e Γ x .

Since | ^ - B M ~ L β = ~ L β , (6) is equivalent to:

(7) ~ L β e ΓV

By Lemma 1, it follows from (7) that L β / 1 \ .

If we leave out the axiom A4 from KB, we get a new system, S4.B,

which lies between S4 and S5. The S4.B-semantics can be defined by the

following conditions on R: Refl., Trans., and OSymm. The completeness-

proof for S4.B is nearly the same as the above proof for KB. The only

difference is that Lemma 6 holds no longer.

C. K3.2 Our completeness-proof for K3.2 is exactly the same as for

KB (as we know, KB is contained in K3.2), but now we also have to show

that C has only one member. Since we already have shown that C Φ <jb, it

remains to prove the following lemma:

Lemma 7 For every Γt , Γ; e C, Γ, = Γ ; .

Given Lemma 6 and the fact that we define R as in the case of KB,
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Lemma 7 is equivalent to Conv. (and, what in this case amounts to the

same thing, to Conn.).

Proof (by reductio ad absurdum): Suppose that Γ\, Γ ; e C and Γ, Φ Γ, . Then

there is some formula, a, such that:

(1) a e Γ;

(2) ~α e Γy.

Since Γf e C, (M ~ α α) / Γ f . Therefore, by Lemma 2:

(3) ~ ( M ~ α α) e Γf .

From (3) and Hp~ (M ~ α α) => (α D Lα) we get, by Lemma 3, the following

result:

(4) (α D Lot) e Γ f.

(1) and (4) imply, by Lemma 3, that:

(5) La e Γt .

In the same way we prove that:

(6) L ~ α e Γy.

By the construction of Γ, Γ, and Γ ; are subordinates* of Γ\. Therefore,

(7) (MLa-ML ~ α) e I\.

Proof of (7): Suppose that (7) is false. Then, by Lemma 2: (a) ~{MLa-

ML ~ a) e Γ\. (a) and hj.^ (MLa -ML ~ a) D (L ~ Lav L ~ L ~ a) imply,

by Lemma 3, that either: (b) L ~ Lα e T1 or (c) L ~ L ^ of e Γ^ Suppose

that (b) is true. Then, by the construction of Γ, and the S4-axiom:

La D LLa, we get: ~La e Γz . But this is contradicted by (5) and Lemma 1.

Suppose that (c) is true. Then, by the construction of Γ ; and the S4-axiom,

we get the result: ~L ~ a e Γj. But this is contradicted by (6) and

Lemma 1. We conclude that neither (b) nor (c) is true. Therefore (a) is

false and, consequently, (7) is true.

We shall show now that:

(8) ^ 2 -(MLa- ML -a).

Proof of (8):

(a) L(Lpz) -p)v(ML-p^p) Fl [q/~p]

(b) L(LpZD ~p) = ~MLp T

(c) ~MLpv(ML ~ pD p) (a), (b) x Eq.

(d) ~p D (~MLpv~ML ~ p) (c), PC

(e) p D (~MLp v~ML ~p) (d) [p/~p], PC

(f) ~MLpv~ML ~p (d), (e), PC

(g) -(MLP'ML ~p) (f), PC

(h) ~ {MLa-ML - a) (g) [p/a].

(8) implies, by Lemma 2, that

(9) ~(MLa -ML - a) e ΓL.
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But, by Lemma 1, (9) is incompatible with (7). We conclude that Lemma 7

is valid since its negation leads to a contradiction. QED

4 K.G-systems We have already proved13 that the following formula:

Lp = p -LMp, is a thesis of K1.2 and—since K4 contains K1.2—even of K4.14

We can therefore introduce a new modal operator, G, which, in the field of

K1.2 and K4, is interdefinable with L:

Ga =jf LMa

La -^ a - G a (or, equivalently,

Ma =df a v ~G ~ a).

This suggests that we can take G as a primitive and construct /f-systems

equivalent to K1.2 and K4.

I. K4.G

Axioms:

GAO. All PC-valid formulas.

GA1. G(p^Gp)

GA2. G(p Ώq) D (Gp z> Gq)

GA3. G ~ p 3 ~Gp

GA4. ~Gp -D G ~ p

Rules:

RG. \-a=$>hGa

Rule of substitution, Modus Ponens.

It has been proved by Thomas [13] that, given the above definitions of G and

L, K4.G and K4 are equivalent systems.

