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CALCULEMUS

WILLIAM H. FRIEDMAN

In this paper I shall develop three methods of expressing propositions
in algebraic notation along with purely computational tests for validity. The
first two methods pertain to syllogistic arguments, the third to proposi-
tional logic. All seem to be of theoretical as well as pedagogical interest.

1 The Additive Method Traditional schematic formats for representing
syllogisms have no doubt suggested some elementary mathematical opera-
tions to numerous logicians, but full mathematization has proved elusive.
Fred Sommers [6], to my knowledge, was the first person to devise an ade-
quate system whereby syllogisms can be treated as additions. It turns out
that one can add up the premisses of a valid syllogism and the sum will be
the uniquely correct conclusion. Sommers’ system is, however, encum-
bered with several nonmathematical rules; and we lack a convincing expla-
nation as to why we should expect his method to work. In reflecting on
these issues, I was able not only to uncover how an additive system works
and why, but also to produce a greatly simplified method.

The efficacy of my method depends on being able to capture mathemat-
ically certain traits of the syllogism and especially a complete set of three
rules for determining validity employed by Wesley Salmon [4]. A syllogism
has exactly two premisses and a conclusion, all of subject-predicate form.
Furthermore, the three propositions always involve exactly three terms
(which may be either subjects or predicates), one of which (the middle
term) appears once in each premiss but never in the conclusion, Thus, in
adding premisses it is necessary that the middle term drop out; otherwise
it would appear in the sum representing the conclusion. One of Salmon’s
rules states that the middle term must be ‘‘distributed’’ (see [3] for a dis-
cussion of this concept) exactly once. This calls for some provision for
mathematically differentiating a distributed occurrence of the middle term
in one premiss from its mandated, undistributed occurrence in the other
premiss. One way to accomplish this is to have the middle term be positive
once and negative once.
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Another of Salmon’s rules is that each of the other two terms (the end
terms) must have the same distribution value in the conclusion that it had
in the premiss containing it. This rule reinforces the idea of making + and
- indicators of distribution value, because the end terms need to preserve
this value in going from summand to sum. To highlight the distribution
value of a term and because + is often omitted, let us make - the sign of a
distributed term.

If we bear in mind that in a universal affirmative proposition, only the
subject is distributed (hence negative), we are now in a position to test a
basic syllogism:

First Premiss All M is P -M+P
Second Premiss All S is M -S+M
Conclusion All S is P -S+P

Since the sum of the premisses is indeed the representation of the conclu-
sion, the syllogism is valid.

Salmon’s remaining rule is that the number of negative premisses in a
syllogism must equal the number of negative conclusions to be valid. Since
there is, of course, only one conclusion, this means that there is at most
one negative premiss and some means of mathematically identifying nega-
tive propositions would be desirable. I chose to mark these propositions
with a suffix of -1, because in the process of addition the sum will serve as
a tally of negative premisses. The sum could not in this system properly
represent an actual proposition with any suffix other than -1. Any sum with
a different suffix would surely indicate a violation of the third rule. Here
is an example of a syllogism that would have seemed valid without provision
for markers:

Some M is not P +M-P-1
Some S is not M +S-M-1
Some S is not P +S-P-2 .

Not only is the invalidity easily spotted, but the reason for the invalidity is
as well. Formally one might just say that the computed sum does not sym-
bolize the anticipated conclusion, which calls for +S-P-1.

The four types of categorical sentence forms that can appear in a
standard syllogism and their corresponding representations are

A All Sis P -S+P
E No S is P -S-P-1
I Some S is P +S+P

0} Some S is not P +S-P-1

Now a standard syllogism which has three terms (each occurring twice)
need present no problem if any single term is logically negative in each of
its appearances. The matter is altogether different when a term and its
negate (e.g., blue and nonblue) are both present; they must be counted as
two separate terms. If this makes the total greater than three, one member
of each offending pair must be transformed to the other by the processes of
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obversion or conversion—otherwise, the argument is not a standard syllo-
gism and, as a result, is not amenable to the additive test.' So far there is
no mathematical provision for negated terms; hence, obversion can not yet
be accomplished algebraically. But, since the ordinary algebraic laws of
associativity and commutativity apply, conversion (of E and I statements) is
possible.

