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Nominαlizαtion and Scott's Domains II

RAYMOND TURNER

/ Introduction In Turner [17] we developed a semantics for nominal-
ized predicates within the general framework of Montague Grammar. We
offered an extension of Montague's PTQ which sanctioned the occurrence of
nominalized verb-phrases and sentences. The actual semantics was furnished by
the semantic domains of Scott's theory of computation. One issue of some
importance was given scant attention in that presentation, namely, the role of
a comprehension schema in the theory. In this paper we investigate this issue in
some detail. Our more general objective is to examine the logical foundations
of the enterprise in more depth than was possible in the earlier paper. In par-
ticular, we here provide a more general model-theoretic setting for the analysis
of nominalization.

First, however, we must say a few words about the process of nominali-
zation itself. In this paper we shall be exclusively concerned with nominalized
predicates, and by the term 'nominalization' we shall mean any process which
transforms a predicate or predicate phrase into a noun or noun phrase. For
example, 'feminine' is transformed into 'femininity', 'divine' into 'divinity', and
'obscene' into 'obscenity'. Following Cocchiarella [8] I shall call these deriva-
tive nouns 'abstract singular terms'. Of course, the phenomenon of nominali-
zation is not restricted to such instances of morphological nominalization.
Consider the following pairs of sentences:

1. (a) The book is brown
(b) Brown is a colour

2. (a) The cup is gold
(b) Gold is an element

3. (a) Tammy and Toby are students
(b) Students are numerous

4. (a) John is honest
(b) Honesty is a hindrance

Received February 3, 1983; revised July 2, 1984



464 RAYMOND TURNER

5. (a) Susan runs
(b) Running is a waste of energy

6. (a) Peter jogs
(b) To jog is silly

7. (a) Peter left with a man with one eye
(b) To leave with a man with one eye is short-sighted

8. (a) Jill is not nice
(b) To be not nice is not nice.

In sentence l(a) the phrase is brown functions semantically as a predicate: it
attributes a certain property to the book. In l(b), however, the word Brown
seems to occupy a subject position in the sentence and some property is
attributed to it. Similarly, in 2(a) the phrase is gold functions semantically as
a predicate whereas in 2(b) the mass noun Gold is said to have a certain prop-
erty. Sentence 3 (a) states that Tammy and Toby have the property of being stu-
dents; in 3(b) the denotation of the bare-plural students is ascribed a certain
property. In 5 (a) the intransitive verb runs is used to ascribe a certain property
to Susan; in 5(b) the gerundive running becomes the subject and some property
is said to hold of its denotation. Sentence pair 6 illustrates a similar phenome-
non with the infinitive form of the verb. Sentence 8(b) is, presumably, an
instance of self-application. In each of the sentence pairs 1 through 8, a term
which is semantically a predicate is transformed into something which is seman-
tically an object—and some property is ascribed to it. There are important lin-
guistic differences between these various instances of nominalization but I will
not be concerned with such here. Our present concern relates only to the exis-
tence of such abstract singular terms and the issues they raise for any seman-
tic theory.

To gain some insight to the problems raised by such singular terms we
adopt the following assumptions. Let E be the domain of objects and P the
domain of one-place predicates which is to be interpreted as some class of func-
tions from E to B (the domain of truth-values).

(1) P=[E-+B].

The idea is that phrases which function semantically as objects should receive
their denotations from E and those which function semantically as predicates
should receive theirs from P. This leaves us to deal with the denotations of
abstract singular terms; from where are nominalized forms, such as those
occurring in l(b)-8(b), to receive their denotations? For the sake of argument,
let us introduce a new domain, PC, of predicate correlates, which will serve this
purpose: each nominalized form is to get its denotation from PC. Now, the
process of nominalization, exemplified by 1-8, seems to induce a function from
predicate phrases, which receive their denotations in P, to phrases which get
assigned their denotations in PC. A little reflection on our examples should con-
vince the reader that the following assumptions are reasonable:

(I) Two predicate phrases with the same denotation give rise to nominalized
forms with the same denotation
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(II) Two predicate phrases with distinct denotations give rise to nominalized
forms with distinct denotations.

