Definable Partitions and Reflection Properties for Regular Cardinals

EVANGELOS KRANAKIS*

The purpose of the present paper is to study the relation between definable partitions and reflection properties of regular cardinals. It turns out that in contrast to Σ_1^1 reflection, which does not lead to a large cardinal axiom (see Section 2), Π_1^1 reflection, which is studied in association with definable stationary subsets of κ (see Section 3) and definable partition properties (see Section 4), leads to a large cardinal axiom. In particular it follows (see Section 4) that the least regular uncountable cardinal which satisfies a certain partition relation lies strictly between the first uncountable inaccessible and the first uncount-Mahlo cardinal able (assuming the axiom constructibility V=L).

Introduction and preliminaries The Jensen hierarchy $(J_{\alpha}: \alpha \in \text{Ord})$ of constructible sets is defined in [2]. L is the universe of constructible sets. Only structures of the form $M = (M, \in, R_1, \ldots, R_r)$ will be considered, where M is a nonempty set and R_1, \ldots, R_r are relations on M. The Levy hierarchies Σ_n , Π_n of formulas in the language with predicate symbols \in , S_1, \ldots, S_n (the arity of each S_i is the same as the arity of R_i), and the corresponding sets of $\Sigma_n(\mathbf{M})$, $\Pi_n(\mathbf{M})$, $\Delta_n(\mathbf{M})$ of relations on the set M, are defined as usual (see [2]). A formula ϕ is a first-order formula if it is in Σ_n , for some $n \geq 0$. The set of first-order formulas is denoted by Σ_{ω} . Any formula of the form $\exists V_1 \ldots \exists V_m \phi$, $\forall V_1 \ldots \forall V_m \phi$, where the formula $\phi = \phi(V_1, \ldots, V_m, x_1, \ldots, x_k)$ is first order, V_1, \ldots, V_m are second-order variables, X_1, \ldots, X_k are first-order variables, is respectively called Σ_1^1 , Π_1^1 .

^{*}The present research was carried out at the Universität Heidelberg. During the preparation of this paper the author was supported by the Minna James Heinaman Stiftung Hannover. I would like to thank I. Phillips for pointing out numerous errors on earlier drafts of the paper.

The structure $\mathbf{M} = (M, \in, R_1, \dots, R_m)$ will usually be abbreviated by $\mathbf{M} = (M, R_1, \dots, R_m)$. The symbol $\mathbf{M} <_n \mathbf{N}$ means that $M \subseteq N$ and the structures \mathbf{M} , \mathbf{N} satisfy exactly the same Σ_n formulas with parameters in M. If $J\alpha <_n J_\beta$ then α is called $\Sigma_n - \beta$ -stable; the set of all $\Sigma_n - \beta$ -stables $< \alpha$ is denoted by S_β^n . It is well known (e.g., see [4]) that for each $n \ge 1$ there exists a Π_n formula $\phi_n(v)$, without any parameters, such that for all $\alpha < \beta$, $J_\beta \models \phi_n(\alpha) \Leftrightarrow J_\alpha <_n J_\beta$. The symbol $\mathbf{M} < \mathbf{N}$ means that $\mathbf{M} <_n \mathbf{N}$, for all $n \ge 0$.

The concept of reflection was introduced in [5] in order to characterize the closure ordinals of certain inductive definitions. If Φ is a class of formulas (in the given \in -language) and X is a nonempty subset of α , then α is called Φ reflecting on X if and only if for any formula $\phi(v_1, \ldots, v_k)$ and any parameters $a_1, \ldots, a_k \in J_\alpha$, $J_\alpha \models \phi(a_1, \ldots, a_k) \Rightarrow (\exists \beta \in X \cap \alpha) J_\beta \models \phi(a_1, \ldots, a_k)$. If in the above definition $X = \alpha$ then α is called Φ reflecting.

For any nonempty set X let $[X]^2$ be the set of all unordered pairs of elements from X. The partition symbol $\alpha \xrightarrow{\Sigma_n} (\alpha)_2^2$ means that every $\Sigma_n(J_\alpha)$ function $h: [\alpha]^2 \to 2$ has a homogeneous set $H \subseteq \alpha$ (i.e., the set $h''[H]^2$ is a singleton) of order type α . The partition symbol $\alpha \xrightarrow{\Sigma_n} (\alpha - \Sigma_{\omega})_2^2$ means that every $\Sigma_n(J_\alpha)$ function $h: [\alpha]^2 \to 2$ has a $\Sigma_{\omega}(J_\alpha)$ definable homogeneous set $H \subseteq \alpha$ (i.e., the set $h''[H]^2$ is a singleton) of order type α .