As a caution, we note that one must not infer from the fact that the al-
gebraic sum of the premisses of a valid syllogism is equal to the conclusion
that these premisses are logically equivalent to the conclusion. Nor can
one confidently derive the original premisses from the conclusion by work-
ing backwards. The algebraic relation of premisses to conclusion is usual-
ly one-way, like implication. In fact, despite much effort, I was unable to
discover within the additive scheme any representation of logical equiva-
lence, say, of the sort arising from contraposition, that did not impose
extremely artificial restrictions on the normal operations of addition and
subtraction.

Despite (or perhaps because of) the paucity of algebraic operations
permitted in the additive method, it is quite handy to use and easy to teach;
for by means of a single rule (the sum of the premisses must equal the
conclusion) one can prove the validity of the fifteen valid syllogisms sanc-
tioned by Salmon’s rules and more. Suppose we wished to bestow existen-
tial import on other than I and O propositions, thereby validating some nine
additional syllogisms from traditional logic. We need only incorporate
among the premisses a statement (of the existential import deemed to issue
from a term T) written in the form ‘Some T is T’, which would be ex-
pressed algebraically as +7+7. For instance, to render AEO in the fourth
figure valid, the formula +S+S should be included among the premisses to
assert the nonemptiness of the minor term (or subject of the conclusion).
One can tell whether a syllogism is to be considered valid only on the
traditional view by working with the given premisses and noting if an ex-
pression of the form -27 occurs in the sum. Such a syllogism could be
made valid with the supplementary premiss that there are 7’s, that is,
+T+7T. This maneuver suggests that the additive method is not restricted
to syllogistic arguments with just two premisses, and indeed that is the
case.

Sorites and every sort of polysyllogism (with any number of premisses)
are similarly testable by this method, once the proper preparations are
made. The number of different terms must equal the number of proposi-
tions—with due treatment of negates as before; the propositions must be in
standard categorical form; no proposition should be duplicated; nor should
a term appear other than once in each of two propositions; once these regu-
larizations are accomplished, then provision for existential import may
take place. It may occur that a sensible conclusion may derive from a non-
standard argument, but the above precautions should forestall hasty mis-
judgments. As for enthymemes, the missing proposition may be found—if
in fact the argument is not hopelessly invalid—by simple addition (for a
missing conclusion) or subtraction of the sum of the given premisses from
the given conclusion (for a missing premiss).
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While it is clear that regular syllogistic arguments can be treated
quite readily, so can certain more shadowy, nonstandard ones. Consider
this enthymeme, where we are given as premisses: No A is B, and Some B
is not C. From their algebraic symbolization (-A-B-1, +B-C-1), it is
apparent that their sum will contain -2, prima facie evidence that no stand-
ard syllogistic conclusion can validly be drawn as things now stand. How-
ever, once the first premiss is obverted to become ‘All A is non-B’ and the
second contraposited to become ‘Some non-C is not non-B’, the new sum
(of ~A+B’ and +C’'-B’-1) is +C’-A-1. The latter can be recovered in trans-
lation as ‘Some non-C is not A’.

It would be highly desirable to obviate the necessity for obversions and
conversions before calculation comes into play. Fortunately, such a method
is at hand.

2 The Multiplicative Method One problem with the additive method was
the sparsity of mathematical equipment in use. By switching to multipli-
cation and its inverse, but still retaining signs, we have more matériel for
symbolizing the various traits of syllogistic sentences. Interestingly
enough, it was Sommers [5] who first produced such a method; yet it was
again necessary to make what I believe are needed improvements as well
as to supply the rationale for the maneuvers.

As before, in order to highlight distributed terms and have the middle
terms cancel out, I decided to let a distributed term appear as an inverse
or as a denofninator, while undistributed terms appear as numerators.

1
Thus, ‘All S is P’ is represented as (§)P or more simply as IEJ Now it

would seem natural to let a term prefixed by a minus sign represent a
negated term; but unfortunately that leads to notational ambiguity between

~

‘All non-P is S’ and ‘Some S is not P’, for both would be symbolized as —1%.

