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R-MINGLE AND BENEATH. EXTENSIONS OF THE
ROUTLEY-MEYER SEMANTICS FOR R

J. MICHAEL DUNN

1 Introduction* This note presupposes the notation, terminology, and
results of [7]. There Routley and Meyer (in their section called "R-mingle
and beyond. Extensions of the semantics'') give a semantical postulate

p7 0 < f l v 0 < a *

to be added to their postulates for an r.m.s. ("relevant model structure")
so as to get a Mingle r.m.s. They then prove (Theorem 5) that A is a
theorem of RM (R-Mingle) iff A is valid in all Mingle r.m.s. The purpose
of this note is to supply an alternative semantical postulate

Sem(l) Rxya =#> x < a vy < a.

This postulate has certain advantages over p7.x First it is more
natural in that the characteristic axiom scheme for RM, A —* (A —* A), is
negation-free, whereas the specific mission of the *-operation in the
Routley-Meyer semantics is to provide for the treatment of negation.2 The
second advantage is that Sem(l) generalizes in certain natural ways, as
shall be shown, so as to provide semantical characterizations of certain
natural subsystems of R.

2 Semantics for RM Recall that upon defining A o B = ~(A —• ~B), we
get a "consistency" connective that "imports" and "exports" (cf. [7]).
This allows us to take the characteristic RM axiom in the form

Syn(l) A o A^ A.

Soundness Theorem If \^A, then A is valid in all r.m.s. satisfying Sem(l)
{for short, all "rm.m.s.").

Proof. In view of Theorem 2 in [7], it suffices to verify that Syn(l) is valid

*Thanks are due for partial support to NSF grant GS-33708, and also to R. K. Meyer for
many helpful conversations providing background.
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in all rm.m.s. Consider an arbitrary such, (0,K,R,*), and let v be a
valuation therein. Because of Theorem 1 of [7], it suffices to show that if
A o A is true on v at a point α, then so is A. But if the first, then Bx,y such
that Rxya and A is true on v at both x and y. But by Sem(l), either x < a or
3; < α. In either case by Lemma 1 of [7] A is true on υ at a.

Completeness Theorem If A is valid in all rm.m.s., then IRMA

Proof: We adapt the strategy in [7] for Theorem 5, the corresponding
theorem relative to p7. It should be pointed out, however, that Lemma 15
is not strong enough as actually stated in [7] to support its direct citation
in the proof of Theorem 5. However, it is said in [7] that Lemma 15 was
originally proved in [6], and conveniently enough it was there stated in a
subtly stronger way that suffices. Thus in [6] Theorem 3 asserts (trans-
lating into the jargon of [7]) that for any regular R-theory To and for any
formula A, if A { To then there exists a prime regular R-theory T such that
(a) TQQT and (b) A / Γ. Fixing To to be the set of theorems of RM, we are
guaranteed for each non-theorem A of RM the existence of a prime R-
theory T containing all the theorems of RM but not A. There are no
further snags in the strategy presented in [7], for T may then be plugged
in Lemmas 13 and 14 there so as to obtain the Γ-canonical r.m.s.
(Qτ

r,Mτ

r,Rτ

r,*r) which fails to verify the given non-theorem A of RM on its
Γ-canonical valuation vτ. It only remains to check then that Rτ

r satisfies
Sem(l).

Before we begin, recall that Mτ

r is the set of all prime T-theories.
Putting primeness aside, the members of Mτ

r are sets of formulas closed
under adjunction and Γ-entail ment. In particular then the members a of
Mτ

r are closed under RM-entailment, i.e., A e a and (RM A —* B imply B e a.
Let us simplify notation, calling Rτ

! just " β " throughout this argument.
Now if R fails to satisfy Sem(l), there are prime T-theories x, y, a so
Rxya and x <£ a and y <£ a. These last two boil down by definitions (cf.
Lemma 11 of [7]) to x j£ a and y £ a. There are then formulas X, Y so that
Xe x, Ye y, and yet X,Yfί a. In the canonical r.m.s. Rxya is defined so
that Xe x, Ye y implies X o Ye a (for any formulas X, Y whatsoever). So
X .0 Y e a. But the following key theorem of RM will then allow us to infer
that XvYea (since T contains all RM theorems and a is closed under
Γ-entailment, (i.e., A e a, A -> B e T =ΦB e a):

Key X o y-» XVY.