The first assumption guarantees the existence of a function F: P -• PC and the
second ensures that F is injective or one-to-one. We are not assuming that
nominalized forms, as singular terms, necessarily refer to the same properties
or forms designated by these predicates in their primary linguistic role (i.e., in
predicate positions); we are only assuming that there is a one-to-one correspon-
dence between the two. In other words:

(2) P = PC.

This brings us to our final point. Predicate phrases take their denotations
from P = [E -• B], so that any argument to any element of P must be an
element of E. However, the (b) cases of 1-8 are examples where elements of P C
serve as arguments to elements of P. In other words, PC must be a subset of E.

(3) PC^E.

The upshot of all this is clear: to provide a model-theoretic semantics for
nominalized predicates we need to find domains E9 PC, and P which satisfy
(1), (2), and (3). This is a hard task given that a constraining objective is to
provide nontrivial models.

We cannot, for example, simply take P to be all the functions from E to
B without falling into inconsistency. The class of functions P must not be 'too
big'. But it must be 'quite big'. In this regard, consider sentence pair 7. This is
an example where a rather complex predicate phrase gets nominalized: in 7(b)
the whole quantifier phrase is subject to nominalization. So that, whatever other
attributes the domain P is to possess, it must facilitate the nominalization of
complex predicates such as those exemplified in sentence pair 7. The domain P
must be 'big' enough to include the denotations of such complex predicates.

To state this constraint more precisely we need to come clean about the
formal language of our theory. We shall in fact employ a second-order language
due to Cocchiarella [7] which, in keeping with our enterprise, allows relation
symbols to occur in both subject and predicate positions. The basic symbols
of the language (L) include a denumerable number of individual variables
(x0, XΪ9 X2, ΛΓ3, . . . ) and individual constants (c 0, c{, c2, c 3 , . . . ) together with
a denumerable number of relation variables (Xζ, Xγ, X%, X$, . . ) , and a
denumerable number of relation constants (RQ9 R\, R2, R*,...), for each
k > 0 (where there is no danger of confusion we shall drop the subscripts and
superscripts). We shall use M o , . . . , Mn,... to range over both individual and
relation variables. The basic symbols of L also include the logical constants ~,
v, &, and the quantifiers V, 3. The atomic well-formed formulas of L are of the
form

K(t0, . . . , ^-1 )

where K is an π-place relation constant or relation variable and the // are
individual variables/constants or relation variables/constants. More complex for-
mulas can be obtained by conjunction and negation and two types of quantifi-
cation corresponding to our two types of variables: if A is already a well-formed
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formula so are Vx4 and VXM. Other well-formed formulas are obtained by
definition in the normal way.

We are now in a position to state the constraint concerning the nominali-
zation of the complex predicates more precisely. We want to be able to nominal-
ize all the wffs of L. This leads us to postulate the following schema of
comprehension: for each wff, A, of L, with free variables M o > . . .Mπ_i,

(3*)(VMo,. , Mn_x)(Λ ~ X(M0,..., Mn_x)) .

Unfortunately, where classical logic is employed, such a strong schema leads to
Russell's paradox. To see this one has only to observe that the wff ~X(X) has
to denote an element of P and, consequently, via nominalization, its denotation
can be applied to itself. Obviously, something must give: either we weaken the
principle of comprehension by restricting its domain of authority to a suitable
class of wff, or we embrace some form of nonstandard logic. Cocchiarella
chooses the first option and restricts the domain to those wff which he terms
'homogeneously stratified'. In keeping with the approach developed in Turner
[17] our intention is to explore the latter alternative.

2 A semantic theory of nominalized predicates Our objective is to develop
a semantic theory of nominalized predicates in which partial predicates play a
central role. It is a common move in logic to blame the derivability of the
paradoxes on reasoning with meaningless statements of one form or another.
Bochvar's logic, for example, was developed to cope with the semantical
paradoxes in just this way. In the case of the logical paradoxes several authors
(e.g., Brady [4], Gilmore [11]) have developed set theories in which the
membership relation is partial. Much in the same spirit we shall employ partial
predicates in our analysis of nominalization.