Throughout the present paper κ will always denote a regular uncountable cardinal. The concepts of Inaccessible, Mahlo, as well as stationary subset of κ can be found in any standard book on set theory (e.g., [3]). Knowledge of the fine structure of L will be essential (see [2]).

2 Σ_1^I reflection This section clarifies the differences between Π_1^I and Σ_1^I reflection.

Theorem 2.1 Every uncountable cardinal is Σ_1^1 reflecting.

Proof: Let α be an uncountable cardinal and $\phi(S_1, \ldots, S_m)$ a first-order formula with parameters in J_{α} such that $J_{\alpha} \models (\exists S_1) \ldots (\exists S_m) \phi(S_1, \ldots, S_m)$. Also, let $R_1, \ldots, R_m \subseteq J_{\alpha}$ such that $(J_{\alpha}, R_1, \ldots, R_m) \models \phi(R_1, \ldots, R_m)$. By the Löwenheim-Skolem theorem, there exists a structure

$$\mathbf{M} = (M, P_1, \dots, P_m) \prec (J_\alpha, R_1, \dots, R_m)$$

of cardinality less than α such that M contains the transitive closure of the set which contains all the parameters occurring in ϕ . Using Jensen's condensation lemma, one can find an ordinal $\beta < \alpha$ and $T_1, \ldots, T_m \subseteq J_\beta$ such that the structures \mathbf{M} and $(J_\beta, T_1, \ldots, T_m)$ are isomorphic. It follows that J_β satisfies the formula $(\exists S_1) \ldots (\exists S_m) \phi(S_1, \ldots, S_m)$, and the proof is complete.

Theorem 2.2 considers a Σ_1^1 property of κ , assuming that κ is Mahlo (the proof arose after a discussion with P. Welch). IN_{κ} denotes the set of inaccessibles below κ .

Theorem 2.2 (V = L) If κ is Mahlo then κ is Σ_1^1 reflecting on IN_{κ} .

Proof: As in [2] one constructs a sequence of elementary submodels of J_{κ} + by induction as follows:

 $N_0 = \text{smallest } N < J_{\kappa} + \text{ such that } N \cap \kappa \in \text{Ord}, \ N_{\lambda} = \bigcup_{\nu < \lambda} N_{\nu}, \text{ for } \lambda \text{ limit },$

$$N_{\nu+1}= {\rm smallest}\ N \prec J_{\kappa^+} {\rm \ such\ that\ } N \cap \kappa \in {\rm Ord\ and\ } N_{\nu} \cup \{N_{\nu}\} \subseteq N\ .$$

The sequence $(\alpha_{\nu} = N_{\nu} \cap \kappa : \nu < \kappa)$ is normal; hence there exists an innaccessible cardinal $\nu < \kappa$ such that $\nu = \alpha_{\nu}$. If π is the transitive collapse $\pi : N_{\nu} \cong J_{\gamma}$ then $\pi(\kappa) = \nu$. To show that κ is Σ_1^1 reflecting on IN_{κ} , let ϕ be a first-order formula such that $J_{\kappa} \models (\exists S)\phi$. Construct an elementary chain $(N_{\nu} : \nu < \kappa)$, as above, where N_0 contains the transitive closure of the set which contains all the parameters in ϕ . Let ν , π be as above. Since

$$J_{\kappa}+ \models (\exists S \subseteq \kappa) \phi^{(J_{\kappa})} \text{ and } N_{\nu} \ll J_{\kappa}+$$

it follows that

$$J_{\gamma} \models (\exists S \subseteq \nu) \phi^{(J_{\nu})}$$
, and hence, $J_{\nu} \models (\exists S) \phi$.

It follows easily that

Theorem 2.3 (V = L) [the least κ such that $\kappa \xrightarrow{\Sigma_n} (\kappa)_2^2 \neq [$ the least Mahlo].

Proof: It is enough to note that there exists a Σ_1^1 formula Φ without any parameters such that for all ordinals ν , $J_{\nu} \models \Phi \Leftrightarrow \nu \xrightarrow{\Sigma_n} (\nu)_2^2$, and then use Theorem 2.2.

3 Π_1^1 reflection and stationary sets In this section Π_1^1 reflection is studied. The first two results contrast the difference between Π_1^1 reflection for countable and uncountable ordinals.

Theorem 3.1 For all $n \ge 0$ and all admissible $\lambda \le \omega_1$,

- 1. $(\forall \alpha \in S_{\lambda}^{n+1})$ $(\alpha \text{ is } \Pi_1^1 \text{ reflecting on } S_{\alpha}^n).$
- 2. If S_{λ}^{n+1} is cofinal in λ , so is $\{\alpha \in S_{\lambda}^{n+1} : \alpha \text{ is } \Pi_{1}^{1} \text{ reflecting on } S_{\alpha}^{n}\}$.