But X v Y e a yields, since a is prime, that l e α o r Yea, contradicting our
choice of X and Y.

It only remains then to satisfy ourselves that Key is a theorem of RM.
We sketch a derivation that generalizes nicely later on, citing besides
Syn(l) only well-known and easily verified theorems and derived rules of R.

1. X -* X v Y Disjunction elimination

2. IoF-(IvF)o(IvF) 1, Monotonicity of o
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3. (XvY)o (XvY) -*XvY Syn(l)
4. X oγ^ χvγ 2,3, Transitivity

3 Generalizations of the semantics Define A1 = A, and for each positive
integer n, An+1 - An o A. For each positive integer n, consider

Syn(rc) An+1-*An.

Let RM(rc) be R with the additional axiom scheme Syn(w) (RM is then
RM(1)).3

The corresponding semantical postulates Sem(n) are easier to under-
stand by illustration than by general specification. So we plop down a
relatively formal general specification, and then proceed quickly to illus-
trations. We first need to introduce relations of "relative copossibility"
of various degrees, following the lines of [7]. Set Rn for each natural
number n as an n - 2 placed relation as follows:

R°xιa<zΦRQxιa,
RιXιX2a<=^ Rx1x2a,

and for n ^ 1:

Rn+1Xλ . . . Xn+lXn+2<^3y(Rn*l Xn+iy& RyXn+2<*)

Now for each positive integer n, set

Sem(rc) Rnxλ . . . xn+1a==> V tf^JΊ . . . yn+1a
y i . . , y n < ί * i , - . . , * » + i l

Note that Sem(l) as first set down falls out as a special case. As
further illustrations, consider the following (superscripts on variables
abbreviate repetitions in an obvious way, so "Rx2a" is shorthand for Rxxa,
etc.):

o .oλ D2 _. /Rxya v Rxza v Ryza v
Sem(2) R xyza=Φ< n ί „ 2 « 2

r R2xyza v /?2Λ:vwα v R2xzwa v R2yzwa v
R2x2ya v R2x2za v R2x2wa v

_, / o x o 3 \ R2xy2avR2y2zavR2y2wav
Sem(3) βΛrv^^α=^>< _ 2 2 02 2 r,2 2

y *̂  R*xz a v Ryz a v R zΔwa v
R2xw2a v R2yw2a v R2zw2av

M2x3a v /ty3a v #£3α v β^ 3α
Define an rm(«).m.s. as an r.m.s. satisfying Sem(n).4 We have, as gen-
eralizations of the Soundness and Completeness Theorems of the previous
section for RM the

Soundness and Completeness Theorem for the Systems RM(n) For each
positive integer n,

I R M ( W ) ^ < ^ > A is valid in all rm(w).m.s.

Proof: We specialize to the case of n = 2, leaving it to the reader to detect
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that the pattern of moves can be lifted to the general case at an unjustified
cost of notational complexity. Further, we make only those moves that
generalize those made in the section previous for RM, leaving it to the
reader to supply the same background as was given for RM as to why these
moves suffice.

Soundness: If A3 is true on v at a then there exist w, z such that Rwza,
A2 is true on v at w, and A at z. Chasing the point about A2 down, we see
that there exist x, y such that Rxyw and A is true on v at both x and y. But
Rxyw and Rwza assures R2xyza, and then Sem(2) gives that at least two of
x, y, and z bear R to a. Suppose, for sake of illustration, that Rxya. Then
since A is true on v at both x and y, A2 is true at a. Since A is true on v at
all of x,y,z, the same argument would work in the two other cases.

