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JUNCTIONS

DAVID W. BENNETT

1 Propositional Logic

1.1 Definitions Consider the following array of symbols:

r s p
q r .

s s p

P

Such an expression will be called a junction. The vertical and horizontal
bars are to be interpreted as conjunction and disjunction signs, respec-
tively, and the capped letters as negations. Thus, a junction is simply a
formula of the propositional calculus written in terms of horizontal con-
junctions, vertical disjunctions, and literals (single letters or their nega-
tions). The junctives (connectives) indicate grouping unambiguously without
parentheses. Innermost junctives are omitted. The positions of the literals
are called junctures. Junctions within junctions are called subjunctions.

1.2 Normal forms and truth conditions So understood, the familiar con-
junctive and disjunctive normal forms of the junction given above are
easily shown to be as follows:

rsp Λrs Λrp Λ sqsp Λ sqs Λ sqpΛprspΛ prs Λ prp
rsp v rsr v rqp v rqr v ssp v psp

These forms can be written down at once by direct inspection, clearly, but
need not be, since the needed conjuncts and disjuncts coincide with
immediately visible downward and forward paths through the junction. We
will refer to this coincidence (suitably generalized) of normal form terms
with junctive paths as the normal form theorem for junctions. From this
theorem we obtain at once the following basic laws:

(1) Given a complete and consistent truth-assignment A for the literals
of a junction J, J is true for A if and only if the literals true in A are
consistent with the literals on some forward path of J.
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(2) A junction is valid (inconsistent) if and only if it contains a pair of
contradictory literals on each downward (forward) path.

1.3 Proof by inspection In testing for validity or inconsistency it is not
necessary to inspect separately all downward or forward paths. Instead, we
inspect the junction for occurrences of contradictory literals. The dis-
covery of a pair of such occurrences eliminates without further inspection
and at a single blow all those paths containing the contradictory pair.
Proceeding thus by elimination, even complicated junctions quickly fall
apart when they are valid or inconsistent. And when they are neither, we
show invalidity or consistency by finding a single path free of contradiction.

1.4 Reduction to junctive form To obtain a junction from a formula
written in standard notation without biconditionals, drive negations inward
by DeMorgan's Laws, eliminating conditionals along the way by means of
the equivalence of A D B with -Av B and of -(A D B) with AΛ-J3. The
desired junction can be written down at once from direct inspection of the
original formula, as the following illustrates:

.(rv.((svj) Ώpr)) D -(spvjs Ώ p))

r s p
_ _ § r_ .

s s p

P

The three negation signs added just beneath the original formula during the
process of writing down the junction make it easy to keep track of what
remains to be done. Note how perspicuous the junction seems, relative to
the original formula.

1.5 Junctions with biconditionals The dual of a junction is its reflection
on the major diagonal (a line of slope -1 passing through the upper left-hand
corner of the junction). So the negation of a junction is obtained by
negating its literals and interchanging horizontal and vertical junctives.
This can be done by first writing in the junctives and then filling in the
negated literals, or the negation can be written down directly, proceeding
naturally from left to right and top to bottom. An equivalent negative form
can also be obtained by a simple 90° rotation, again negating literals. Given
these means of writing negations, the biconditional of a pair of junctions A
and B can be written in any of three ways:

A \ B A B A I B

-B I -A -B -A -B I -A

The third way is simplest, and it can substantially reduce the number of
paths to be considered. It amounts to extending the notion of a junction and
its paths in an obvious manner. In writing a junction by direct inspection
from a formula containing biconditionals, simply write
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^ (TB
for each biconditional (negated biconditional), go on to the rest of the
junction, and plan on filling the blanks later.

1.6 Rules of simplification Junctions and subjunctions can often be
simplified by means of the following rules:

(1) Treat any valid or inconsistent subjunction of a junction as true or
false and resolve, i.e., eliminate a true conjunct or a false disjunct, treat a
conjunction with a false conjunct as false and a disjunction with a true
disjunct as true, and eliminate all but one corner of a biconditional in which
a true or false corner appears.

(2) If some subjunction S is a conjunct (disjunct) of a junction J, treat
all other occurrences of S or -S in J as true or false (false or true),
respectively, and resolve.

Simplification by either of these rules proceeds by inspection and by
erasure. The junction given above, for example, resolves to the following:

r s

Q

1.7 Infinite junctions We consider briefly now the notion of an infinite
junction, i.e., an imagined junctive array for an infinite conjunction or
disjunction of ordinary finite junctions. Infinite junctions are an easy and
perspicuous avenue to the following familiar and basic law of propositional
logic which we will refer to as the infinite junction law:

An infinite conjunction (disjunction) is consistent (invalid) if every
finite initial string of conjuncts (disjuncts) is.

