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Automorphisms of w-Octahedral Graphs

J. C. E. DEKKER

1 Preliminaries This paper is closely related to [2] which deals with
automorphisms of the w-graph Qp associated with the w-cube QV and [3]
which deals with the w-graph Ocy associated with the w-octahedron OcV. We
use the notations, terminology, and results of [2]. The propositions of [2] are
referred to as Al.1, A1.2, ..., A2.1, A2.2, . .. etc., those of [3] as Bl.1,
B1.2,...,B2.1,B2.2,. .. etc.

For n =2 1 the n-octahedral graph is defined as the complete n-partite
graph K(2, ..., 2) with two vertices in each of its partite sets ([4], p. 69). Let
Oc,, have u = (0, ..., 2n — 1) as set of vertices and ((0,1),...,(2n -2, 2n - 1))
as class of its partite sets. Define f as the permutation of u which for 0 <k <
n — 1 interchanges 2k and 2k + 1. Call the vertices p and g of Oc, opposite, if
they correspond to each other under f, then p and ¢ are adjacent, iff they are
not opposite. Throughout this paper the symbols v, v,, v, denote nonempty
sets, and u and p, stand for sets of cardinality =2. An involution without fixed
points (abbreviated: iwfp) of a set u is a permutation f of u such that /2 =i,
and f(x) # x, for x € u. The iwfp f of u is an w-iwfp, if it has a partial recursive
one-to-one extension. With every iwfp f of u we associate a graph Gy = (u, 0),
where 6 consists of all numbers can(x,y) € [u;2] such that f(x) # y. Note that
the iwfp f is uniquely determined by Gy. The graph G =y, 0) is octahedral, if
G = Gy, for some iwfp f of u. The octahedral graph Gy = {u, 0) is w-octahedral,
if f is an w-iwfp of u. The vertices p and g of the octahedral graph Gy are
opposite, if f(p) = q; thus p and g are adjacent iff they are not opposite.
According to B2.2 an w-octahedral graph Gy = (u, 6 is a uniform c-graph for
which there exists a nonzero RET N such that Requ = 2N and Req 0 =
2N(N - 1). Define the functions dy and d; by: 8d, = 8d, = €, do(x) = 2x,
d,(x) = 2x + 1. With every set v we associate the sets vy = do(v), v, = d4(v), and
M, =vo U vy. The standard w-iwfp associated with the set v is the w-iwfp f of u,
such that f(2x) = 2x + 1 and f(2x + 1) = 2x, for x € v. The standard w-
octahedral graph Oc, associated with the set v is the w-graph Gy = (u,, 0,),
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where f is the standard w-iwfp of u, associated with the set ». According to
B2.3 a graph is w-octahedral iff it is w-isomorphic to some standard w-
octahedral graph. When studying the effective automorphisms of w-octahedral
graphs we may therefore restrict our attention to standard w-octahedral graphs.

For nonempty sets « and g we have by B2.4: a >~ g iff Oc, =, Ocy. For a
nonzero RET N we define Ocy as Oc,, for any v € N. Thus Ocy is uniquely
determined by N up to w-isomorphism.

2 Automorphisms of Oc, An automorphism (w-automorphism) of Oc, is
an isomorphism (w-isomorphism) from Oc, onto itself. We choose the notion
of an w-automorphism of Oc, as the formal equivalent of the intuitive notion
of an effective automorphism of Oc,. We refer to [2] (p. 122) for the defini-
tions of the groups Per(v), Per (v), P, of permutations. Let

Aut Oc, = the group of all automorphisms of Oc,,
Aut,, Oc, = the group of all w-automorphisms of Oc,,

and put o, = (2x, 2x + 1), for x € €. An automorphism of Oc, = {u,, 0, is a
permutation of u, which preserves adjacency or equivalently which preserves
nonadjacency, i.e., which maps each pair of opposite vertices of Oc, onto a pair
of opposite vertices. A permutation g of y, is therefore an automorphism of
Oc, =, 6, iff it permutes {o,x € v}. In symbols,

(1) geAut Oc, = (IN)f € Per(v) & g(0x) = 05(x), for x € v].

If the automorphism g of Oc, and the permutation f of v are related by (1),
then g is not uniquely determined by f. For given f, the function g can for each
x € v still map 0, onto oy in either of two ways, namely:

1) g(2x) = 2f(x) + 1,g(2x + 1) = 2f(x) or
(i) 8(2x) = 2f(x), g(2x + 1) = 2f(x) + 1.