Completeness: Suppose in the canonical r.m.s. that Rxyza and yet

(1) not Rxya, because Xx ex, Yλ e y, Xγ° Y±( a;
(2) not Rxza, because X2 e x, Z2 e z, X2 o Z2 { a;
(3) not Ryza, because Y3 e y, Z3e z, 7 3 o Z 3 / a;
(4) not Rx2a, because X4' e x, X±" e x, XJ o XA" i a\
(5) not Ry2a, because Ys' e y, Y5" e y, Y5

f o Y5" { a;
(6) not Rz2a, because Z 6 ' e z, Z6" e z, Z6

f o Z6" ( a.

(We are utilizing obvious mnemonic conventions that allow one to handle the
larger cases like RM(3) or even the general case without having to actually
write out stuff like the above.)

Set

Y= Y, ΛY3ΛY5' Λ F 5 " ,

Since theories are closed under adjunction, X e x, Yey, and Z e z. But
since Rxyza and we are in the canonical R.M.S., X o Y o Z e a.

Now for any formulas X, Y, Z whatsoever, the following may be shown
to be a theorem of RM(2) (we begin to indicate o by juxtaposition):

Key (2) XYZ-* XYVXZVYZVX2MY2MZ2.

Derivation sketch:

1. X^ XvYvZ

Y -> XvY vZ Disjunction introduction
Z -> XvYvZ

2. X oY oZ -> (XvYvZ)3 1, Monotony of o
3. (XvYvZ)3-* (XvYvZ)2 Syn(2)
4. (XvΓvZ) 2 — XYvXZvYZvX2vY2vZ2 Distribution of o over v
5. XYZ-* XYvXZvYZvX2vY2vZ2 2,3,4 Transitivity

But a is closed under RM(2) entailment. So XYvXZ vYZv Z2 vY2 vZ2 e a,
and, since a is prime, one of the disjuncts is in α. We can see this is
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impossible, choosing without loss of generality XY for illustration. First,

we cite the easy fact that o distributes over Λ in R in the direction we need,

i.e., A o (BAC) -* ABΛAC is a theorem of R (and hence RM(2)). Repeated

such distributions allow us to obtain

XY - X^AX.YS Λ . . . X4"Γ5"

as a theorem of RM(2). Hence by conjunction elimination XY —* X1Y1 is a

theorem of RM(2). But since a is closed under RM(2) entailment and our

illustrative case assumption is that XY e a, we obtain XλYχ e a. This

contradicts our assumption (1) above that Rxya failed because (among other

things) XjΓt i a.

3 Structure of the family of systems RM(w) It is natural to ask how the

various systems RM(rc) are related to one another and to R. We begin with

two easy observations. First, given positive integers m, n with m < n,

RM(rc) is a subsystem of RM(ra). Thus if we have Syn(w) as axiom scheme

we can derive Syn(n + 1) thusly:

1. An+1 ->An Syn(rc)

2. A -* A Self-implication

3. An+ί o A — An o A 1,2, Monotonicity of o

4. An+2-*An+1 3, Abbreviation.

Secondly, all of the systems RM(w) are distinct from R, as was shown

in effect by Meyer [5] using a certain infinite matrix. By producing various

finite versions of that matrix one can show that all of the various systems

RM(rc) are distinct from one another.5

Thus define for each positive integer n the matrix 3WΛ as follows: The

elements of 3W,« are the positive integers 1 through n, their negatives -1

through -n, 0, and ω. The only undesignated element is 0. The operations

are defined exactly as on the infinite matrix except that multiplication and

all of its cognate notions, e.g., division, used by Meyer are to be under-

stood as "truncated" at n. More explicitly, let 'a\ 'b', V range over

positive integers ^n. Define:

(i) aXnb = min (α X δ, n);

(ii) a divides^ b iff Bc(a xn c = b);

(iii) If a divides,* b, b/na = the greatest c such that a xn c = b.

(iv) the greatest common divisorw (a,b) - the greatest c such that c divides„

both a and b.