A student of mine, Mike Eggleston, suggested using the mathematically
negative inverse of a term letter to represent the term’s logical negation,
and that removes the ambiguity. This would indicate that ‘All S is non-P’

S

1\ -
be symbolized as (—) —1;1, which could then represent its obverted form:
‘No S is P’. Similarly, ‘Some S is not P’ becomes S (%) Yet trouble

looms unless we further distinguish particular propositions (/ and O) from
universals (A and E). For without such a distinction, the premisses ‘Some
M is not P’ and ‘Some S is not M’ would, when symbolized as (M <:I31—)> .

-1
(S <M>) and multiplied, yield %, which represents the hardly derivable

conclusion ‘All P is S’. By affixing the curative coefficient 2 before all
particular statements, such illicit conclusions are blocked. Just as the
appearance of any marker other than -1 signalled an invalid syllogism in
the additive method, so any coefficient other than 2 warns us of a multipli-
cative invalidity. This is seen in the reformulation of the above two prem-

. . -1 -1 _4S .
isses and their product: (ZM(P)> . <ZS(M>) =% This use of the
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coefficient 2 bears further fruit, for now we have two types of denial
which can be performed mathematically: one for negating just terms (the
negative inverse mentioned before) and a similar, but separate way of
negating whole propositions, namely, taking the negative inverse of one half
the formula for the proposition. For instance, the contradictory of ‘Some S

is P’ or 2SP is —%, that is, ‘No S is P’.

SP’
Here is the final multiplicative schedule expressed compactly:
A AllSis P ;—J
E NoSisP L
SP
I Some S is P 2SP
-2S
0 Some S is not P 5

As before, to bestow existential import involving a term 7', supplement the
premisses with a formula representing ‘Some 7T is T’, to wit, 27T or 277

The great advantage of the multiplicative over the additive system is
that obversion and conversion (as well as all derivative operations) need
not be performed in any but mathematical ways. For example, ‘All S is P’
is shown to be equivalent to ‘No S is non-P’, because the first is formulated

S -1

P
a student does not even have to learn obversion, conversion, or contraposi-
tion, if he or she can manipulate fractions. Enthymemes and sorites are
solvable by the multiplicative method in ways analogous to those prescribed
for the additive method. The test for validity we have been using is that

the product of the premisses must equal the conclusion.

As a last syllogistic example of this method, let us return to the non-
standard enthymeme form ‘No M is P’ and ‘Some M is not S’. If we multiply

-1 -2M
— by ——, we get %, a form not appearing on the above schedule. What

-1
as Lid and the second as——; the two formulas are, of course, equal. Thus
s(3)

MP

is to be done mathematically to regularize matters? Well, the 2 indicates
that the conclusion (if salvageable) is particular, but every particular
proposition is represented by a monomial with at least one term not in the
denominator position. We can algebraically create a numerator by intro-
ducing two minus signs and taking the inverse of either or both terms

1 -1
t t 9 ('_1) (i) -2 S or 2 P These translate into ‘So S i
o ge s\F) — , 5 me non-S is

non-P’, ‘Some non-S$ is not P’, and ‘Some non-P is not S’. This result ex-
hibits the greater perspicuity of the multiplicative method, in that all three
conclusions are equally obtainable and also immediately seen to be equiva-
lent.

A promising extension of this method would seem to be its application
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to the propositional calculus. Taking ‘All S is P’ as the guide for implica-
tion and the negative inverse for negation, one can derive the following
schedule for common truth functional connectives:

Truth function Standard Symbol Multiplicative Symbol

not p ~p -1/p
pandgq p-a paq
porgq pva -(pq)
if p then ¢ pDOq q/p
any truth ¢ 1

The following results are rather nicely proved by multiplication:
Modus Ponens:  ((p2q)-p)D>q)=t q/((a/p)p)=aq/q =1
DeMorgan’s Law: ~(~p-:~q)=pv q -1/((-1/p)(-1/9)) = -(pq).

However, one could not prove by multiplication that ¢ v # also follows from
(p D.q) + p; nor could a DeMorgan equivalence involving any odd number of
letters be demonstrated. Even more embarrassing is that every bicondi-
tional (p D g) - (g D p) seems to come out as a tautology, since (g/p)(p/q) = 1.