Consider the case where v is finite, say » = (0, . . ., n — 1), for n = 1, hence
uy=(0, ..., 2n - 1). Then the function f such that g(ox) = 07(x), for x e v, can
be chosen in n! different ways. For each choice of f we can still choose g in 2"
different ways by choosing a subset @ of v such that: (i) holds for x € o and
(ii) for x ¢ a. Thus if v is a finite set of cardinality », the automorphism group
of Oc, is a finite group of cardinality 2" -n! Let us now examine Aut Oc, for an
arbitrary set v, i.e., let us drop the condition that » be finite. We define

(2) H®)=grig € Aut Oc,lg(oy) = oy, for x € v},
(3) K@) =grtg € Aut Oc,lg(x) = x(mod 2), for x € w,}.

Note that H(v), K(v) < Aut Oc,. In order to characterize H(v) and K(v) in a
different manner we define for o C v, & € Per(v),

0a(2x) =2x+ 1, 9o (2x + 1) =2x, forx e a,
(4) 8¢ = my, {
0.(2x) =2x, 9, 2x +1)=2x + 1, for x ¢ a,
(5 8¥n =y, Y (2x) = 2h(x), Yp(2x + 1) = 2h(x) + 1, for x € v.

We write S(v) for the class of all subsets of » and a ® § for the symmetric
difference of o and .
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Proposition C2.1 For every set v,

(a) Hw) = {¢4 € Aut Oc,la e S(v)},
(b) K(v) = {Yy, € Aut Oc,lh € Per(v)},
(c) Hv) = (S(v), ®) and K(v) = Per(v).

Proof: Denote the right sides of (a) and (b) by H*(») and K*(v) respectively.
Relations (4) and (5) imply that H*(v) C H(v) and K*(v) C K(v). Now assume
fe H@) and g € K(»). Put o = {x e vl f(2x) = 2x + 1}, h(x) = the number y such
that g(oy) = 0),. Then f' = ¢,, g = ¥, hence H(v) = H*(v) and K(v) = K*(v). This
proves (a) and (b). As far as (c) is concerned, Y, Yx = Yk, for h, k € Per(v), so
that K(v) = Per(v). The mapping o > ¢, maps S(v) onto H(») by (4) and
C2.1(a). This mapping is one-to-one, since @ = {x € vl¢,(2x) = 2x + 1}, for
a € S(v). Now assume «, B € S(»). Then ¢,d5(2x) = 2x + 1, for x € o ® B, while
Padp(2x) = 2x, for x ¢ a @ B. Thus ¢o¢s(2x) = ¢4ep(2x) and similarly we see that
Pabp(2x + 1) = @oep(2x + 1). Hence dody = ¢oep and (S(v), ® = H(v). This
completes the proof of (c).

Let H, K < G, where G is a group with unit element i. We write G =
H X K, if G is the semidirect product of H by K, i.e., ([5], p. 212), if

(6) HK =G,
(7 HOK=(,
8 HJG

If we also have K <l G we call G the direct product of H and K. For a set v we
define

(9) H,(v)=ig e HW)|g has a partial recursive 1-1 extension},
(10) K, (v)={g e K()lg has a partial recursive 1-1 extension},

so that H,(v) < H(v), K,(v) < K(») and H,,(»), K, (v) < Aut,, Oc,. We also see
that H,(v) = H@), K,@®) = K(»), if v is finite, while H_(») < H{), K,,») <
K(v), if v is infinite. For in the latter case, H,,(») and K (v) are denumerable,
while H(v) and K(v) have cardinality c.

Proposition C2.2 For every set v,

(a) Aut Oc, = H(v) X K(v),
(b) Aut,, Oc, = H,(v) X K, (»).

Proof: To prove (a) we shall verify (6), (7), and (8) for H = H(v), K = K(v), and
G = Aut Oc,,.

Re (6). Since H(v), K(v) < Aut Oc,, it suffices to prove
geAut Oc,= (Aa)Fh)[owe S(v) & h € Per(v) & g = o ¥p 1.

Assume the hypothesis. By (1) there is an f € Per(v) such that g(ox) = 05(x), for
x € v. Then Yy is an automorphism of Oc, by C2.1(b), hence so are tl/f‘ and
gt[/]?‘. However,

gV (o) = g¥r1(ox) = g(05 V() = O~ H(x) = 0x ,

so that gy7! € H(), say gy7! = @,, where a € S(»). Then g = ¢, ¥y and
g e Hv)K(v).
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Re(7). Immediate by (4) and (5).
Re(8). We only need to prove Y7 *H(v)yy C H(v), for f € Per(v), i.e.,

h e Hw) & f € Per(v) = Y7 hyy € Hv).
Assume the hypothesis. Then Y7 hy r € H(v), since
YithYs(ox) = Yr thr(ox) = Y (05 x)) = ¥~ U0f(x)) = Ox.

