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Definable Partitions and Reflection

Properties for Regular Cardinals

EVANGELOS KRANAKIS*

The purpose of the present paper is to study the relation between defina-
ble partitions and reflection properties of regular cardinals. It turns out that in
contrast to L} reflection, which does not lead to a large cardinal axiom (see
Section 2), IT} reflection, which is studied in association with definable sta-
tionary subsets of « (see Section 3) and definable partition properties (see Sec-
tion 4), leads to a large cardinal axiom. In particular it follows (see Section 4)
that the least regular uncountable cardinal which satisfies a certain partition rela-
tion lies strictly between the first uncountable inaccessible and the first uncount-
able Mahlo cardinal (assuming the axiom of constructibility
V=L).

1 Introduction and preliminaries The Jensen hierarchy (J, : « € Ord) of
constructible sets is defined in [2]. L is the universe of constructible sets. Only
structures of the form M = (M, €, Ry, ..., R,) will be considered, where M is
a nonempty set and R, ..., R, are relations on M. The Levy hierarchies £, II,
of formulas in the language with predicate symbols €, S, ..., S, (the arity of
each §; is the same as the arity of R;), and the corresponding sets of £,(M),
II,(M), A,(M) of relations on the set M, are defined as usual (see [2]). A
formula ¢ is a first-order formula if it is in L,, for some n = 0. The set of
first-order formulas is denoted by L. Any formula of the form 3V, ...3V,,¢,
vV,...vV,,®, where the formula ¢ = ¢(Vy,..., V,u, X1,. .., X¢) is first order,
Vi,..., V, are second-order variables, X, ..., x; are first-order variables, is
respectively called I}, II}.
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The structure M = (M, €, Ry,...,R,,) will usually be abbreviated by
M= (M,R,,..., R,). The symbol M <, N means that M = N and the struc-
tures M, N satisfy exactly the same X, formulas with parameters in M. If
Jo <, Jg then « is called I, — B-stable; the set of all X, — §-stables < « is
denoted by Sf. It is well known (e.g., see [4]) that for each n = 1 there exists
a IT, formula ¢,(v), without any parameters, such that for all @ < 8, Js F
on(a) ® J, <, J5. The symbol M < N means that M <,, N, for all n = 0.

The concept of reflection was introduced in [5] in order to characterize the
closure ordinals of certain inductive definitions. If ® is a class of formulas (in
the given €-language) and X is a nonempty subset of «, then « is called ®
reflecting on X if and only if for any formula ¢(vy,..., v;) and any parame-
ters ag,...,ar € Jy, o Ed(ay,...,ax) = ABEXNa) Jg kEdlay,...,a). If
in the above definition X = « then « is called ® reflecting.

For any nonempty set X let [X]? be the set of all unordered pairs of
elements from X. The partition symbol « In, (a)? means that every Z,(J,)
function 4 : [«]?— 2 has a homogeneous set H € « (i.e., the set A”[H]? is a
singleton) of order type «. The partition symbol « Zn, (o — £,)3 means that
every I,(J,) function 4 : [«]®>— 2 has a L,(J,) definable homogeneous set
H C « (i.e., the set #”[H]? is a singleton) of order type a.

Throughout the present paper « will always denote a regular uncountable
cardinal. The concepts of Inaccessible, Mahlo, as well as stationary subset of
k can be found in any standard book on set theory (e.g., [3]). Knowledge of the
fine structure of L will be essential (see [2]).

2 X} reflection This section clarifies the differences between II} and L}
reflection.
Theorem 2.1 Every uncountable cardinal is T} reflecting.

Proof: Let « be an uncountable cardinal and ¢(S;,..., S,,) a first-order for-
mula with parameters in J, such that J, k (3S))...(3S,,)¢(S;,...,S,). Also,
let Ry,..., R, € J, such that (J,, R(,...,R,) F #(Ry,...,R,,). By the
Loéwenheim-Skolem theorem, there exists a structure

M=(M’P19-~~,Pm)<(JaaR1y~--)Rm)

of cardinality less than « such that M contains the transitive closure of the set
which contains all the parameters occurring in ¢. Using Jensen’s condensation
lemma, one can find an ordinal 8 < @ and Ty, ..., T,, € Jg such that the struc-
tures M and (Jg, Ty,..., T,,) are isomorphic. It follows that Jj satisfies the
formula (3S7)...(3S,,)¢(Si,...,Su), and the proof is complete.

Theorem 2.2 considers a L] property of «, assuming that « is Mahlo (the
proof arose after a discussion with P. Welch). IN, denotes the set of inacces-
sibles below «.

Theorem 2.2 (V =L) If k is Mahlo then « is £} reflecting on IN,.

Proof: As in [2] one constructs a sequence of elementary submodels of J,+ by
induction as follows:
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Ny = smallest N < J,+ such that NNk € Ord, N, = UN,,, for A\ limit ,
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N, = smallest N < J, + such that NN« € Ord and N, U {N,} € N .

The sequence (o, = N, Nk : v < k) is normal; hence there exists an innacces-
sible cardinal » < « such that » = «,. If 7 is the transitive collapse 7 : N, = J,
then w(x) = ». To show that « is I} reflecting on IN,, let ¢ be a first-order
formula such that J, F (3S)¢. Construct an elementary chain (N, : v < k), as
above, where N, contains the transitive closure of the set which contains all the
parameters in ¢. Let », m be as above. Since

Jo+ E@ScSk)pY) and N, < J .+
it follows that
J, E(3S<Sv)¢), and hence, J, E (3S)¢ .
It follows easily that
Theorem 2.3 (V =L) [the least k such that « Ln, (k)3] # [the least Mahlo].