(v) the least common multiple^ (a,b) = the least c such that both a, b

dividew c.

(vi) aXn-b = -{a xn b)

If the reader will take the trouble to rewrite clauses (l)-(7) of [5] by

way of these truncations, he will have the definitions of the operations on

Win. In particular, tracing down definitions, when α, b are positive, a o b -

-(a — -6) = (by (7iii) of [5]) -(axn-b) = (by (vi) above) - -(axnb) = a xnb.
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We also leave to the reader the laborious verification that each matrix 9WW

satisfies all the axioms and rules of R.
Turning to the matter at issue, the distinctness of the systems, it will

obviously suffice to show for each Syn(rc) that it fails to be (schematically)
valid in 9W2W+i although Syn(n + 1) is valid in 3W2W+1. One can falsify Aw+1 ->
An by assigning A the value 2. This assignment does the job, since the
value of An+1, 2n+1, fails to divide* the value of An, 2n ("implication" is
division^). Not arguing the matter fully but getting to the nub, this same
assignment is easily seen to be the best choice for falsifying Syn(n + 1), and
yet it fails to do. Indeed because of truncation at 2W+1, An+2 and Λn+1 both
take on the value 2"4"1.

4 Algebraic Modals for the Systems RM(w) The appropriate algebraic
models for the system R are DeMorgan monoids. These, briefly put, are
residuated DeMorgan-lattice-ordered commutative monoids which are
square increasing, i.e., where ©("consistency") is the monoid operation,
a ^ a o a (= a2, defining exponent notation in the usual way). As the square
increasing postulate suggests, one can prove easily \^A -* A o A. This
means that \^A<r->A o A, and in general lRM(w)^4n<-»Aw+1.

One can then prove that lRM(w) A iff A is valid in the class of "rc-potent"
DeMorgan monoids, i.e., those satisfying an = #w + 1. This is a simple
mechanical matter of modifying the proof of the corresponding theorem for
R and DeMorgan monoids (c/. [6]), since the Lindenbaum algebra of RM(w)
is obviously rc-potent by virtue of the equivalence of An and An+1. Another
routine matter is the rewriting of the representation results of Routley and
Meyer [7] for DeMorgan monoids in terms of r.m.s. so as to obtain corre-
sponding representation results for w-potent DeMorgan monoids in terms of
rm(«).m,s. The only thing needing verification is that the algebra of
propositions determined by a rm(«).m.s. is rc-potent, and this falls quickly
out of Sem(n).

It seems proper to close this section by picking up the glove thrown
down by Routley and Meyer [7, p. 223]. There they remark that imposing
various postulates of finitude on the notion of a Mingle r.m.s. gives
semantics for various proper extensions of RM. They then say they "leave
to Dunn the question of whether we get them all that way." The answer,
based on known results, is rather straightforwardly yes. Let us quickly
sketch the proof, since it is fair to suppose that Routley and Meyer had in
mind an answer based directly on their semantical methods, rather than
the "old wine in new bottles" one we are about to give, which is based
ultimately on algebraic methods.

Thus it is the result of [1] that each proper extension of RM has as a
characteristic model some finite Sugihara algebra, and Sugihara algebras
are easily seen to be prime DeMorgan monoids. This last outfits them for
plugging into the construction of Collorary 9.1 of [7]. That construction
yields an embedding of a prime DeMorgan monoid into an algebra of prop-
ositions determined by a certain corresponding r.m.s. whose points are
the prime filters of the given DeMorgan monoid. One can straightforwardly
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argue that the corresponding r.m.s. is a Mingle r.m.s. (or an rm.m.s. for
that matter). Also it is easy to see that a formula is valid in a given r.m.s.
iff it is valid in the algebra of propositions determined by that r.m.s. And,
of course, if the given prime DeMorgan monoid is finite, so is its set of
prime filters and so its corresponding r.m.s. So it only remains to show
that the embedding given by the construction is onto. The embedding maps
a given element onto the set of prime filters having it as member. All
Sugihara algebras are linear. This, together with the finiteness of the
particular Sugihara algebras under consideration, gives us the coincidence
of prime filters and principal filters. A given element a is then mapped to
the set of principal filters determined by elements x < a. The question is
then whether all propositions in the corresponding r.m.s. are of this form.
It is easy to check that for prime filters P, Q, P < Q in the corresponding
r.m.s. iff P c Q. A proposition in the corresponding r.m.s. turns out then
to be a set of prime filters closed upward under c . Because of the linearity
and finiteness of the given Sugihara algebras, it is easy to see that any such
proposition will contain a smallest prime filter P, and that the element a
determining P as principal filter will be mapped onto the given proposition.