This proves (a). To verify (b) we need to show that (6), (7), and (8) hold for
H=H_ ), K=K_,{), and G = AutOc,.

Re(6). Since H,,(v), K,,(v) < AutOc,, it suffices to prove
g€ Aut ,Oc,= (Ah)(Ik)[he H ,(v) & k € K ,(v) & g = hk].

Assume the hypothesis. By (a) there exists a unique ordered pair <A, k) of
functions such that & € H(»), k ¢ K(v) and g = hk. Let g be a partial recursive
one-to-one extension of g. Put v = {x|2x € §g & 2x + 1 € 8g}, then v C v, where
v is r.e. Define v, = {2xIx e v}, v, = {2x + 1lx € ¥}, then ¥, U 7, is a r.e. superset
of vy U v,. Define the function & by: 8k = v, U 7, and

h(2x) 2x & h(2x +1)=2x+1,if g(2x) is even and g(2x + 1) odd,
h(2x) 2x+1& h(2x + 1) = 2x, if g(2x) is odd and g(2x + 1) even.

Then % is a part1a1 recursive extension of 4. Let p, g € 8h, , D 7,58y P € Oy,
q €0y, for x, y ev. If x =y we have 0x = 0y =(p,q); then h(p) # h(q), since h
is one-to-one on 0x. If x # y we have h(p)eoy, h(q) e gy, where o, and o), are
disjoint, hence h(p) * h(q) Thus the partial recursive function % is one-to-one
and h € H,(v). Since g and & have partial recursive one-to-one extensions, so

has h7'g = k; thus k € K, (v).

Re(7). From H ,(v) < H(v), K,,(v) < K(v) and H(») N K(¥) = (i).
Re(8). We only need to prove

heH,(v) & k € Per,,(v) = Vi thioy € H,(v).

Assume the hypothesis. Then Y has a partial recursive one-to-one extension
(since k has one), hence so has Yi'h . However, Yi hyi € H(v) by (a), hence
Vic'hyy € H, ).

Remark: If card v = 2 the two semidirect products are not direct. For let
P, q € v, p#q and h be the permutation of » which interchanges p and q, then
Y € K(»). Put a = (p), then

¢a\l/h¢;l(2p) = ¢'a¢’h¢a(2p) = ¢a‘ph(2p + 1) = ¢a(2q + 1) = 211 + 1,

so that ¢, Y, 02 (2p) F 2p(mod 2) and ¢, Ypds' ¢ K(v). Hence K(v) 1 Aut Oc,
is false. The functions ¢, and Y, can also be used to show that K, ,(») <
Aut,, Oc, is false.

3 Representation by w-groups We define the following subclasses of the
class S(v) of all subsets of »:

San() =1 Cvlais finite}, Scor(v) = {a Cvlv — s finitel,
Stef¥) = Sain(¥) U Seop(v), S, (v) = la C vl is separable from v — al.
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The classes Sg, (v) and Scor(v) are equal iff » is finite, disjoint iff v is infinite.
Moreover,

(11)  Spn(») C Spr(v) C S, (v) CTS), forall v,
(12)  Spn(®) = Spep(v) = S, (v) = SO), if v is finite,
(13)  Spr(v) CS,(v) Ci S(), if v is infinite.

The proper inclusion in (13) follows from: if v is infinite, then card S, (¥) = X,
and card S(v) = c. We need a characterization of the sets » for which Sg.r(v) =
S, (»). This clearly depends only on N = Req v. Recall that an RET N is
indecomposable, if A + B = N implies that A or B is finite. Thus every finite
RET is indecomposable and every indecomposable RET is an isol. It is known
that there are ¢ infinite, indecomposable isols. Note that for N = Req v,

(14) Ga)aCv&aly—a&aéSiv)] <= N decomposable,
(15)  Sgp(v) = S, (v) < N indecomposable.

We define
{Dﬁ,,(v), Dses(v), D, (v), D(v) are the groups under ® formed
(16)

by the classes Sfin(v), Ster(v), So(v), S(v) respectively.
It follows from (11), (12), (13), (15), and (16) that for N = Req v,

(17)  Dgn(v) < Dyes(v) < D,(v) < D(), for all v,
(18)  Dgin(v) = Dyes(v) = Do, (») = D(v), if v is finite,
(19)  Dg(v) < D (v) <D(), if v is infinite,

(20) Dgf(v) = D, (v) = N is indecomposable.