These difficulties seemed irremediable, so I abandoned this method but
happily discovered another system suggested by an algebraic analysis of
Venn diagrams for propositions.

3 The Boolean Form Method This method was named for its use of
Boole’s Law (x®=x) and its use of the normal operations of an algebraic
ring. Since a Boolean ring® need not have addition and subtraction, I prefer
the distinguishing name ‘form’.

Let us employ Venn diagrams to represent propositions and their in-
terrelations. We can, as an hermeneutic aid, think of a circle as containing
all states of affairs verifying the proposition it represents, while the rec-
tangle contains all verifiers whatsoever. Now if we know that not-p is true,
in other words that p is false, the p-circle will be devoid of all verifiers;
hence, according to logical convention, it is shaded to show this emptiness.
The natural algebraic description of this situation seems to be: the uni-
verse (represented as 1) less p-verifiers; the appropriate formula is 1-p.
Similarly, when we know that p D¢ is true, the verifiers of p will all be
contained within the circle of g-verifiers. That is to say, all p-verifiers
are g-verifiers. The usual Venn diagram rendering for this is given below.
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The shaded area is the p-circle except for that part which overlaps the
g-circle; algebraically, this is p-pq. However, this area is what is absent
from the universe; thus we write 1-(p - pg) or 1 - p + pg. Note that a Venn
diagram could be constructed from a formula like this, which shows that
the formula could be interpreted as a plan or instruction for making the
pictorial representation of the proposition. All areas remaining unshaded
but mentioned in the formula could have a verifier within, and their union
does have at least one verifier according to the import of the proposition
represented. The formula for the disjunction, p v ¢, which will be derived
shortly, is p - pg + q. This means that if you remove the pg-area from the
p-circle and then unite what remains with the entire g-circle (incidentally,
thus restoring the pg-area), you arrive at that union of areas which (ac-
cording to the proposition p v ¢) has at least one verifier. Had you grouped
the terms like this: (p - pq) + ¢, it would perhaps more clearly have indi-
cated a union of the left sector of the p-circle with the entire g-circle.

All other truth functions can be derived from those given for negation
and implication. Thus, since p v g is equivalent to ~p O ¢q, we can substi-
tute 1 -p for p in our implication formula to get 1 - (1 -p)+ (1 -p)gq,
which equals the aforementioned formula for disjunction. The full schedule
is given below.

Truth Function Algebraic Representation
~p 1-p
pDO4q 1-p+pq
pva p-pq+q
b-a bq
p=4d’ 1-p-q+2pg
any tautology 1
any contradiction 0

Notice that one could calculate the truth value (in terms of 1 and 0) of a
function when given the truth values of the component atomic propositions
(again, in terms of 1 and 0). For example, when p is true and g false, p = g
is shown to be false because 1 - 1 - 1 + 2(1)(1) = 0. )

Now the algebraic expression for the biconditional calls for some com-
ment., As an instruction for drawing a Venn diagram it would have been
more usefully writtenas 1 - p + pg - g + pq. Also, since in a Boolean ring
there is no distinction between +p and -p, the monomial 2pq would be dis-
carded; because just as p - p =0, so p+ p =0 =2p. The algebraic repre-
sentation would then be 1 - p - ¢q. When assigning the value truth to both p
and g in p =¢q, this last algebraic expression takes on the value -1, which,
we then have to remind ourselves, in a Boolean ring is equal to +1. Thus,
in teaching a student unfamiliar with these properties of Boolean rings or
in trying to program these formulas, considerable difficulties could arise,
should there be any departure from what I call the Boolean Form Method.
Even greater problems could result from dispensing with both + and - in
favor of a sign for symmetric difference, say, ®@.