By a partial £-ary predicate on a set E is meant a partial function from Ek

to {0,1}. Employing the symbol V for undefined (1 Φ u, 0 Φ u) each such
predicate can be identified with a function from Ek to {1,0, w}, and indeed it
is this representation we shall employ in the sequel. The central semantic notion
of our theory is the following.

Definition 2.1 A partial frame M consists of a triple (E, R, F) where E is
a nonempty set, R — (J Rn (where for each n > 0, Rn is a nonempty set of «-ary
partial predicates on E), and F is an injective function from R to E.

The function F reflects the first of our general constraints on a semantic theory
of nominalized predicates: the function F associates with each predicate a
corresponding object or predicate correlate; the range of the function F is exactly
the set, PC, of predicate correlates.

The semantic definition of L, with respect to such a frame, is much the
same as that of Cocchiarella; the difference is to be located in the form of the
underlying logic supported. Here we shall utilise Kleene's strong three-valued
connectives. We employ the notation

[A]**

to represent the value of the wff A with respect to the assignment function g and
partial frame M (where assignment functions send individual variables to
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elements of E and ft-place relation variables to elements of Rnf (n > 0)). We
also assume that each individual constant c denotes an element c' of E and each
ft-place relation constant R denotes an element R' of Rn. The actual definition
of [A]™ is then given by recursion as follows1:

(1) lK(to,...,tn-l)]*ί= Val(K,g)(Val'(tθ9g),...9 VaΓ(tn_u g))

(2) [A&B]** =[A]"N[B]M

(3) [~A]f = - [ ^ ] g M

(4) [VxA]g

M = /\lA]*(e/x)

eeE

(5) [vXkA]g

M = Λ lA]g

M

(r/x*)
r(ΞRk

where

(i) Val{K, g) — K\ if A' is a constant symbol and g{K) if AT is a variable
and Val'(K,g) = F(Val(K, g))

(ii) Λ, ->, /\ are Kleene's strong three-valued connectives given below
(iii) g(e/x) is that assignment function identical to g except perhaps on

the variable x, where it returns the value e.

Kleene's strong three-valued connectives

A 11 0 u

1 1 0 u 1 0 Γ 1 if each A = 1

0 0 0 0 0 1 Λ = j 0 ί f s o m e Pi = 0
u u 0 u u u ielPι [ u otherwise

The meanings of the other connectives can be derived via the standard
definitions but, for future reference, we provide the truth-tables for Klenne's
conditional and biconditional.

-»|l 0 u ~ | l 0 u

1 1 0 M 1 1 0 M

0 1 1 1 0 0 1 u
u 1 u u u u u u

Kleene's logic was originally conceived to accommodate undecidable
mathematical statements. The third truth-value, intuitively, represents 'un-
decidable' (u) and, as such, its assignment to a wff is not intended to indicate
that the wff is neither true nor false. Rather, its purpose is to signal a state of
partial ignorance. Indeed, enshrined in Kleene's logic is the principle that where
one can determine the truth-value (true or false) of a compound wff from its
components, the wff should be assigned that truth-value, regardless of whether
or not certain of its components are undecidable. So, for example, A & B will
be assigned the value 1 if both A and B are assigned the value 1 and it will be
assigned the value 0 if one of A or B is assigned the value 0, and this will be so
even if u is assigned to the other.
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Klenne's logic seems, therefore, to be quite appropriate to the task in hand,
especially in view of our intended models of nominalization based upon Scott
domains. It is worth pointing out, however, that we could employ the connec-
tives of Bochvar without any major technical changes.

This brings us to that part of our program which bears upon the compre-
hension principle itself.2 Our stated desire is to formulate a theory which
authorizes the nominalization of all the wff of L. Clearly not all partial frames
will facilitate this and those that do will occupy a central place in our theory.
For this reason we single them out for special attention.

Definition 2.2 A partial frame M is closed iff for each wff A, with
free-variables M o , . . . , Mπ_i, the function, λeo> > en-\ [^]gle,\M,) (0 < / <
n — 1), is an element of Rn.