In the proof of C2.1(c) we noted that the mapping o = ¢,, for a € S(v) is
an isomorphism from D(v) onto H(v).

Proposition C3.1 The mapping oo = ¢, for o € D (V) is an isomorphism
from D (v) onto H_,(v).

Proof: Let H'(v) be the image of D ,(v) under the mapping & = ¢,,, for a € D(v).
Suppose & € D, (), say « = v N, v — a« = v N B, for disjoint r.e. sets @ and B.
Put ¥ = @ U B and let ¢5 be defined in terms of & and ¥ as ¢, is defined by (4) in
terms of o and v. Then ¢5 is a partial recursive one-to-one extension of ¢, so
that ¢, € H.(v); hence H'(v) C H,(v). Now suppose ¢, € H,(v) and g is a
partial recursive extension of ¢,. Then

a={xevlg(2x)=2x+ 1}, v—a={xevlgy(2x)=2x},
aCixI2xedg &g(2x)=2x+ 1}, v—aCix|2x e bg & 5(2x) = 2x},

where the sets on the right sides of the inclusions are r.e. and disjoint. Thus
a € D,(v) and ¢, € H' (v); hence H,,(v) C H' (v). We conclude that H'(v) = H,,(v).

Let N = Req v. We know ([2], Sections 4 and 5) that the group P, of all
finite permutations of » can be represented by (i.e., is isomorphic to) the
uniform w-group Py of order N! In order to represent the group Dy.s(v) by an
w-group we need an effective enumeration without repetitions of the class
St.r(€). We choose the enumeration {(g,’, where
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(21)  02n = Pu, Oan+1=€ = py, forneec.

)

Henceforth “o,’
X,y €E,

{{2;1 e€lo,, Cv, ifvis finite,
5, =

will only be used as defined in (21). Define for » C € and

_ 2neeloy, CviU2n+ 1 etlo,, Cvl, ifvisinfinite,
d(x,y) = can(oy ® 0y), Dy p(v) =€8,, d,), where d, = dl8, X §,,

then it is readily seen that
a == Dgr(0) =, Dsr(B), for nonempty sets oand B.

For a nonzero RET N we define Dy s(N) = Dy.f(v), for any v € N. Thus Dy.p(N)
is uniquely determined by N up to w-isomorphism.

Proposition C3.2 Let N = Req v. Then the group Dy.f(v) is isomorphic to
the uniform w-group Dgs(N). Moreover, D¢.¢(N) has order 2N if N is finite, but
2N*1 i N is infinite.

Proof: Let N =Req v. The function d is recursive, hence Dy.f(e) is a r.e. group.
Also, Dy¢(v) is a finite group if v is finite, while Drp(v) < Dyep() if v is infinite.
Thus Dy.r(v) is a uniform w-group for every ». Clearly,

2necloy, Cvi=~2n+1ecloy, Cri~2",

for every set v, so that Req §, equals 2%, if N is finite, but 2V*1 if N is infinite.

4 The main result
Theorem Letve Nand N € 2. Then

(a) Aut,, Oc, = H,(v) X K, (»), ie., Aut, Oc, is the semidirect product of
H,) by K,(),

(b) if N is an indecomposable isol, the group H,(v) can be represented by the
uniform w-group Dy s(N) whose order is 2V, if N is finite, but 2V*Y, if N is
infinite,

(c) if N is a multiple-free isol, the group K ,(v) can be represented by the
uniform w-group Py of order N!,

(d) if N is an indecomposable isol, the group Aut,, Oc, can be represented by
a uniform w-group whose order is 2N- N\, if N is finite, but 2V*1. N!, if N
is infinite.

Proof: Part (a) holds by C2.2(b), part (b) by (20) and C3.1, and part (c) holds

by [2], section 3. Now consider part (d). The statement is trivial, if V is finite,

for then Aut, Oc, is a finite group. Assume that N is an infinite, indecom-
posable isol. Then H,(v) and K_,(¥) can be represented by the uniform
w-groups Dg¢(v) and P,, respectively, where Dyr(v) < Dy(e), P, < P¢. By

C2.2(b) we have Aut,, Oc, = H () X K(€), where H_,(c) N K, (€) = (i). Define

Be =1j(a, Plaed, & fe P,
6h8 = 68’ hej(a: f) = ¢ozf) Where o= Oa’
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Let for x, y € e, say x = j(a, ), y =j(b,8), & = 04, B = 0p,
te(x,y) = the unique number z such that z¢(z) = ¢, fPs8.

