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The Rule of Procedure Re in tukαsiewicz's

ΛΛαny-Vαlued Propositionαl Calculi

JOHN JONES

A modified form of modus ponens is used to give new formalizations of
Lukasiewicz's finite and infinite-valued propositional calculi. In the infinite-
valued case, we establish the independence of the axiom schemes.

Let C and TV be the primitive implication and negation functors respectively
of Lukasiewicz (see [4]). All the propositional calculi we consider here have 1
as the only designated truth-value. The usual primitive rule of procedure in
formalizations of propositional calculi with C and N, or with C as the only
primitive functor(s) is modus ponens (with respect to C). We consider here an
alternative rule of procedure which occurred as a derived rule in [7], p. 101, and
which has been considered in [1] and [2] as a primitive rule of procedure for the
two-valued propositional calculus. This rule of procedure is as follows.

Re Let P, Q and R be formulas and let the result of replacing one occur-
rence of the subformula CPQ in R by Q be 5. Then, if P and R are correct
formulas, S is a correct formula.

Clearly, modus ponens is a special case of Re. Reductions in the number of
axiom schemes of a similar nature to those we obtain here have been described
in the two-valued case in [11].

We shall give several formalizations of the Ko-valued and m-valued
propositional calculi with C and N as the only primitive functors and Re as the
only primitive rule of procedure. We also give several formalizations of the
Ko-valued and m-valued propositional calculi with C as the only primitive
functor and Re as the only primitive rule of procedure. For each formalization
we shall establish weak deductive completeness (i.e., the provability of all
generalized tautologies), and for the formalizations of the K0-valued proposi-
tional calculi we establish the independence of the axiom schemes and primitive
rule of procedure.
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We first establish some lemmas. We shall use a slightly nonstandard form
of hypothetical deduction. The formalization considered in the six lemmas has
no axioms and Re is the only primitive rule of procedure. The expressions to the
left and right of the "yields" sign are formula schemes so that each hypotheti-
cal deduction has infinitely many assumption formulas and infinitely many
conclusions. (Some lemmas therefore have two interpretations, depending on the
number of primitive functors.) Each numbered formula scheme is preceded by
a line of proof. For example, (1.1, iVl.l, 1.1, Re * 1.2) means that by taking
the formula scheme 1.1 as an instance of P in 1.1, and then by 1.1 and one or
more applications of Re we obtain 1.2. As usual, ΛPQ =df CCPQQ.

Lemma 1 CCPQCCQRCPR h CPP, CCPCQRCQCPR.

Proof: 1.1 CCPQCCQRCPR.
(1.1, P/l.l, 1.1, Re* 1.2)

1.2 CQCCQRR.

(1.2, Q/1Λ,R/P9 Ll,Re* 1.3)
1.3 CPP.

(1.1, P/Q, Q/CCQRR, R/CPR, 1.2, Re * 1.4)
1.4 CCCCQRRCPRCQCPR.

(1.1, Q/CQR * 1.5)
1.5 CCPCQRCCCQRRCPR.

(1.1, P/CPCQR, Q/CCCQRRCPR, R/CQCPR, 1.5, 1.4, Re * 1.6)
1.6 CCPCQRCQCPR.

Lemma 2 CCPCQRCQCPR, CQCPP \- CPCQP.

Proof: 2.1 CQCPP.
2.2 CCPCQRCQCPR.

(2.2, P/Q, Q/P, R/P, 2.1, Re* 2.3)
2.3 CPCQP.

Lemma 3 CSCCPQCCQRCPR h CQCPP, CCPQCCQRCPR.

Proof: 3.1 CSCCPQCCQRCPR.
(3.1, 5/3.1, 3.1, Re* 3.2)

3.2 CCPQCCQRCPR.
(3.2, Lemma 1 * 3.3)

3.3 CPP.
(3.1, S/Q, Q/P, R/P, 3.3, Re * 3.4)

3.4 CQCPP.

Lemma 4 CPP, CRCΛPQΛQP Y CQCPP, CΛPQΛQP.

Proof: 4.1 CRCΛPQΛQP.
(4.1, R/AΛ, 4.1, Re* 4.2)

4.2 CΛPQΛQP.
(4.1, R/Q, Q/P, CPP, definition of Λ, Re * 4.3)

4.3 CQCPP.
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Lemma 5 CPP, CRACPQCQP \- CQCPP, ACPQCQP.

Proof: 5.1 CRACPQCQP.
(5.1, R/5Λ, 5.1, Re* 5.2)

5.2 ACPQCQP.
(5.1, R/Q, Q/P, CPP, P/CPP, definition of A, Re * 5.3)

5.3 CQCPP.

Lemma 6 CPP, CRCCNQNPCPQ h CQCPP, CCNQNPCPQ.

Proof: 6.1 CRCCNQNPCPQ.
(6.1, R/6Λ, 6.1, i t e * 6.2)

6.2 CCNQNPCPQ.
(CPP, P/NP* 6.3)

6.3 CNPNP.
(6.1, #/£>, Q/P, 6.3, Re * 6.4)

6.4 CQCPP.

A complete formalization of the X0-valued propositional calculus with C
and TV as the only primitive functors and modus ponens as the only primitive
rule of procedure is given by the following axiom schemes (see [10], [6], [3]).