The intention here is that the e, are to range over elements of E appropriate to
the Mil so, in particular, if M, is an /?-place relation variable then e, E Rn

(considered as a subset of E, where this identification is, of course, sanctioned
by the injective nature of F).

Such frames permit the nominalization of all the wff of L but can we
characterize them via an explicit principle of comprehension. The obvious move
is to postulate the following principle:

For each wff A, with free variables M o , . . . , Mn_x (3X)(VM0,...,
Mn_x)(X(M0,..., Afπ_i) ++A) where 'X' does not occur among the
free variables of A.

But such a principle cannot possibly be true since, under Klenne's interpre-
tation of the biconditional, it is impossible for A <-• -A for any wff. We must
be guided, in our search for an appropriate biconditional, by the definition of
closure. Indeed, a little reflection on the definition suggests that we require a
biconditional = which possesses the property: b = c implies b = c. For example,
the biconditionals of Lukasiewicz and Reichenbach satisfy this constraint.

=L\l 0 u = R | 1 0 u

1 1 0 M 1 1 0 0
0 0 1 u 0 0 1 0
u u u 1 u 0 0 1

-Lukasiewicz Reichenbach

A natural step here is to reformulate the above principle of comprehension
with —L or —R in the position of the main connective. Similar moves have been
adopted, in a somewhat different context, by Brady [4] and Feferman [10]. To
achieve this formulation, we must extend L by the addition of a new bicondi-
tional = : if A and B are in L= then so is A = B.

CS* If A is any wff of LNP with free variables Λf0,..., Mn^x (excluding
X) then (3X)(VMO,..., Mn_x){X{M0,. . . , Mn.x) = A).3
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The additional semantic clause for ' = ' obviously depends upon the interpreta-
tion of Ξ=.

(6L) lA=B]*ί=[A]*f=L [£]f
(6R) [A=B]*ί=[A]»ί=R [B]**.

The following result is immediate.

Lemma 2.3 For each of the interpretations, —L and =R, of ' = 9 we have
[A=B]™=lifflA]g

M=[B]g

M.

Theorem 2.4 M is closed iff each instance of CS* holds under either
interpretation of =.

Proof: CS* holds iff for each wff A, (of L)

[3XVMO,. . ., Mn^(X(M09. . ., Mn_x) Ξ A)]g = 1

for each assignment function g. This is equivalent to the claim that there is some
r G R such that for each e0,. . ., en_\ of E (of the appropriate type)

[X(Mθ9..., Mn_x) EE AUiήXHeilMi) = 1 .

But since [A s B]g = 1 iff [A]g = [B]g, this statement is equivalent to the
closure of M.

The theory we shall study is thus characterized by closed partial frames:
let P* be the theory (set of L= wffs) valid in all closed partial frames. We now
explore some consequences of this theory.

In standard second-order logic the addition of equality to the language
results in a conservative extension, since identity is provably equivalent to
indiscernibility given by

(X~Y)~(VZ)(Z(X)-+Z(Y))

where Z is the first variable, in alphabetical ordering, not equal to X or Y. One
principle of some importance is the following principle of indiscernibility
(IND*):

Neither

IND * (V^V Y) (X ̂  Y -> (v*) (X(x) - Y(x))

nor its converse

EXT * (VX) (V Y) ((vx) ((X(x) - Y(x) )-+X=Y)

is valid in all closed frames.
This failure of EXT* should not, of course, come as any surprise, for in

a regime where partial predicates are employed the failure of extensionality is
to be expected.

One relation put to much use in Turner [17] is that of predication. It is
therefore of some interest to see whether or not predication is a relation whose
existence is guaranteed by our schema of comprehension.

PRED* (lX)(VY)(Vx)(X(Y,x) = Y(x)).
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It takes but a little insight to see that PRED* is indeed valid. We see this
as a positive part to our theory for without it the treatment of nominalization,
proffered in the above paper, would be a great deal more unnatural and
cumbersome.

It is now incumbent upon us to compare our theory to that of Cocchiarella.
Our theory differs from that of Cocchiarella both in terms of the schema of
comprehension validated and the underlying logic supported. To spell out the
difference in more detail we need first to say a few words about Cocchiarella's
approach. The semantics of L is furnished by Cocchiarella's notion of a 'Fregean
Frame'.