Proof: 1t is enough to note that there exists a L} formula & without any pa-

rameters such that for all ordinals v, J, F ® © » Ln, (»)3, and then use The-
orem 2.2.

3 I} reflection and stationary sets In this section IT} reflection is studied.
The first two results contrast the difference between II] reflection for countable
and uncountable ordinals.

Theorem 3.1 For all n = 0 and all admissible \ < w,,
1. (Vo € S§*Y) (« is 1} reflecting on ST).
2. If S+ is cafinal in \, so is {a € S{*! : « is I} reflecting on S”}.

Proof: 1t is clear that (2) follows from (1). To prove (1) let o € S7*!. Let ® be
a I1} sentence true in J,,. By a result of [5] there exists a &, sentence & * with the
same parameters as those of ¢ such that for all countable ordinals v = o and
all admissible ordinals 6 > v, J, kF ® ¢ J; E ® *(y). Since « is countable and A
is admissible, Jy F ® " («). Hence, Jy E (3x)(¢,(x) and ®*(x)). Thus, the
above I,,, sentence must also be true in J,.

Theorem 3.2 For all cardinals \ = w;,
1. N is 11} reflecting on S} & \ is I1} reflecting.
2. N is I1} reflecting =\ is a limit cardinal.

Proof: This is easy. Notice the notion of regular uncountable is expressible via
a I1} sentence and then use Levy’s absoluteness principle (see [1]).

Theorem 3.3 (V=L) Forany 0 < n < w, and any « the following are
equivalent

1. « is I} reflecting on S!.
2. For any X, (J,) stationary set E there exists an ordinal o € S} such that
a N E is stationary in «.
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3. For any A,(J,) stationary set E there exists an ordinal o € S, such that
a N E is stationary in o.

Proof: The proof of (2) = (3) is trivial. To prove (1) = (2), let ¢ be a XL,
formula defining the I, (J,) set E with parameters in J,. But the following IT}
formula is true in J,,

(VC)(C closed and unbounded = (3a)(C(a) and ¢(a))) .

Now the proof of (1) = (2) follows easily using the reflection property satisfied
by «. Finally, to prove (3) = (1) assume by way of contradiction that « is not II}
reflecting on S'. Let ¢(S) be a first-order formula such that

J. E¥S¢o(S) and (Vo € §7)J, E vSo(S) .

As in [2] (Theorem 11.1), one defines the A,(J,) definable set E of all limit
cardinals « such that there exists § > « for which the following hold

1. o is regular at 3,
2. B is a-minimal, and
3. (VReJ)R<SJ,=J, F d(R)).

A contradiction can be obtained as in [2] by showing that (Vva € S)') a N E' is
not stationary in a.

Theorem 3.4 (V=L) (x In, (k)3 = « is I} reflecting on S), n = 1.

Proof: Assume the hypothesis but that the conclusion fails. By Theorem 3.3
there exists A, ;(J,) stationary set E such that (Vo € S)') « N E is not station-
ary in o. Without loss of generality it can be assumed that E < S]. As in
Theorem 9.1 of [2], construct a A, (J,) diamond sequence O (E), (S, :
a € E) by L, ,(J,) induction on E. As in the construction of a Souslin tree in
L, one can now construct a A, (J,) tree of height x which has no branch of
height x. This contradicts the partition hypothesis and completes the proof of
the theorem.

4 The sizes of definable partition cardinals This section is concerned with
determining the size of the least regular cardinal which satisfies the partition
property « Ln, (x)3. For each ordinal o let S¢ = {y < o : J, < J,}. The proof
of the following theorem can be found in [3].

Theorem 4.1 If k is Mahlo then the set of uncountable regular cardinals o
such that J, < J, and o is 11} reflecting on S¢ is cofinal in «.

Theorem 4.2 If k is I} reflecting on S"*! then x = ()3, n = 1.

Proof: Let T = (T, <7) be a L,(J,) tree of height x. Consider a I, (J,)
definable function f : k — « such that for all « < «, |To| = |f(a)| = [Jra)!s
where T, is the o’th level of the tree T. Define a new E,,;(J,) tree S of height
k, by defining for each « < «, the «’th level S, of the tree S. This is done by
embedding the level T, into the set Jro)+1 — Jra), and then taking an
appropriate subset of the previous set theoretic difference to be the new level
S, of the tree S. It will be shown that S has a branch of length . Indeed,



412 EVANGELOS KRANAKIS

assume on the contrary that S has no such branch. This means that J, F VX
(X is a branch of = 3z(X S z)). Let o € S7*! such that f”(a) S «, J, reflects
the above II} formula. Consider an element ¢ € S of tree rank « and let X =
{s€ S :s <st}. Since for each y < a, S, S Jyy)+1, it follows that X  J;
in addition X is unbounded in tree rank below «. However, it follows from
the above I} formula which is true in J,, that J, F 3z(X € z). But this is a
contradiction. It is now easy to see that for regular uncountable cardinals, the
above proved property on Z,(J,) definable trees on « implies that Zn, (x)3.
For each n =1 let

k, = least « such that k =2 (x)? ,
and
k; = least inaccessible «, k5, = least Mahlo « .

As an immediate consequence of the above results one obtains
Theorem 4.3 (V=L)Foralln=1,kj# Kk and ki <k <...<K, <...=<
Ky < Kpg.

The above ideas can also be used to obtain

Theorem 4.4 (V=L) For all n =2, the partition relation «, Ln, (k—ZX,)3
is false.

Proof: Notice that the partition relation « Ln, (o« — Z,)3 can be defined by a
1! formula & such that for all o, J,, k @ if and only if « In, (e — I,)3.

It is still an open question whether «; = k; or «, < k,41 < k. In addition,
it would be useful to study the above partition properties for exponents higher
than 2.
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