II. K1.2.G K1.2.G is a system which we get from K4.G if we leave out

Axiom GA4. I shall prove now that K1.2.G is equivalent to K1.2.

A. We prove first that all axioms and rules of K1.2 are derivable in

K1.2.G. The following rules can be derived in K1.2.G.:

Rl. v-a D β=^v-Ga z> Gβ

R2. \-a -D β, v-Ga=¥^-Gβ.

Derivation of Rl :

Given : (1) a D β

( l ) x R G : (2) G(a D β)

(2), GA2 [p/a, q/β\ x MP : (3) Ga D Gβ.

Derivation of R2:

Given : (1) a D β

(2) Ga

( l ) x R l : (3) Ga D Gβ

(2), (3)x MP : (4) Gβ.
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We can also prove:

Tl Gp-GqZ) G(p.q)

Proof:

(1) po (q^ p-q) P C

(2) Gp^ (Gq^G(p q)) (1) x Rl , GA2 [p/q, q/p q] x Syll.

(3) Gp >Gq D G(p q) (2) x Imp.

Al Lp D p

Proof:

(1) p-Gp^p PC

(2) Lp-D p (1), Def L

A2 L(p Dq)Z) (Lp D Lq)

Proof:

(1) G(/> •Dq)-{p Dq)'D (Gp D G/>) ' (p ̂  q) GA2, P C

(2) G ( p ^ q ) - ( p - D q ) - D (Gp'p^ Gp-p) (1), PC

(3) L(p^q)^) (Lp D L<7) (2), Def L

A3 L/> z> LLp

Proo/:

(1) Gp'p^GGp'Gp'Gp-p GA1, GA2 L<7/G/>] x Syll., PC
(2) Gp p^G(GP'P) (Gp p) (1), Tl [p/Gp, q/p], PC

(3) L p D L L p (2), Def L

A4 LMp D M L p

P r o o / :

(1) (~/> D G ~ />) D ((/? v - G ~p)ip) P C

(2) G(~/> D G - ί ) GA1 [p/~p]

&)G((pv~G~p)Όp) (1), ( 2 ) x R 2

(4) G(pv~G ~p) Z) Gp (3), GA2 [p/pv~G ~p, q/p] x

Syll.

(5) Gp D GGp GA1, GA2 [q/Gp] x MP

(6) G(pv~G -/)) ΌGp-GGp (A), (5), PC

(7) G(pv~G -/)) ΏG(p-Gp) (6), Tl [?/G/>] x Syll.

(8) G(p Gp) D - G - (/> G/>) GA3 [<?//> G/>] x Transp.

(9)G(/>v~G ~/>) D ~ G ~ (/> G/>) (7), (8) x Syll.

(10) G(pv~G ~p)'(pv~G ~/>)

D ~G ~(p Gp)v(p -Gp) (9), GA3 x Transp., PC

(11) LM£ D MLp (10), Def L, Def M

HI /) D L(Mp -Dp)

Proof:

(1) G(~£ 3 G - ί ) GA1 [p/~p]



444 WLODZIMIERZ RABINOWICZ

(2) H D G ^ ) D ( ( ~ G ~ W ) ) D / ) ) PC

(3) G((~G ~pvϋ)^p) (1), (2)xR2

(4) p D ((~G ~pvp)^p) G{(~G ~Pvp)^p) (3), PC

(5) pΌ L(Mp Dp) (4), Def L, Def M

T2 G£ = LMp

Proo/:

(1) Gp-D (pv~G ~ p) GA3 x Transp., PC

(2) p D ( p v ~ G ~ P ) PC

(3) Gp-D G{pv~G ~p) (2 )xRl

(4) Gp^ (pv~G ~p)-G(pv~G ~p) (1), (3), PC

(5) (pv ~G ~ p) - G(pv ~G ~ p) ̂ ) Gp see step 4 in the proof of

A4, PC

(6) G/> Ξ LMp (4), (5), PC, Def L, Def M

Derivation of RL (hαί=^ |i-LQί):

Given : (1) of

( l ) x R G : (2) Ga

(1), (2) : (3)ce Gα

(3), DefL : (4) La

B. We prove now that K1.2 contains K1.2.G:

Proof of GA1:

(1) LM(p D LM/>) T

(2) G(/> D Gp) (1), Def G

Proo/ of GA2:

(1) ML{p-D q)-LMp-D Mq S4

(2) LM(p D qr). LMp D Mg (1), A4 [p/p D g], PC

(3) L(LM(p^ q) LMp)^ LMq (2) x RL, A2 [p/LM(p => ̂ ) LMp,

q/Mq] x Syll.