Proof: It is clear that (2) follows from (1). To prove (1) let $\alpha \in S_{\lambda}^{n+1}$. Let Φ be a Π_1^1 sentence true in J_{α} . By a result of [5] there exists a Σ_1 sentence Φ^+ with the same parameters as those of Φ such that for all countable ordinals $\gamma \geq \alpha$ and all admissible ordinals $\delta > \gamma$, $J_{\gamma} \models \Phi \Leftrightarrow J_{\delta} \models \Phi^+(\gamma)$. Since α is countable and λ is admissible, $J_{\lambda} \models \Phi^+(\alpha)$. Hence, $J_{\lambda} \models (\exists x)(\phi_n(x))$ and $\Phi^+(x)$. Thus, the above Σ_{n+1} sentence must also be true in J_{α} .

Theorem 3.2 For all cardinals $\lambda \geq \omega_1$,

- 1. λ is Π_1^1 reflecting on $S_{\lambda}^1 \Leftrightarrow \lambda$ is Π_1^1 reflecting.
- 2. λ is Π^1 reflecting $\Rightarrow \lambda$ is a limit cardinal.

Proof: This is easy. Notice the notion of regular uncountable is expressible via a Π_1^1 sentence and then use Levy's absoluteness principle (see [1]).

Theorem 3.3 (V = L) For any $0 \le n \le \omega$, and any κ the following are equivalent

- 1. κ is Π_1^1 reflecting on S_{κ}^n .
- 2. For any $\Sigma_{n+1}(J_{\kappa})$ stationary set E there exists an ordinal $\alpha \in S_{\kappa}^n$ such that $\alpha \cap E$ is stationary in α .

3. For any $\Delta_2(J_{\kappa})$ stationary set E there exists an ordinal $\alpha \in S_{\kappa}^n$ such that $\alpha \cap E$ is stationary in α .

Proof: The proof of (2) \Rightarrow (3) is trivial. To prove (1) \Rightarrow (2), let ϕ be a Σ_{n+1} formula defining the $\Sigma_{n+1}(J_{\kappa})$ set E with parameters in J_{κ} . But the following Π_1^1 formula is true in J_{κ} ,

$$(\forall C)(C \text{ closed and unbounded} \Rightarrow (\exists \alpha)(C(\alpha) \text{ and } \phi(\alpha)))$$
.

Now the proof of $(1) \Rightarrow (2)$ follows easily using the reflection property satisfied by κ . Finally, to prove $(3) \Rightarrow (1)$ assume by way of contradiction that κ is not Π_1^1 reflecting on S_{κ}^n . Let $\phi(S)$ be a first-order formula such that

$$J_{\kappa} \models \forall S\phi(S)$$
 and $(\forall \alpha \in S_{\kappa}^{n})J_{\alpha} \not\models \forall S\phi(S)$.

As in [2] (Theorem 11.1), one defines the $\Delta_2(J_{\kappa})$ definable set E of all limit cardinals α such that there exists $\beta > \alpha$ for which the following hold

- 1. α is regular at β ,
- 2. β is α -minimal, and
- 3. $(\forall R \in J_{\kappa})(R \subseteq J_{\alpha} \Rightarrow J_{\alpha} \models \phi(R))$.

A contradiction can be obtained as in [2] by showing that $(\forall \alpha \in S_{\kappa}^{n}) \ \alpha \cap E$ is not stationary in α .

Theorem 3.4
$$(V = L)$$
 $(\kappa \xrightarrow{\Sigma_n} (\kappa)_2^2 \Rightarrow \kappa \text{ is } \Pi_1^1 \text{ reflecting on } S_{\kappa}^n), n \ge 1.$

Proof: Assume the hypothesis but that the conclusion fails. By Theorem 3.3 there exists $\Delta_{n+1}(J_{\kappa})$ stationary set E such that $(\forall \alpha \in S_{\kappa}^n)$ $\alpha \cap E$ is not stationary in α . Without loss of generality it can be assumed that $E \subseteq S_{\kappa}^n$. As in Theorem 9.1 of [2], construct a $\Delta_{n+1}(J_{\kappa})$ diamond sequence $\Diamond_{\kappa}(E)$, $(S_{\alpha} : \alpha \in E)$ by $\Sigma_{n+1}(J_{\kappa})$ induction on E. As in the construction of a Souslin tree in E, one can now construct a E0 tree of height E1 which has no branch of height E2. This contradicts the partition hypothesis and completes the proof of the theorem.

4 The sizes of definable partition cardinals This section is concerned with determining the size of the least regular cardinal which satisfies the partition property $\kappa \xrightarrow{\Sigma_n} (\kappa)_2^2$. For each ordinal α let $S_{\alpha}^{\omega} = {\gamma < \alpha : J_{\gamma} < J_{\alpha}}$. The proof of the following theorem can be found in [3].