Given any infinite junction J satisfying the hypothesis of this law, we have
only to define a non-contradictory path P through J, by induction, as
follows:

Given the first n literals of P, with n ^ 0, choose the (n + l)th literal in
such a way that the resulting subpath of P is infinitely continuable, i.e.,
lies on finite initial paths of arbitrary length which are free of con-
tradictory literals.

By hypothesis there must exist non-contradictory initial paths of arbitrary
finite length in J. This guarantees a first literal, after which a next literal
is always guaranteed by the hypothesis of the induction.

2 Predicate Logic

2.1 Prenex junctive form Consider now an example in predicate logic
made familiar to logicians by DeMorgan:

-(Vx(Fx D Gx) D -Vy(Bu(FuΛHyu) D -3v(Gv*Hyv)))
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xyΰv Fx Fu Hyu Gv . Fb Hab Gb Fb . .
.abb Gx Hyv . Hab Gb

b...

Here the expression

xyΰv Fx Fu Hyu Gv
Gx Hyv

is simply the original formula written in prenex junctive form, with
existential variables distinguished from universal variables by overbars.
The expression

.abb
b . . .

is, in effect, our proof of the inconsistency of this quantified formula. It is
to be interpreted as a claim that when the junction is instantiated twice,
first with the variables of the first row and then with those of the second,
the conjunction of the resulting junctions will be inconsistent. This claim
is easily checked by inspecting the junction on the right. Dots indicate
positions which we might fill in various ways largely indifferent to the
proof.

2.2 Inconsistency proofs In order to justify this example and generalize
from it, what is needed, clearly, is an appropriate restriction on the
variables of instantiation in the proof. We will call a rectangular array of
variables written beneath the prefix of a formula F written in prenex
junctive form a proof of F. The variables of a proof P appearing beneath a
given quantifier will be called its instances. A proof is to be regarded not
only as a rectangular array but also as a discursive sequence to be read in
the usual way, from left to right and top to bottom. The sequence of all the
variables on any row of P up to and including an existential instance will be
called an existential string. Then the desired restriction is as follows:

The topmost occurrence of each existential string in P must terminate
with a variable which has no previous occurrences in P and no free
occurrences in F, i.e., a fresh existential instance is needed for each
new existential string.

Proofs conforming to this restriction will be called well-formed. The
conjunction of the junctions obtained by replacing the variables of the
junction of F by successive rows of P will be called the instantiation of F
by P. Finally, we say that P is valid for F if P is well-formed and the
instantiation of F by P is inconsistent. We will also say that an incompleted
proof P is well-formed if we can fill all empty universal positions in P with
a single fresh variable and then go through P in order, filling empty
existential positions compatibly with our restriction. Then a well-formed
incomplete proof will be called valid if its incomplete instantiation is
inconsistent regardless of how the missing variables are filled in.
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2.3 Consistency Our restriction is a natural one. If we consider the
meanings of the quantifiers of an existential string, we see that an
existential instance depends on the instances preceding it in the string and
should be kept distinct from each of these, as well as from all free
variables of the given formula. When this is done for an entire row of
instances, the junction for these instances is a legitimate instantiation of
the given quantified junction. By this we mean that if the quantified junction
is consistent, its instantiation by this row must also be consistent, as we
see at once by imagining the quantifiers instantiated one at a time from the
outside. Similarly, if / is the instantiation of F by a valid proof P, then F
must be inconsistent; otherwise we could go through the entire proof in
order, instantiating one variable at a time with our restriction in mind, to
obtain a consistent interpretation of /. These observations suffice to show
the consistency of our method for establishing inconsistency by means of
valid proofs.

2.4 Duality If we reflect a prenex junctive formula and its forward
reading inconsistency proof on the major diagonal, we obtain a downward
reading validity proof of its dual. Thus the validity of the DeMorgan
example could have been established directly, instead of through the
inconsistency of its negation, by means of the following dualized proof:

x.b
\ya.
\ub.
υb. .

So we now agree that quantifier prefixes and their proofs may on occasion
be written vertically, just above their junctions, with vertical prefix bars
indicating universal quantifiers, and vertical proofs establishing validity
rather than inconsistency. The expressions \x, \y, . . . and Ίc, 'y, . . . for
universal and existential quantifiers agree nicely with our expressions for
conjunctions and disjunctions, and will be taken as official quantifier
notation. The omission of vertical bars in horizontal quantifier prefixes
and of horizontal bars in vertical prefixes is to be regarded as convenient
unofficial abbreviation. Given these conventions, the downward proof
technique for validity requires no further account or justification beyond a
simple appeal to its obvious duality with the forward technique for
inconsistency.