(4) LM(p D ^) LM£ I) LM^ (3), (^ LM(p D ήr) LMp D

L(LM(p D q)-LMp) x Syll.

(5) LM(ί D ^) z> (LMp D LM^) (4) x Exp.

(6) G(p D q) D (Gp D Gg) (5), Def G
Proo/ o/GA3:

(1) LM~p^)ML~p A4 [p/-p]

(2) LM ~ p^> ~LMp (1), hf ML - p -LMp x Syll.

(3) G~pD~Gp (2), Def G

Derivation of RG:

Given : (1) a

T : (2) a D Λf a

(1), (2) x MP : (3) M«

(3) x RL : (4) LMa

(4), Def G : (5) Gα
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III. The number of modalities in K1.2.G and K4.G We shall prove now

that K1.2.G (K4.G) has precisely 6 (4) distinct modalities.

A. K1.2.G has at most 6 distinct modalities: (1) -, (2) G, (3) ~ G ~ , (4) ~,

(5) ~G, and (6) G~.

Proof: First we prove that the following "reduction laws" are theorems

of K1.2.G:

(a) GGp = Gp

(b) G ~ G ~ p = Gp

(c) G ~ Gp = G ~ p

(d) GG ~ p = G ~ p.

Proof of (a):

(1) Gp D GGp see step 5 in the proof of A4.

(2) GpZ)~G~p GA3, PC

(3) (~G ~ / > D £ ) D (GpΏp) (2), PC

(4) HDG^)D(GίDί) (3), PC

(5) G(~p^G~p) GA1 [p/~p]

(6) G(Gp D/>) (4), (5)xR2

(7) GGp => Gp (6), GA2 [p/Gp, q/p] x MP

(8) GGp Ξ Gp (1), (7), PC

Proof of (b):

(1) (G ~ /> D ~/>) =>(/>=> ~G ~ />) PC

(2) G(G ~ p 3 ~/>) see step 6 in the above proof

[p/~p].
(3) G(ίD~G~ί) (1), (2)xR2

(4) Gp-D G ~ G ~p (3), GA2 [^/-G ~ />] x MP

(5) (-/? D G ~p) -D (~G ~p^)p) PC

(6) G(-/> =) G - />) GA1 [/>/~/>]

(7) G(~G -/> D/>) (5), (6)xR2

(8) G~G~p^Gp (Ί),GA2[p/~G~p,q/p]xMΈ>

(9) G ~ G ~/> = Gί (4), (8), PC

Proof of (c):

(1) Gp=G~~p PCxRl

(2) - G / > Ξ ~ G ~ ~ / > (1), PC

(3) G ~Gp = G ~G ~~p (2)xRl

(4) G ~ G ~~/> H G ~/> (b)lp/~/>]

(5) G~Gp=G~p (3), (4) x Syll.

Proof of (d): by substitution in (a).

It is easy to ascertain that the addition of ~ to any one of the modalities

(l)-(6) gives us a modality which is equivalent to some already listed

modality. We prove now that the addition of G has the same consequences.

If we add G to (1) or (4), we get, respectively, (2) and (6).
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(a) implies that, if we add G to (2), we get an equivalent of (2).

(b) implies that, if we add G to (3), we get an equivalent of (2).

(c) implies that, if we add G to (5), we get an equivalent of (6).

(d) implies that, if we add G to (6), we get an equivalent of (6).

This completes our proof.

B. K4.G has at most 4 distinct modalities: -, G, and their negations.

Proof: Since K4.G contains K1.2.G, it cannot have more than 6 modalities.

But it follows trivially from GA3 and GA4 that I ^ G GP - ~G ~ P a n d

\^j-ζ ~Gp = G ~ p. Therefore the number of distinct modalities reduces to

four.

C. K1.2.G (K4.G) has at least 6 (4) distinct modalities.

Proof: Since K1.2.G (K4.G) is deductively equivalent to K1.2 (K4), the

K1.2 (K4)-semantics is adequate even for K1.2.G (K4.G). Therefore, in

order to prove C, we should construct the falsifying Kl.2 (K4)-models for

all equivalences between p, Gp, ~G~p, ~p, ~Gp, and G~p (between

p, Gp, ~p, and ~Gp). Since this proof is a purely mechanical task, I shall

omit it here. But one thing remains to be done before we even can start

constructing the falsifying models. We have to give such a truth-condition

for G that the defunctional equivalences: Ga = LMa andLα =a-Ga, will

turn out to be valid.