AX1 CPCQP
Ax2 CCPQCCQRCPR
Ax3 CAPQAQP
AX4 CCNQNPCPQ

The completeness of each of the following three sets of axiom schemes, with Re
as the only primitive rule of procedure, follows by Lemmas 3, 1, and 2 in the
first case, Lemmas 1, 4, and 2 in the second case, and Lemmas 1, 6, and 2 in
the third case.

CN1.1 CSCCPQCCQRCPR
CN1.2 CAPQAQP
CN1.3 CCNQNPCPQ

CN2.1 CCPQCCQRCPR
CN2.2 CRCAPQAQP
CN2.3 CCNQNPCPQ

CN3.1 CCPQCCQRCPR
CN3.2 CAPQAQP
CN3.3 CRCCNQNPCPQ.

A complete formalization of the corresponding m-valued propositional
calculus with modus ponens as the only primitive rule of procedure is given by
the axiom schemes Axl-Ax4 and M(P) defined in Section 14 of [10]. Each of
the above formalizations with Re as the only primitive rule of procedure may
be extended to formalizations of the corresponding ra-valued calculi by taking
the additional axiom scheme M(P). The plausibility of the above formalizations
is established by the usual method. That Re is plausible follows from the
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observation that if P always takes the truth-value 1 then CPQ =τQ and hence
S =TR.

A complete formalization of the K0-valued propositional calculus with C
as the only primitive functor and modus ponens as the only primitive rule of
procedure is given by the following axiom schemes (see [8]).

Al CPCQP
A2 CCPQCCQRCPR
A3 CAPQAQP
A4 ACPQCQP.

The completeness of each of the following sets of axiom schemes, with Re as
the only primitive rule of procedure, follows by Lemmas 3,1, and 2 in the first
case, Lemmas 1, 4, and 2 in the second case, and Lemmas 1, 5, and 2 in the
third case.

Cl.l CSCCPQCCQRCPR
C1.2 CAPQAQP
C1.3 ACPQCQP

C2.1 CCPQCCQRCPR
Cl.l CRCAPQAQP
C2.3 ACPQCQP

C3.1 CCPQCCQRCPR
C3.2 CAPQAQP
C3.3 CRACPQCQP.

A complete formalization of the corresponding ra-valued propositional calcu-
lus with modus ponens as the only primitive rule of procedure is given by A1-A4
and the additional axiom scheme A(CP)m'ιQP (see [9]). Each of the above
formalizations of the propositional calculus with C as the only primitive functor
and Re as the only primitive rule of procedure may be extended to complete
formalizations of the corresponding m-valued calculus by taking the additional
axiom scheme A(CP)m~ιQP. The plausibility of each of the formalizations
given above is established in the usual manner.

We now establish the independence of the axiom schemes and rule of
procedure in each of the formalizations of the K0-valued propositional calculi
given above. The independence of the rule of procedure Re follows from the
observation that the generalized tautology Cpp is shorter than any of the axioms.

The axiom schemes are shown independent by the usual method, though
somewhat indirectly. For the axiom schemes of the N0-valued propositional
calculi with C and TV as the only primitive functors we establish the independence
of the formula schemes Ax2, Ax3, and Ax4 in such a manner that the result
extends to the corresponding result in each of the new formalizations given
above. Similarly, for the K0-valued propositional calculi with C as the only
primitive functor we establish the independence of A2, A3, and A4. The matrices
given below also show that no further reduction in the number of axiom schemes
can be achieved simply by replacing an axiom scheme T by a formula scheme
such as CPλ... CPn T, where Pu.. .,Pn denote formula schemes. The matrices
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for Ax3, A3, and A4 were found by computer program, although that for A4
was given in [5] for a similar purpose. Above each matrix is the axiom scheme
or schemes for which it establishes independence and below each matrix is a note
of the assignment of values which demonstrates independence.

Ax2, A2 Ax3

Q Q

CPQ I 1 2 3 4 I NP CPQ | 1 2 3 4 | NP

*1 1 2 3 4 4 *1 1 2 3 4 4

p 2 1 1 1 2 2 ^ 2 1 1 3 3 3
3 1 1 1 1 2 3 1 1 1 2 2
4 1 1 1 1 1 4 1 1 1 1 1

CCPQCCQRCPR CAPQAQP
21232134224 2123232

Q Q

CPQ I 1 2 I NP CPQ 1 1 2 3

p *1 1 2 1 *1 1 2 3
2 1 1 2 P 2 1 1 1

3 1 2 1

CCΛfβΛίPCPβ
212211212 C4Pζλ4ζλP

3132323

Q

CPQI 1 2 3 4

*1 1 2 3 4
2 1 1 2 2
3 1 1 1 2
4 1 1 2 1

ACQPCPQ
2234243
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