4 Conjectures and exhortations It is not unnatural to conjecture (or at
least hope) that (1) R is the intersection of the family of systems RM(rc),
and (2) each RM(̂ z) has the finite model property. The system R would
itself then obviously have the finite model property, and hence be decidable
by a well-known result of Harrop (c/. [3]).6

Besides such specific suggestions concerning study of the systems
RM(rc), it seems worthwhile to recommend in general study of the
systems that extend R. The study of systems in a similar relation to
the intuitionistic propositional calculus, often called "intermediate" or
"superconstructive" logics, has been very fruitful (cf. [3]). The label
"superrelevant" logics has some problems in that classical propositional
calculus, with all its fallacies of relevance, is thereby "superrelevant."
But the label "superconstructive" has survived similar problems. "Inter-
mediate" is not specific enough as to between what, but one can always talk
of "relevant intermediate logics" as opposed to "constructive intermediate
logics" (at the price of once more having classical logic become both
"relevant" and "constructive"). Whatever one calls the area, Meyer's
pioneer work on RM in [4] is certainly seminal, and [1] and [2] suggest that
RMi is the LC of the relevant intermediate logics.

NOTES

1. This claim is by no means intended to negate other reasons for liking p7 given by Routley and
Meyer [7].

2. To reinforce this point, the reader should compare the rather "indirect" verification of the
characteristic RM axiom given in [7] (p. 221) using p7 with the routine verification using
Sem(l) below.
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3. Alternatively, one could take the characteristic axiom scheme of RM(«) as expressing a kind
of "expansion." Setting A -*1 B = A -» B and A -+"+1 B = A -> (A ->n B), then (A -*n B) -+
(A -+n+1 B) is deductively equivalent to Syn(rc) (in the presence of the rules and axioms of R),
as may easily be seen.

4. At the price of some "negative" strain on notation, we could have carried along the case n = 0.
Thus defining R'ιa <* ROOa, Sem(0) becomes R°xa =* R~ιa. Since R°aa is just pi of [7], we
would then have ROOa for any rm(0).m.s. This is just p7' of [7, p. 223], and is shown there to
give classical logic. Perhaps stretching a point and letting Syn(0) be A -• t (putting the constant
conjunction of all truths, cf. [6], in place of a blank space), we also get classical logic, as is
easily checked. We leave it to the interested reader to check that the argument for the Sound-
ness and Completeness Theorem given immediately below could have been carried out relating
Sem(0) to Syn(0) as well.

5. Using "trivial" in its accustomed mathematical sense, the following construction most likely is
"trivially" implicit in Meyer's "Improved Decision Procedures for Pure Relevant Logics," draft
portions of which were privately circulated January 1973.

6. The "base case" for (2), n = 1, was established by Meyer in [4] {cf. also [ 1 ]). Also it is worth
pointing out that using the results of the last section it is easy to see that if R does have the
finite model property, then (1) is true, basically because a finite DeMorgan monoid having
n elements will trivially be rc-potent. (There is a slight lacuna here, relating finite models of
R in general to equivalent finite DeMorgan monoids. This is easily filled by "identifying"
elements a, b in the given model when both a -*• b and b -• a are designated, thereby obtaining
a DeMorgan monoid.)
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