Now consider the group Gg = (B, t¢). The set B¢ is r.e. We claim that the
function ¢, is partial recursive. For given the numbers x, y € ¢, we can compute
the numbers a, b, f, g such that x = j(a, ), ¥y = j(b, g), hence also the finite or
cofinite sets o and B such that A¢(x) = ¢.f, he(¥) = ¢pg and the number
te(x,y) = z such that h.(2) = ¢, f¢sg. Thus the group G is r.e. Define

B, =1j(a Plae s, &feP t,=t:lB, X B,
and G, = {(8,, t,). Then G, < G, hence G, is a uniform w-group. Put
H,»)=i@D)la e 8,}, K,(v) =1i(0,1) fe P},

where i is the identity permutation on €, hence 7 = 1. Then H ,(») and K ,(v) are
uniform w-groups and since N = Req v is indecomposable, H,(v) =, Dgr(»)
and K ,(v) =, P,. We conclude that

0G, = oH ,(v)- oK ,,(v) = 0Dy (v)- 0P, = 2V* 1. N!

5 Concluding remarks (A) Comparison with Q,. Let N = Regv be an
indecomposable isol, then N is also multiple-free. Comparing the group
Aut,, Q, discussed in [2] with the group Aut, Oc, discussed in the present
paper, we notice an essential difference:

(1) Aut,, Q, can be represented by a uniform w-group of order 2V-N!,
(2) Aut,, Oc, can be represented by a uniform w-group which has order
2NV.N!if N is finite, but 2¥V*1- N1 if N is infinite.

This essential difference between the w-graphs @, and Oc, is related to the
fact that Q, = (2%, ) has opposite vertices, i.e., vertices p and ¢ such that
pp =V ~ pg, iff the set v is finite, while Oc, = Ocy = {(u,, 6,) has opposite
vertices, i.e., vertices p and g such that f(p) = g, for every set v. Thus, if v is
infinite, every permutation of u, which maps almost all vertices of Oc, onto
their opposites (and the others onto themselves) is an w-automorphism of Oc,
which has no analogue in Q,.

(B) Effective duality. In [2] we used “Q"” for the directed w-cube on the
set v, i.e., for (2%, <), where x <y < p, C p,, for x, y € 2”. In [3] we used
“Q¥” for the undirected w-cube on the set v, i.e., for (2%, F,), where F, is the
class of all faces, i.e., of all subsets ¢ of 2”such that 0 = {x € 2”18 C p, C B U ~},
for two disjoint finite subsets § and v of v. In both cases the (undirected)
w-graph corresponding to the w-cube QV is the w-graph Q,. Similarly, Oc, is
the w-graph corresponding to the w-octahedron Oc, discussed in [3]. We
showed in [3] that for an indecomposable N = Req v, the undirected w-cube
Q7 is effectively dual to the w-octahedron Oc?” iff N is finite. Thus if N is an
infinite, indecomposable isol, Q¥ and Oc” are not effectively dual and one
should therefore not be surprised that the w-groups we used to represent
Aut,, Q, and Aut,, Oc, have different orders.

(C) The group Dy r(»). In this remark “Q"” denotes the directed cube on
the set v. Let N = Req v. We have
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(22) Aut, Q,=C, XAut,, Qy, Aut, Oc,=H ) X K, ({).

Both Aut,, Q¥ and K ,(v) are isomorphic to the group Per(v). The difference
between Aut,, @, and Aut,, Oc, is therefore due to the difference between C,
and H_(v). Note that

(23)  C,=Dgn(v), Hy,(v) = Dyy(v), for every N,
(24) D,(») = Dgs(v), if N is indecomposable.

From now on we assume that N is indecomposable. According to (22), (23)
and (24) the difference between Aut,, Q, and Aut Oc, is due to the difference
between the groups Dy, (v) and Dgr(v), hence between the w-groups represent-
ing them, namely D, (v) [or Z,(»)] and Dy.f(v). We have

Dysr(v) =, Dg,(v) <= v is finite,
0Dg.s(v) = 2:0Dg,(v) == v is infinite.

This is a direct consequence of the trivial observation that Sg,(v) and S.of(v)
are equal iff v is finite, but disjoint iff v is infinite.
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