Theorem 4.1 If κ is Mahlo then the set of uncountable regular cardinals α such that $J_{\alpha} < J_{\kappa}$ and α is Π_{1}^{1} reflecting on S_{κ}^{ω} is cofinal in κ .

Theorem 4.2 If κ is Π_1^1 reflecting on S_{κ}^{n+1} then $\kappa \xrightarrow{\Sigma_n} (\kappa)_2^2$, $n \ge 1$.

Proof: Let $\mathbf{T} = (T, <_T)$ be a $\Sigma_n(J_\kappa)$ tree of height κ . Consider a $\Sigma_{n+1}(J_\kappa)$ definable function $f: \kappa \to \kappa$ such that for all $\alpha < \kappa$, $|T_\alpha| \le |f(\alpha)| = |J_{f(\alpha)}|$, where T_α is the α 'th level of the tree \mathbf{T} . Define a new $\Sigma_{n+1}(J_\kappa)$ tree \mathbf{S} of height κ , by defining for each $\alpha < \kappa$, the α 'th level S_α of the tree \mathbf{S} . This is done by embedding the level T_α into the set $J_{f(\alpha)} + 1 - J_{f(\alpha)}$, and then taking an appropriate subset of the previous set theoretic difference to be the new level S_α of the tree \mathbf{S} . It will be shown that \mathbf{S} has a branch of length κ . Indeed,

assume on the contrary that S has no such branch. This means that $J_{\kappa} \models \forall X$ (X is a branch of $\Rightarrow \exists z (X \subseteq z)$). Let $\alpha \in S_{\kappa}^{n+1}$ such that $f''(\alpha) \subseteq \alpha$, J_{α} reflects the above Π_1^1 formula. Consider an element $t \in S$ of tree rank α and let $X = \{s \in S : s <_S t\}$. Since for each $\gamma < \alpha$, $S_{\gamma} \subseteq J_{f(\gamma)} + 1$, it follows that $X \subseteq J_{\alpha}$; in addition X is unbounded in tree rank below α . However, it follows from the above Π_1^1 formula which is true in J_{α} , that $J_{\alpha} \models \exists z (X \subseteq z)$. But this is a contradiction. It is now easy to see that for regular uncountable cardinals, the above proved property on $\Sigma_n(J_{\kappa})$ definable trees on κ implies that $\kappa \stackrel{\Sigma_n}{\longrightarrow} (\kappa)_2^2$.

For each $n \ge 1$ let

$$\kappa_n = \text{least } \kappa \text{ such that } \kappa \xrightarrow{\Sigma_n} (\kappa)_2^2$$

and

 $\kappa_I = \text{least inaccessible } \kappa, \ \kappa_M = \text{least Mahlo } \kappa$.

As an immediate consequence of the above results one obtains

Theorem 4.3 (V = L) For all $n \ge 1$, $\kappa_I \ne \kappa_2$ and $\kappa_I \le \kappa_1 \le \ldots \le \kappa_n \le \ldots \le \kappa_{\omega} \le \kappa_{M}$.

The above ideas can also be used to obtain

Theorem 4.4 (V = L) For all $n \ge 2$, the partition relation $\kappa_n \xrightarrow{\Sigma_n} (\kappa - \Sigma_{\omega})_2^2$ is false.

Proof: Notice that the partition relation $\alpha \xrightarrow{\Sigma_n} (\alpha - \Sigma_{\omega})_2^2$ can be defined by a Π_1^1 formula Φ such that for all α , $J_{\alpha} \models \Phi$ if and only if $\alpha \xrightarrow{\Sigma_n} (\alpha - \Sigma_{\omega})_2^2$.

It is still an open question whether $\kappa_1 = \kappa_I$ or $\kappa_n < \kappa_{n+1} < \kappa_{\omega}$. In addition, it would be useful to study the above partition properties for exponents higher than 2.

REFERENCES

- [1] Barwise, J., Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
- [2] Devlin, K., "Aspects of constructibility," *Lecture Notes in Mathematics*, vol. 354, Springer-Verlag, Berlin, 1973.
- [3] Drake, F., Set Theory, North-Holland, Amsterdam, 1974.
- [4] Kranakis, E., "Reflection and partition properties of admissible ordinals," *Annals of Mathematical Logic*, vol. 22 (1982), pp. 213-242.
- [5] Richter, W. and P. Aczel, "Inductive definitions and reflecting properties of admissible ordinals," pp. 301-381 in *Generalized Recursion Theory*, eds., J. E. Fenstad and P. Hinman, North-Holland, Amsterdam, 1974.

Department of Computer Science Yale University New Haven, Connecticut 06520