Definition 2.6 A Fregean Frame M consists of a triple (E, R, F) where E
is a nonempty set, R = (J Rn (where for each n > 0, Rn is a nonempty set of

functions from En to {1,0}) and F is an injective function from R to E.

This notion of a frame seems to reflect a Fregean tradition in the analysis of
nominalized predicates. For Frege, nominalized predicates function as singular
terms, but as singular terms, they do not denote the same thing as they do in
their primary linguistic role. Instead, nominalized predicates denote objects
which are correlated with the actual denotations of the predicates: the function
F associates with each predicate denotation its corresponding correlate. The
actual semantics for L is provided much as with partial frames but with the
crucial difference that the classical connectives supercede those of Kleene's three-
valued logic. Extensionality {EXT*) is a direct consequence of working with
total functions.

To sanction the nominalization of complex-relations (i.e., those induced
by the wff of L) Cocchiarella considers various principles of comprehension
which are extensions of the minimal schema of second-order logic (CP).

For each wff A, of standard second-order logic,

C P (3X)(Vxθ9...,xn_ι)(X(xθ9..., xn_x)~A) where xθ9... 9 xn_λ occur

free in A but X does not.

Cocchiarella extends CP to L by permitting A to be any wff of L. This generates
Cocchiarella's principle (CP*) and results in the (consistent) theory T**. This
theory, however, has some rather curious features, among which is the refuta-
bility of the principle of indiscernibility. Cocchiarella seems to believe that the
failure of IND*9 in Γ**, is more damaging for the Platonic view of nominal-
ized predicates than for the Fregean but I find his arguments here less than
persuasive.

In any case, Cocchiarella seems to favour a theory based upon a stratified
comprehension principle, a principle which actually guarantees the truth of
IND*. The system based upon this stratified principle is, in reality, a second-
order analogue of Russell's simple theory of types. The principle utilizes the
notion of a (homogeneously) stratified wff:

Definition 2.7 A wff A of LNP is homogeneously stratified if there is an
assignment /of natural numbers, to the variables of A, such that for each atomic
wff/φ o, . > tn-ι) oϊA,
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(1) /(*/) = /((,) f o r O < / , y < A 7 - 1

(2) f{K) = 1 +f(t0).

We are now well-placed to state Cocchiarella's principle HSCP*.

HSCP* (3^)(VM0,. . ., M^OfflMo,. . . , M,_!) ~Λ)

where
(i) the free variables of A include M o , . . . , Mn_!

(ii) 'X9 does not occur free in A
(iii) the entire biconditional is homogeneously stratified.

This principle of comprehension thus permits the nominalization of those
complex relations induced by homogenously stratified well-formed formulas.
Moreover, the principle of indiscernibility, IND*, is a consequence of HSCP*.

Unfortunately, PRED* is not. This latter fact is particularly disturbing
given the potential application of such a theory to an analysis of English
nominalization. Chierchia [6] has to adopt some rather unorthodox (not to say
suspicious) maneuvers to circumvent this problem.

We summarize the main differences between our theory and that of
Cocchiarella in the following table:

COMPREHENSION
BIVALENCE PRED* IND* EXT* SCHEMA

P* no yes no no Unrestricted
HST* yes no yes yes Homogeneously Stratified

3 Scott frames It is certainly not obvious that the theory P* is consistent.
Do closed frames exist? In this section we provide an existence proof for closed
frames. We shall employ a technique due to Scott for constructing models of
the untyped lambda calculus. The idea of using Scott's construction in the
analysis of nominalization first occurs in Turner [17] where some motivation
is proffered for the employment of the construction in the analysis of
nominalized predicates. We shall not repeat the discussion here but only make
use of the construction to establish the existence of closed frames.

Definition 3.1 A semantic domain is a partially ordered set, with a least
element u, which admits the least upper bounds of ω-sequences.

