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Constructing Sequent Rules for

Generalized Propositional Logics

RICHARD L. CALL

1 Introduction Sequents were first introduced by Gentzen in [1]. His
sequent system was developed as a convenient framework for proving his
“normal form theorem”. Different but related techniques have been employed
also by Herbrand [2], Beth [3], Hintikka [4], Schiitte [5], and Kanger [6].
This paper is based on that version of the propositional part of the sequent
system presented in Chapter VI of Kleene’s [7].

The concept of a propositional logic, PL, will be defined and a method, to
be referred to as the Kleene Search Procedure, will be used to determine the
validity of formulas of PL. This method utilizes a set of sequent rules which are
derived in a purely mechanical fashion from the truth tables which are the
intended interpretations of the connectives of PL. The results are then used to
show how a formal system, GPL, which is a sequent calculus can be constructed
with very simple axioms and these sequent rules to yield the valid formulas
of PL.

The term ‘propositional logic’ is used here in the narrow sense of classical
two-valued propositional logic with some designated collection of connectives,
not necessarily the usual ones and not necessarily two-place. Thus, for example,
intuitionistic propositional logics and many-valued propositional logics are not
included.

2 Propositional logics
Definition 1 A propositional logic shall consist of:

(i) A language PL containing: (a) propositional atoms p, q, », p1, 44, - - -
and (b) a collection of symbols which shall be called “connectives”.
With each connective is associated a positive integer £ and we say
that the connective is k-ary. Intuitively we think of the connective as
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binding k sentences simultaneously to form a new sentence. (c) Cer-
tain auxiliary symbols: (, ), [, ], >

(ii) An intended interpretation for each connective, that is, a function
Tk > T, where T = {T, F'} for each k-ary connective.

The wusual definitions of complete assignment, valid formula, satisfiable
formula, well-formed formula, etc. will be assumed.

Definition 2 We shall call the formula expression A = §2, where A and
are two finite strings of zero or more formulas, a sequent. We call A its
antecedent and 2 its succedent.

3 Constructing logical sequent rules We are going to describe a procedure
for determining for a given propositional logic PL whether or not a formula of
PL is valid.

With each connective C of PL we shall associate two rules: an antecedent
rule C— and a succedent rule =C, which we shall call the sequent rules for that
connective. These rules are indicated by certain expressions which are described
as follows:

Let C¥A,, . .., Ax) represent a formula built up by applying the k-ary
connective C¥ to the formulas Ay, . . ., Ag. The expression for the antecedent
rule C¥— is described thus: the expression will consist of a horizontal line
followed by C*¥> and which has CK(4,, . . ., Ay), ' > 0 below the line. Here T’
and 0 represent arbitrary finite sets of formulas. Above the line will be a finite
number of sequents obtained as follows: let 7 be the truth function associated
with C¥ and assume that 7 is defined by a truth table containing 2¥ lines with
the variables py, . . ., pg at the head of the first k columns and C¥(p,, . . ., py) at
the head of the (k + 1)th or defining column of the table. To each line of the
table which contains a T in column k + 1 we associate a sequent I'; = 6; above
the line. The antecedent of I'; = 6; contains I" and if the j column of the table
contains a T, then the antecedent contains 4;. The succedent 6; contains 6§ and
if the j™ column of the table contains F, the succedent contains VRS AN 4

The expression for ~C¥ is to be written in the same way except that the
sequent below the line will be I" = 0, Ck(Al, ..., Ay), the sequents above the
line are to be written as above except that each sequent will correspond to an F
in column k + 1 in this case.

Having thus written expressions for two sequent rules corresponding to
Ck, each is to be modified as follows: Each pair of sequents above the line will
be compared. If any two sequents are exactly alike except that an A; which
occurs in the antecedent of one occurs in the succedent of the other, then the
Aj is deleted from both sequents, the sequents then become identical and one
of them is omitted. This must be done by comparing all of the original pairs
before deletion and dropping as a given sequent may compare favorably in this
way to two or more different sequents with regard to different 4;’s. After the
first round of comparing all pairs, the resulting set of sequents should then be
compared in pairs in a second round. This process is to go on until the sequents
that remain at the end of a round are the same as those that were present at the
beginning of that round, that is, until no more deletions can be made. The
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resulting set of sequents will then be the set of sequents to be used above the
line.

When the procedure described above is applied to the classical proposi-
tional logic, CPL, with the connectives 1, &, v, D, = (for negation, conjunction,
disjunction, material implication, and material equivalence, respectively) the
sequent rules for those connectives which appear on p. 289 of [7] are obtained.

