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1 Introduction A conditional assertion is a statement which succeeds in
making an assertion only if the supplied condition of assertion is met. Other-
wise, it fails to assert; it is “nonassertive”. It is comparable to a conditional bet.
Although the notion of asserting something only conditionally has been around
for several decades,! the definitive characterization is the presentation in [1].
That discussion will be presupposed.

In spite of attempted arguments to the effect that there can be no sense
made of conditional assertions ([4], and pp. 338-347 in [5]), there have indeed
been successful formalizations of languages with a conditional assertion connec-
tive. Most notable among these is Dunn [6]. 2 However, the very success of that
presentation raises a number of questions. First, there are the initial and explicit
philosophical questions about the soundness of the motivation behind the enter-
prise. In particular, the two-logics structure presented needs scrutinizing.
Secondly, there are implicit questions concerning some unfinished business.
These are probably best read as challenges to other workers in the field. Finally,
there is a serious unraised question about the completeness proofs themselves:
there is a point in the proofs which is so susceptible to error that avoiding the
pitfall without explicit mention of it could be misconstrued as fortuitous. The
axiomatization offered here addresses all of these.

2 Ascertaining assertiveness Belnap [1] suggests that a formalization of con-
ditional assertions might take a double-barreled approach, first axiomatizing the
always-true formulas and then the never-false ones. This is what Dunn [6] does.
In fact, he does more in that he also proves that success in one task guarantees
success in the other — perhaps thereby proving he has done less. In either case,
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the major obstacle to an axiomatization of conditional assertions is the prob-
lem of substitution ([6], pp. 383-384). Since nonassertive components of truth-
functional compounds drop out, even so innocent a formula as

(Av~A)VvB

can be falsified by substituting nonassertive A and false B.

Dunn’s solution is to furnish axiom schemata that are “impure” in that
they make explicit reference to a particular atomic formula, p. This exploits a
particular feature of Belnap’s semantics: ultimately, nonassertiveness only arises
from failed conditional assertions so atomic formulas are always assertive.

For all its technical merits, the two-logics approach is probably inappropri-
ate. What is novel about a conditional assertion connective is its syntactic
embodiment of the essentially pragmatic notion of assertion. Nonassertive state-
ments are too innocuous to violate any conversational conventions. Indeed, con-
ditions of assertion that are themselves nonassertive count as having been
satisfied.® Nonassertiveness, therefore, should count as a designated value;
perhaps this lack of a truth value should count as a designated state.* Accord-
ingly, it is the never-falses that should be the concern, recalling all the while that
Dunn has shown the other set to be retrievable.

This narrowing of focus helps alleviate the problem of substitution. That
problem arises only with the substitution of nonassertive components into
otherwise unfalsifiable schemata. Perhaps axioms could be accompanied by a
conditional rule of substitution. That is, letting / represent the conditional asser-
tion connective, the rule could be:

from ®(...p...)
infer (A is assertive)/®(...A...) .

This requires some object language mechanism for expressing the assertiveness
of a given formula. But, given that, one could do away with axioms and sub-
stitution in favor of conditioned axiom schemata.

That a given formula is assertive can be expressed in a number of ways,
e.g., by a bivalent unary connective’ or a predicate and sentential nominalizer.
A third route, adopted here, is to take advantage of existing relations among
sentences supplied by Belnap’s semantics. This can be done by inductively defin-
ing a metalinguistic function taking sentences of that object language into others,
which are true just when the first assert and false otherwise. Letting « represent
that function, it is defined as follows:

.apispv~p
.a(~A)isaA
.a(A & B) is aAvaB
.a(AvB)isaAvaB
S. a(A/B) is A & aB.

W N -

As defined, this function meets all the desiderata.

3 Axiomatization Dunn [6], pp. 387, 393, notes that the “tautologies,s”,
i.e., the never-false formulas, are recursively decidable. Since the concern there
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was axiomatizing a first-order logic of conditional assertion, all tautologies,s are
simply taken as axioms. Axiomatizing the sentential fragment itself is left
undone. That is the concern of this section.

The axioms of CA, the logic of conditional assertion, are given by the fol-
lowing (the slash is associated to the right):

CAl Bv~B

CA2 ~aB/B

CA3 (B& ~B)/~aB

CA4 ~aaB/C

CAS5 ~(B/C)/(B/~C); (B/~C)/~(B/C)

CA6 B/C/(B & C)

CA7 (B& C)/B; (B& C)/C
CAS (B/C)/(D/C)/((Bv D)/C)
CA9 B/C/B

CA10 (B/C/D)/(B/C)/(B/D).