We need to spell this out in somewhat more detail. Let D be a semantic
domain and let !Ξ be the ordering of the domain. The element u is the least
element of the domain D if u ίΞ d for each d in D. An ω-sequence is of the form
d0 c dx... !Ξ dn c . . . , dx G D for / > 0. An element d is an upper bound of the
sequence if dt ΪΞ d for each / > 0; it is a least upper bound if d !Ξ d' for any
other upper bound d' of the sequence. We write the least upper bound of the
sequence as |_Jί//.

i

Our first task is to discuss several ways of building new domains from
existing domains. The first construction is the analogue of disjoint union for
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sets. Let (Dt) i G /be a family (possibly infinite) of semantic domains. Then
define

0A={W,/>:rfGfl/}U{«}

where the ordering is given by

d Q d' & (d = u or (3/ G /, 3x, y G £>,- such that x c ̂  and ί/ = <*, />,
d' = (yj))).

The order is inherited from the D( with the additional demand that a new least
element is added. This structure forms a semantic domain. When there are just
two domains Dx and D2 we shall write the disjoint union as Dx + D2.

Our second construction is the Cartesian product construction. Let D and
D' be semantic domains. Then define

DxD' = {<rf, d'):dGD and d' G D'}

where <rf0, fl?ό> E <rfi, rf{> * dt Q d'h i = 0,1.

The least element is (u, u').

We leave to the reader to check that DxD' forms a semantic domain.
Our third construction involves the function spaces themselves. Consider

the set Rn. For obvious reasons, Rn cannot be all the functions from En to B.
We shall, in fact, restrict ourselves to the class of "continuous" functions.

Definition 3.2 A function/:D-• D' is continuous iff for each ω-sequence

<rfπ>Λeωin A / ( L K ) = U(/(4i)
\ n I n

If we are to restrict the class of functions from En -> B to the continuous ones
in our domains we must indicate how this class is, itself, to be viewed as a
semantic domain. Since we know how to view En as a semantic domain it is
sufficient to indicate how the set of continuous functions from D to D' (where
D and Df are arbitrary semantic domains) is a semantic domain. The first step
is to define an ordering on the set \D-*D'\ of continuous functions from D to
D'. We do this in the obvious way. For/, g G [D-• Df] define

/Er(VrfGD)W)cW)) .

This is clearly a partial ordering with bottom element the function λd.uD'. But
how do we compute least upper bounds of ω-sequences in [D -> D']Ί Let
(fn)n(Ξω be such an ω-sequence. Define the least upper bound of <Λ)«eω, by
UΛ = λrf.U {fn(d):neω}.

Once again we leave the details to the reader who must check that this
function is well-defined, continuous, and the least upper bound of the sequence
(fn)n<Eω> We also leave to the reader the detailed checking (or looking up) of
the following standard result:

Theorem 3.3 The set of continuous functions from one semantic domain to
a second form a semantic domain under the above ordering.



NOMINALIZATION AND SCOTT'S DOMAINS II 473

The set, Asq, of assignment functions forms a domain in this way. We now
describe a technique for constructing (closed) partial frames. We shall in fact
construct a domain which satisfies the equation4

E = B+ [E-+E] .

The technique can be applied to provide us with a solution to the equation

E = B + © [En - B]
rt>0

but the details are very messy. Such a solution would provide us with a
partial frame since clearly the union of the domains [En -+ B] is a subset
of © [En -> B]. The equality represents a one-to-one and onto continuous

function between E and B + © [En -+ B].

The first step in the construction of the domain E is to define a sequence
of domains which is achieved by induction as follows:

E0 = B
En+ι =B+ [En-+En],n>0 .

Our objective is to embed each En in En+\. To this end we introduce a sequence
of continuous functions.

qn:En+ι -+En

by induction on n > 0. For the base step we define p0 and q0 as follows:

Po(a) = a for a in B

and

' x' forx'EB
Qo(x') = «

^u if x'e [E->E] .

Now assume that pn and qn have been defined already. Then define

ί
x for x E 5

pnoxoqn for * in [ £ „ - * £ „ ]

{jc r x ' in 5

qnox'opn for x ' in [ £ w + 1 -• £'λ ί + 1] .