Examples:

(a) First we obtain the expressions for the sequent rules for material
implication assuming the usual truth table definition.
(i) D—: From the table this rule is written as:

AI)A2> F—)65A2> F_)Alae;FQAbAZ’e
A, DA, T—0

DR

Table 1 is used in simplifying the expression. To simplify the table the I" and 0
will not be written. In the table we place an X down the main diagonal since a
sequent need not be compared to itself. Also, it is necessary only to work above
the main diagonal. When two sequents do not compare as indicated above, an X
is placed in the row and column of the two sequents. If they do compare, then
in that row and column we put the sequent that replaces the two sequents.

Table 1.

AlsAZ_) A2—)Al _)A15A2

A, Ay X A, X
A, > A, X -4,
—)AI’AZ X

From Table 1 we see that after comparing all three original sequents we are left
with A, and =4, which clearly do not simplify any further. Thus, our O
rule is:

A, T~0,T~0, A,
A, DA, T >0

-

(ii) =>D: Since the truth table for D contains only one F in the defining
column the sequent rule -2 is:

A, I'~>0,4,

T>04,04,

Note that when more than one round is needed, only the new sequents that
arose in the previous round need to be compared.

(b) In this example C is a three-place connective defined by Table 2. We
use p, ¢, and r in place of Py, P,, and P;, respectively.
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Table 2.
p|lq ]| r | Cpaqgr
T|T]|T T
T|T]|F T
T|F|T T
T|F|F F
F|TI|T T
F|T|F T
F|F|T T
F|F|F T

(i) C—: The C—> expression is written from Table 2 as follows:

p,.qrI'>0;p,qT>0,r,pr,I'>0,q,q,r,>0,p,q, T >6,p,r,r,T>6,p,q;T'>0,p,q, 1
Ap-qn,T—>0

Cc—

Deleting I' and 6 our table for round one is Table 3.

Table 3.

p,q.r>|pq>r|p.r>qlqr=>plg>pr|r>prq|>pqr
p’qu% X P,q_) prr_) qrr_) X X X
D, q=>r X X X q-r X X
b, r>q X X X r—>q X
q,r>p X q=p r—>p X
q—>p,r X X =>p, r
r=>p,q X ->p, q
->p,q,r X

Thus, after round one our seven original sequents are replaced by nine new
sequents. The table for round two is Table 4.

Table 4.
p.q>|pr>|qr>|q>r|r>q|q>p|r>p|>pr|7pq
p,q- X X X X X q-> X X X
p,r> X X X X X r— X X
q,r> X q—> | r~> X X X X
q-=r X X X X X X
r—>gq X X X X X
q-p X X X -p
r—>p X -p X
->p,r X X
P, q X

The nine sequents after round one have now been reduced to the three
sequents: ¢, r—>, and —=p.

These three sequents cannot be further simplified and our C— expression
can now be written in its simplified form as:
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q, T'=>0;r,T'=0;'>0,p
Cp,q,r, >0

(ii) = C: As there is only one F in the defining table for C(p, q, r), the
—C expression will be:

c—.

p, I'=>06,q,r
=6 Cwan ©

Note that when a connective, C, is k-ary, no more than k rounds are
required to simplify either the C—= or =C expression.

4 The Kleene Search Procedure We extend some of our definitions by
specifying that I' > 2 shall take the value F under a complete assignment if
each formula of I' takes the value T under the assignment and each formula of
§2 takes the value F under the assignment; otherwise I"' = £2 takes the value T.
We say that the sequent is falsifiable if for some assignment it takes the value F,
otherwise it is said to be valid.

Lemma 3 Each of the two sequent rules for a given connective is such that
the sequent written below the line is falsifiable if and only if at least one of the
sequents written above the line is falsifiable. Equivalently, the sequent written
below the line is valid if and only if each of the sequents written above the line
is valid.

Proof: Suppose that Ck(Al, ...,Ap), T' = 0 is falsifiable, then there is a
complete assignment to the propositional atoms of I', 6, and C(4,, ..., Ay)
such that C"(Al, ...,Ar) and all formulas of I" take the value T and all the
formulas of 0 take the value F. This complete assignment makes each of the
formulas Ay, ..., Ay have a particular truth value in such a way that
ck4 1 - - -, Ag) has the truth value 7. But this implies that one of the sequents
above the line is falsifiable since they are chosen so that whenever they take the
value T, so does C"(Al, ..., Ag). The proof in the other direction is similar and
the other case is analogous.

We can now adopt what is essentially the plan described by Kleene [7] for
searching for counterexamples to the formulas of PL. Given a formula of PL,
the procedure describes the construction of a “sequent tree” which is used for
finding counterexamples when they exist and which indicates that there is no
counterexample when that is the case. We call this procedure the Kleene Search
Procedure and we adopt the terminology of that procedure.

Lemma 4 In a sequent tree constructed upward using the Kleene Search
Procedure every path will become terminated by round K, where K is the
maximum number of connectives appearing in the formulas of the endsequent.
Corresponding to any unclosed terminated path, there is a counterexample to
the endsequent.