VG. For any wff, a, and for any wj eW, V(Ga, W{) = 1 iff for every Wj such

that WiRwj and Wj e C, V(a, Wj) = 1; otherwise V(Ga, w{) = 0.

VG is a correct truth-condition for G iff, given VG, the following holds:

For any K1.2- or K4-model, (W, R, V), for any w{ e W and for any wff, a,

I. V(Ga, Wi) = 1 iff V(LMa, w{) = 1, and

Π. V(La, w{) = 1 iff V(a Gα, w{) = 1.

Proof of I: Since (W, R, V) is a K1.2- or K4-model:

(1) R is reflexive and strictly short.

(1) and the truth-condition for L imply that:

(2) V(LMa,Wi) = 1 iff (a) V(Ma, w{) = 1 and (b) V(Ma, wf) = 1, for

every Wj such that WfRwj and Wj e C.

The truth-condition for M and the definition of C entail the following

equivalence:

(3) For every wj e C, V(Ma, Wj) = 1 iff V(a, Wj) = 1.

From (2) and (3) we get:

(4) V(LMa, Wj) = 1 iff (a) V(Ma, Wj) = 1 and (b) V(a9 wf) = 1 for every

Wj such that W{RWJ and Wj e C.

(1) implies that:

(5) R is finite.
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It follows from (5) and the truth-condition for M that the condition (a) in (4)
is redundant. In other words, (4) can be shortened to

(6) V(LMa, wι) = 1 iff V(a, Wj) = 1, for every Wj such that WIRWJ and
Wj e C.

Given VG, (6) is equivalent to I.

Proof of II: (1) and the truth-condition for L imply that

(7) V(La, Wi) = 1 iff V(a, w{) = 1 and V(a, w,) = 1, for every Wj such
that WiRwj and Wj e C.

Given VG, and the truth-condition for conjunction, it follows immediately
that (7) is equivalent to II. QED

NOTES

1. It is easy to prove that, in the field of S4, A4 and Ml taken together are equivalent to the

following formula:

M2. p D(MLp\/L(Mp Dp)).

That A4 & Ml imply M2 and that M2 implies Ml is obvious. In Section 2 it is shown that M2

implies Jl in the field of T (see steps 3-10 in the proof of (b)). Since Sobociήski [11] has

proved that, given S4, A4 is deducible from J l , we can conclude that A4 is deducible even

from M1.

2. StrShort. implies Fin. Given Trans., the same applies to Short.

3. This paper had already been written when K. Segerberg informed me that the completeness

proofs for K1.2 and K3.2 can be found In his Essay in Classical Modal Logic, chapter II,

section 7, Uppsala, 1971.

4. By a "modality" I shall mean here any unbroken sequence of zero or more monadic oper-

ators such that every operator in the sequence is either primitive or is equivalent to an

unbroken sequence of primitive monadic operators.

5. Two systems are independent iff neither contains the other one.

6. j implies that K2.1.1 does not contain K3.1.1. That K3.1.1 contains K2.1.1 is, of course,

trivial.

7. By " T " , "S4", etc., I shall mean that the formula in question is a thesis of T (S4, etc.).

8. " E q " stands for the "rule of substitution of proved equivalents" (derivable in every system

which contains T).

9. For the sake of simplicity, I have omitted all identity-pairs belonging to R (R is, of course, a

reflexive relation in every K-model).

10. A finite set of wffs of S is consistent relative to S iff the negation of the conjunction of its

members is not a thesis of S. An infinite set of wffs of S is consistent relative to S iff its

every finite subset is consistent relative to S. A set of wffs of S, Γ, , is maximal consistent

relative to S iff: (1) Γ/ is consistent relative to S, and (2) for any wff of S, a, if a 4 Γz , then

Γ/ U [a] is inconsistent relative to S.

11. See Section 2, step 9 in the proof of (c2).
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12. See, for example, [3], p. 157.

13. See Section 2, step 5 in the proof of (c2).

14. It can be easily shown that the formula in question is not provable in any other Af-system

represented in Diagram B.
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