These functions (as an easy inductive argument shows) satisfy qn(Pn(f)) =f
andpn(qn(g)) EΞ g. So, in particular, the function/?Λ is one-to-one. This permits
us to view En as a subdomain of En+i (under the projection pn). In fact, we
can extend the mappings pn, qn to mappings (continuous) pnm\En -* Em as
follows:
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fpm_{o...opn n<m

Pnm(f) =\f n = m
lqmo...oqn_{ m<n .

Once again it is easy to check that pmn(pnm(f)) =/and pnm{pmng)) E g for
0 < Λ < m.

All this facilitates the construction of a domain satisfying our equation.

Definition 3.4 The domain E^ consists of the set {</Λ>ΛGω: /„ E En and

Qn(fn+\) =fn} where for </„>, (gn) in £ </Λ>πeω E <gn)neω # (VΛ)(Λ C g j .

Under this ordering £«> forms a semantic domain. Moreover, we can embed
each of the En (n> 0) in is*, by stipulating pnoo: En-+ E^ and z?^ IE^-* En.
These are defined as follows:

Pnoo(f) = (Pnk(f))kGω

Poonif) =fn

Once more we leave the reader to check that p<x>n(Pnoo{f)) = / and
PnooiPoonifΊ) ̂ Ξ/' We can, therefore, regard each En as a subdomain of £Όo
under the embedding pnoo \En-^> E^.

The following lemmas are standard; the proofs can be found in Barendregt

[3].

Lemma 3.5 For each f G £Όo

(i)Iff(ΞEnthenf = fn

(n)Iff€ΞEntfιenpn(f)=f
(iii) ///e En+ι then qn{f) c/.

Lemma 3.6 /« £Όo

(U \Jn)m = Jmin(n,m)

(ii) If n<m then fnQfmQf

( i i i ) / - U / π

We are now in a position to define application in E^. Let/G £Όo and e E £Όo,
then define

fl£ω

Lemma 3.7 Application in E^ is continuous and satisfies

fn+\(e) =fn+ι(en) = (f(e)n)n .

For the proof we once again refer the reader to Barendregt [3]. This brings us
to the results of Scott [14].

Theorem 3.8 For each / E [£Όo -> £Όo] there exists an Xj in E^ such that for
each e in E, f(e) = X/(e).

The Xf in question is given by Xf — |_j \y E En.(f(y)n). This follows by a

relatively straightforward computation for X/(e).
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Theorem 3.9 The semantic domain E^ is isomorphic to the domain [B +
[£00->£<»]].

The isomorphism [one-to-one, onto and continuous) φ: [B -f [E^ -•i?oo]] -*
En is given by

[f iffeB
Uf) = \

y Xf otherwise .

The main definition of this section is the following.
Definition 3.10 A Scott Frame for L is any partial frame in which E is a
nonempty domain and the set Rn (for each n > 0) is the domain of continuous
functions from En to B. In addition, the function FΊs a continuous, injective
function from © Rn into E.

Our aim is to establish the closure of such frames. The next two lemmas
constitute the first move in this direction.

Lemma 3.11 Each of the operators Λ, -1 is monotonic and continuous
viewed as functions

Λ: B x B^B
-1: B-+B .

Proof: Since B is finite it is sufficient to show monotonicity and this much is
clear.

Lemma 3.12 The function

Λ: [£>->*]->£

given by

1 iff(d) = 1 for each d G D
Λ(/) = 0 iff(d) = Ofor some deD

u otherwise

is monotonic and continuous.

Proof: Let (fn)n>o be an ω-sequence in [D -> B]. We have to show

Λ(UΛ) = U Λ ( Λ )