Proof: In each round of the procedure all the composite formulas appearing
at the branch points at the beginning of that round are used as principal
formula along each path emanating from that point exactly once. When this
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happens, the principal operator of that formula is dropped, thus reducing the
number of occurrences of propositional connectives in the formula by one.
Since no step can be carried out when all of the formulas in the sequent are
atomic, there can be at most K rounds in the construction of the sequent tree.
Thus, at the end of round K all paths are either terminated and closed or
terminated and unclosed. If a path is terminated and unclosed, then the last
sequent in the path consists of an antecedent and succedent having only atoms
and no atom occurring in both the antecedent and succedent. If we assign T to
each atom in the antecedent and F to each atom in the succedent and T to the
remaining atoms, then by the preceding lemma as we trace the path downward
to the endsequent each formula receives its desired truth value at each step
downward and since the tree is finite the endsequent receives the value F' under
the given assignment and thus is falsified.

We now have the following result.

Theorem 5 For any propositional logic, PL, there is a mechanical procedure
for testing the validity or invalidity of any sequent (and hence any formula
of PL).

Proof: LetE,, ... Ex > Fy,..., F, be a sequent of PL. Applying the Kleene
Search Procedure through K (or fewer) rounds yields a sequent tree all of
whose paths are terminated and closed or at least one of whose paths is
terminated and unclosed. In the first case the sequent is valid, in the second
case it is invalid.

5 The formal system GPL We would like to employ these results to
construct a formal system, GPL, for the valid formulas of PL. We will construct
a Gentzen-type system (in the sense of Kleene) for PL. To obtain the system
six new rules of inference are added to the set of rules previously associated
with our propositional connectives. The new rules are: thinning (in the
antecedent or succedent), contraction (in the antecedent or succedent), and
interchange (in the antecedent or succedent).

L. r->49 r-¢
Thinning: Y] Vind Ts0C ->T
. Cc,Ccr—o r-6cc¢
Contraction: __—_C, Y c-> __—_I‘—)(?, C -C
Interch ) r,A B T,~0 > r-e0,A4,B0, "
pterchange: T B A T,— 0 F>0,B 406,

Here A, B, C are any formulas and I and 6 any lists of formulas. These
rules we call structural, the former rules logical.

Our formal system GPL is a sequent calculus whose axioms are P = P
where P can be any atom of PL and whose rules are the sequent rules, both
structural and logical, introduced above. However, now we read downward
instead of upward. A proof in GPL is written in tree form in the obvious way,
each step down the tree being justified by the corresponding sequent rule.
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If A is a valid formula we construct the sequent tree for —~A4. All the
paths of the tree will be terminated and closed. The structural rules can be
applied to these terminated paths which proceed upward to a final sequent of
the form P — P, where P is an atom. If we read the tree downward, we have a
proof in GPL of 4.

The procedure for constructing the sequent trees leads us to the following
result which is exactly Kleene’s Lemma 13.

Lemma 6 (Ancester and Subformula Property) In a proof in GPL of any
given sequent:

(a) Each formula occurrence is identifiable as an ancestor of a specific formula
occurrence in the endsequent, and the former formula is a subformula of the
latter.

(b) Each formula part (or whole) is identifiable as an ancestral image of a
specific part in the endsequent; the former formula part is identical with the
latter.

(¢) Each occurrence of an operator is identifiable as an ancestor of a specific
occurrence of the same operator in the endsequent.

To paraphrase Kleene and Gentzen: a proof in GPL is in a certain, but by
no means unique, normal form. In it the only concepts introduced are those
which occur in its final result, and hence which must be applied in proving that
result. Its result is built up progressively out of the components of the result
(subformulas); nothing is first built up and then torn down. It makes no
detours. We shall speak of such a proof as direct.

Theorem 7 For any propositional logic PL there exists a Gentzen-type
sequent calculus GPL with axioms P — P, P an atom, and whose rules are
logical sequent rules for the introduction of connectives and structural rules
and whose proofs are direct and have the subformula property.

6 Remarks This paper relies heavily upon [7]. What is of interest here,
however, is the mechanical procedure for generating and simplifying our
sequent rules. It has been a tradition in mathematics that in an axiom system
the axioms should possess a certain quality of basic simplicity while remaining
adequate for the purposes of the system. The axioms of GPL certainly would
appear to satisfy this condition. However, in many systems the rules of infer-
ence which are used to derive theorems from the axioms and which operate at
the metasystem level have been devised with great ingenuity and might appear
to some to possess a mysterious effectiveness in their functioning. In contrast,
the rules presented here are arrived at in a perfectly straightforward manner
while yielding a collection of systems all of which possess very desirable
metamathematical characteristics.

It should be remarked that the results presented here have been extended
by the author to certain classes of systems containing generalized quantifiers
and to corresponding systems of many-valued logics.
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