CALCULEMUS 173

We recall that our effort to provide a purely multiplicative scheme for
the propositional calculus failed in the case where the conclusion formula
contained a letter not in the premiss formulas. By showing how such a
problem is handled in the present (BFM) scheme we would be doing a
double service: getting a feel for how validity is tested and assuring our-
selves that this problem is not carried over to plague us again. The ap-
proach is to demonstrate that g v » can in fact be deduced from p D¢q and
p by computing the algebraic formula for [(p D ¢):p] D (¢ v ¥) as equal to 1,
This could be done by substituting all (eight, in this case) combinations of
1’s and 0’s in the algebraic formula (a method suitable for computers) or
by directly proving that the formula is identical to 1. The conjunction of the
premisses, (p O ¢q) - p is written initially as (1 - p + pg)p. When terms are
multiplied, we get p - p* + p%q, which by Boole’s law becomes p - p + pq and
finally just pg. The conclusion g v 7 is written as ¢ - g7 + . The implica-
tion of the conclusion by the premisses can now be written as 1 - pg +
pq(q - qv + 7), which becomes 1 - pq + pg® + pgv - pg°v. Upon application of
Boole’s law, the exponents disappear, and the expression is easily seen to
be equal to 1. Thus we have a decision algorithm for the propositional cal-
culus: 1 - product of all the premisses + premiss product - conclusion is
identical to 1, if valid.

A shorter procedure immediately suggests itself. Let P be the product
of the premisses and C the conclusion; instead of working with the equation
1-P+ PC=1, use the equation P(1 - C) =0, which is obtained by sub-
tracting 1 from each side and factoring. This new equation embodies the
principle of indirect proof, for it can be interpreted as saying that the con-
junction of the premisses with the denial of the conclusion is false.

Employing this shorter rule, we can readily see that any argument,
whose validity can be proved by some established, classical axiomatic sys-
tem of the propositional calculus, can also be validated by BFM. The fol-
lowing relative completeness proof employs the general strategy of
Canty [1], which Copi had turned to account in behalf of his own rules [2].

Suppose some argument, p,, ..., p, . . 4, can be proved valid in a de-
ductively complete and consistent system, like R.S. (Rosser’s System, upon
which Copi relies). By = applications of the deduction theorem, we have

first: py, . . ., pp_1+-(Pp,Oq) and finally -p, D (p. D(. . . (p,Dq) . ..)). Re-
peated use of R.S. Theorem 25 (exportation) and then the corollary to
Metatheorem IV (substitution) yields ~(p, * p2*..."* p,) D q. Let us ab-

breviate this last result as P D C. By analyticity of R.S., P DC is a tau-
tology; hence, P . ~C is a contradiction, i.e., P - ~C has the same truth
value as R - ~R. Now in BFM, R - ~R becomes R(1 - R), a product which
is clearly equal to 0. Therefore, P(1 - C) =0 as well. But in BFM, this
last formula is how we show an argument, P .. C to be valid; thus p,, . . .,
b, -°. q is also valid by the rules of BFM.

Furthermore, BFM is consistent; for we can never deduce from true
premisses, p,, . . ., p», a false conclusion gq. Given that each premiss is
true, each of their values is 1; consequently, the product of them all is also
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1.

Thus is BFM tells us that (p,p,... p,)(1 -4q)=0, then 1(1 - g) =0.

Whence, ¢ = 1, and ¢ is true.

As an historical note, BFM is literally faithful to Leibniz’s desideratum

that when the validity of an argument is in dispute, the antagonists can say:
calculemus, let us calculate. Once the propositions are mathematized, one
proceeds by routine calculation. Leibniz would only have lamented Church’s
proof of the undecidability of the predicate calculus.

(1]

[2]
(3]

[4]
[5]

(6]

NOTES

. Here is a valid syllogism where such a pair (consisting of a term and its negate) would seem

inoffensive: no New Yorker is a Bostonian; some non-Bostonians are New Yorkers; therefore,
some non-Bostonian is not a Bostonian.

I am grateful to Prof. William Margolis for supplying information on Boolean rings.

To show formulas p and ¢ equivalent, it is not really necessary to show that 1 -p-g¢q +
2pq = 1; it suffices to show that the mathematical formulas for p and g are always numerically
equal. For instance, to show that r-s is equivalent to ~(~r v ~s), one need only show that
rs=1-(1-r)-(1 -l -s)+ (1 -5)). This procedure avails, for if any biconditional p = q
is true, then 1 -p —q +2pq=1; whence we derive 2pqg =p +¢q. In BFM, the (numerical)
truth values for p and ¢ can only be O or 1; on the other hand, this last equation is only satis-
fied by integral values when p and q are simultaneously both O or both 1. This means that the
equation is logically satisfied only when p and q are equivalent in truth value.
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