We have to prove Λ ( U / « ) = 1 iff LJΛ(Λ) = 1 and Λ ( L J / « ) = 0 iff

UΛ(/«) = o.
n

Now Λ ( U Λ ) = 1 iff for each d e D, I U/«W) = 1. By definition

this is equivalent to [J (fn(d)) = 1. By the structure of B there must be some
n

n such that for each m> n, fm(d) = 1. So for each d e A there exists an n
such that for each m> n, fm(d) = 1. In particular, for uDED (the undefined
element of D) there is such an n. But \ϊfm(uD) = 1 then by the continuity (and
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hence monotonicity) of / m , fm(d) = 1 for each d E D. As a consequence we
can find an n such that for each d GD and each m> n, fm(d) = 1. But this is
exactly the condition to guarantee that f\{fm) = 1 for each m > n. Hence
U Λ ( Λ ) = l On the other hand, if U Λ ( Λ ) = 1 then, for some n,

n n

Λ(/m) = 1, for each m>n. Consequently, for each m > n,fm(d) = 1 for each

d e f l . Hence, LJΛ(^) = 1 f ° r each dGD. Therefore, Λ( U//i) = L

Next assume Λ ( UΛ) = ° τ h e n f o r s o m e d e D, ( LJ/J (d) = 0. But
V n f \ n I

then/m(of) = 0 for m > some n. Subsequently, /\fm = 0 for each m > n, and
so |_| y\ /π = 0. Conversely, if U f\ fn = 0 then there exists an M such that
Λ //w = 0 f° r e a c r l m>n. Therefore, for each m > n there exists a rf such that

fm(d) = 0. In particular, there exists a d' such that/^ίof') = 0. But/Λ ^ / m , for
m>n, and so/m(cf) = 0 for m > π. Hence there exists a of such that for each

m > /i, /m(rf) = 0. It follows that Λ ( L U ) = °

Theorem 3.13 Each wffA of L, considered as a function

[A]:Asg^B

is monotonic and continuous.

Proof: By induction on A. The atomic case follows directly from the definition

of [ ]. Let (gn) be any ω-sequence in Asg. Then [~A] | J ^ = -i I [A] [_]gn) =

I \ n \ n I

-i ί |_J [^4]^) by induction hypothesis. But by the continuity of -> this equals

For the conjunction case consider [A & B] \_\gn. By definition this equals
n

[A] ]Jgn Λ [B] LJg» By induction this gives M j M l J Λ (LI lB]gn). By
n n \ n / \ n I

t h e c o n t i n u i t y o f Λ w e o b t a i n | J ([A]gn/\ [B]gn) w h i c h e q u a l s | J ([A & B]gn).
n n

This leaves us to deal with the quantification clauses. We deal with clause
(4) since clause (5) is identical.

Consider [Vx A] \_\gn. By definition we obtain
n

N^e.[A](Ug)j(e\x) .

This equals Λ(λβ. [̂ 4] [JgΛ(e|x) I which, by induction, equals f\ίλe.

. By continuity of Λ w e obtain

U(Λ(λMΛ]S,,(Φ)))

This is precisely |_J ([Vx A]gn), as required.
n
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Theorem 3.14 For each wffA of L, with free variables M o , . . . , Mn-χ, the
function

rΛ = λe0,... ,*„_!. lA]^(ei\Mi)9 0 < / < n - 1

is monotonic and continuous.

Proof: It is sufficient to consider the case of one variable. Let (en)nGω

be an ω-sequence in E (of appropriate type for M). Then A U ( L J ^ )
 =

/ \ \ n /

[A]g[\_}en\M\ = [A] [_}gn where gn = g(en\M)9 by continuity of the exten-
\ n I n

sion to assignments function. But [^4]|_J^ equals, by the previous theo-
n

rem, | J [A]gn, which is exactly \J [A]g(en\M); and this equals L J ^ ( ^ )
n n n

This completes our proof of the existence of closed frames.
We are not claiming here that Scott Frames offer an intuitively acceptable

analysis of the nominalization of complex-predicate phrases. The interpretation
of phrases involving the quantifiers is somewhat curious. Our intention here is
to employ Scott Frames only to establish the existence of nontrivial closed Partial
Frames.

NOTES

1. We shall in the sequel sometimes drop the reference to M in [ ]%*.

2. I shall frequently use the phrase 'principle of comprehension' in place of the more
common term 'comprehension schema'. In my usage the two terms are meant to be
synonymous.

3. The '*' indicates that it is a principle of the language L rather than the language of
standard second-order logic.

4. We could solve the equation E = A + [E->E] where A is any domain of 'individu-
als' containing a copy of B.
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