2.5 Reduction to prenex form Reduction of a quantified formula free of
biconditionals to prenex junctive form proceeds quite as easily as when no
quantifiers are present. We first require that all quantified variables be
distinct, supplying prime symbols, if necessary, to ensure this. Then as
negations are driven inward, quantifiers are picked up and taken into the
prefix in the given order of their occurrence, writing \x for VΛ: or -3x and
~x for 3x or -VΛ;. Otherwise, quantifiers are simply ignored in constructing
the appropriate junction. The process is aided as before by judicious use
of extra negation signs, two of which can be observed in the DeMorgan
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example above. In practice, it is more convenient to violate the given order
of the quantifiers and pick up existentials before universals (or the reverse
in downward proofs) while moving inward. Applying this device to the
DeMorgan example, we easily obtain the following prefix and simplified
proof:

yuxυ
abbb '

Finally, if qι and q2 are quantifier prefixes of a biconditional formula
qxAx = q2A2, we write the following:

4 * Λ*

This is equivalent to

q\A\ I qXA\

where q* is obtained from q by putting primes on the variables in q and
interchanging universal and existential quantifiers, and A* is obtained from
the negation of A by putting primes on all the variables in A which belong to
q. For this treatment of biconditionals to work properly, our original
formula must be free of any primed occurrences of the variables in q± and
q2. And we can often rearrange the variables in the quantifier prefix
#i<72#ί#2 to better advantage, moving existentials farther to the front,
subject only to the avoidance of passing an existential through a universal
in whose scope it lies. Thus, the variables to be put in the quantifier prefix
are first obtained by simple inspection of the biconditional (negated bicon-
ditional), which is then written as

A, 1 A2 /A, I \

\AΓ\ / ,
the blanks to be filled later by negating Ax and A2 and supplying primes to
the variables as required.

2.6 Completeness For any prenex junctive formula F containing n
universal variables in its prefix, consider an infinite array A constructed
beneath the prefix of F as follows:

(1) For some infinite list of potential instantial variables (including all
free variables of F), first enumerate all the different strings of variables
of length n in some arbitrary fashion and write these strings beneath the
universal quantifiers of F.

(2) Next fill in existential positions consecutively, each with the first
variable which is compatible with the restriction on existential instances.

A proof for F will be called normal if it is an initial string of rows in A.
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Now suppose that no normal proof of F is valid. Then, by the infinite
junction law, the infinite conjunction of instantiations of F by the rows of A
is consistent. So this infinite conjunction is true for some interpretation in
a universe of objects designated by the variables. Finally, we see by (1)
and (2) that F must be true in this interpretation. For, given arbitrary
instances of the initial string of universal quantifiers in F, there exist
uniquely determined instances of the subsequent string of existentials such
that, . . ., for any instances of the final string of universals (some of these
strings may be empty), the instantiation of F by the resulting row of
instances is a conjunct of the infinite conjunction. So the assumption that
no normal proof of F is valid entails that F is consistent. This shows that
the method of establishing inconsistency by normal proof is complete.

2.7 Sets of formulas Consider another version of the DeMorgan
example:

Vx (Fx 3 Gx), 3x(Fx Λ Hax), .-. 3x(Gx Λ Hax)

x~xx x Fx ~x Fx Hax x Gx
.b. b Gx b b Hax

b..
..b

This illustrates our proposed technique for establishing the inconsistency
of a finite set of formulas (or a conjunction). We first reduce each formula
separately to prenex form. Quantifier variables in different formulas need
not be distinct. We then write a quantifier prefix for the entire set by
stringing the separate prefixes together in order, regarding the variables
of different formulas as distinct variables. Next we construct a well-
formed proof for the set which combines separate sub-proofs constructed
for the individual formulas. Except for unfilled positions indicated by dots,
the rows in the proof are the same as the rows in the sub-proofs. We
construct the proof by writing a row of instances under one of the separate
prefixes and the same row (together with dots) under the combined prefix,
then writing another row under the same or a different sub-prefix and also
under the combined prefix, and so on. The proof will be valid if the
conjunction of instantiations by the sub-proofs is inconsistent, as we see
from the structure of the instantiation by the proof. Briefly, then, the new
technique consists in prenexing formulas of the set separately and
instantiating by rows of instances of the individual prefixes until an
inconsistency is reached. Completeness of the technique is easily seen
from the fact that for any valid proof

r i i r i 2 riw

' mv τn2 ' ««
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for a set (conjunction) of formulas, we can always find a valid proof of the
form

rn
• r12

rln

rml

• ^1712

^mn 9

where r^ is a row of instantial variables for the quantifier prefix of the jth
formula of the set. Note, in conclusion, that our method is readily applied
to disjunctions as well as conjunctions, by duality, and to infinite as well as
finite sets, an infinite conjunction (disjunction) being inconsistent (valid) if
and only if some finite initial string of the conjuncts (disjuncts) is.
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