The sole rule of inference is detachment for the slash, (DET). Several points
need to be made about this axiomatization. First, it is to be sure an axiomati-
zation of the never-falses. Among the axioms themselves there are nonassertive
formulas. Indeed, all instances of CA2, for example, are never-true! Second,
while this is only an axiomatization of the sentential component, a first-order
overlay will be supplied. Third, this axiomatization is not impure, in Dunn’s
sense: no particular formula is mentioned. There is, however, indirect reference
to the atomic components of formulas through the assertivity function. Fourth,
the function « is only needed for the metalinguistic presentation of the axioms.
It occurs in the axiomatization but not in the axioms themselves. Rather, its
object language sentential values do. Fifth, because of this, and the fact that «
is not 1—1, this is not a normal schematization. The schemata given do not
determine logical form: the values of « are sometimes conjunctions but most
often disjunctions.® Further, « is unusual in that it is not a homomorphism
with respect to substitution:

a(sub A for p in B) # sub(A for p in aB).”

For all this, the axiom set is decidable: each formula has finitely many subfor-
mulas, whether one formula is the value of « at another is determinable, and
there are only finitely many schemata to check.® Finally, there is the following
theorem:

Theorem CA is sound and complete.

The proofs are omitted here.® The soundness proof is a straightforward induc-
tion: the axioms are not falsifiable and the rule of inference preserves nonfal-
sity. The completeness proof involves the inductive construction of a maximal
set of formulas, excluding some given nontheorem. This serves as the basis for
the canonical model falsifying that formula. The only novelty is that the con-
structed maximal set must be partitioned into two —one part to be the true for-
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mulas and the other to be the nonassertive ones. Only the first is negation
consistent.

4 Quantification The function « is extended to a first-order language as
follows:

l. a(Fa,...a,)is Fa,...a,v ~Fa, .. .a,
2. aVxA is Ixa A
3. odxA is Ixa A.

The clauses for the quantifiers parallel those for conjunction and disjunction.
Just as one assertive conjunct or disjunct suffices for the assertiveness of the
whole, any assertive instance suffices for the assertiveness of the quantified for-
mula; both existential and universal quantifications are nonassertive only when
every instance is.

The semantic clause for the truth of the universal quantifier deserves special
mention:

VvxA is true if some instance is true and no instance is false.

(This may be given either a substitutional or domain-and-values interpretation.)
A true universal generalization may have some nonassertive, hence untrue,
instances.

The axioms for the quantificational logic of conditional assertions, QCA,
are:

QCAOl All formulas that are instances of CAI-CA10
QCA1 vxCx/Ca

QCA2 vx(B/Cx)/B/v¥xCx

QCA3 vx(Cx/B)/3xCx/B,

where the variable is not free in B. In addition to (DET), there is a generaliz-
ing rule of inference (GEN) with the usual provisions. We now state the follow-
ing theorem:

Theorem QCA is sound and complete.

The soundness proof is again unproblematic, so omitted. The completeness
proof will be sketched.

Let A be some given nontheorem to be falsified. The construction of a fal-
sifying model will then establish, by contraposition, that all “valid” (i.e., non-
falsifiable) formulas are theorems. Begin by constructing a set, G, of formulas
as follows:

Let Gy = {B: }B}, the set of theorems.
Let by, b,,...be a denumerable list of new constant names.

The language of QCA is being enriched for the construction of the model, as
is normal for Henkin-style completeness proofs. Then let C;, C,,...be an
enumeration of the formulas of the enriched language and include all new
instances of the axioms in G.
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Let Gy =G, U {C,}, if G, U {Co} ¥ A;
Gni1 =G, U {~C,}, if G, U {C,} + A and C, is not of the form
VxB;
and G, =G, U {~C,, ~Bb, a ~ Bb} where b is the alphabetically
first new constant name from the above numeration, if G, U
{C.} } A and C, is of the form vxB.

As usual, G is defined as the union over the chain of G,’s.

The most important fact about G is this: G¥ A. The proof is by an
induction and somewhat idiosyncratic. The base case, Gy K A, is routine: the
addition of new instances of the axioms does not give rise to any new theorems
in the old vocabulary. The first two inductive cases are also familiar. The third
case is the interesting one and the one worth investigating. When an existential
sentence (more exactly, a negated universal one) is added to G, a “witness” is
added at the same time to ensure that the existential sentence will be made true
by the subsequent valuation. That much is standard fare. In addition to the cor-
roborating witness, however, a “certificate of assertiveness” is added to the set.
It is not enough simply to add an instance; an assertive instance must be added,
since, as noted earlier, a nonfalse instance, by itself, cannot suffice to establish
that an existential sentence is also nonfalse. The proof of this case is as follows:
the inductive hypothesis is that G, ¥ A. For this third inductive case it is fur-
ther assumed that G, U {C,} I A. A provable fact about sets of formulas, G,
is that if G U {C} | A but G¥ A, then GU {~C, a ~ C}¥ A. In the present
case this means that G,, ~VxB, o ~ VxbF A. Suppose now that G,, ~VxB,
~Bb, a ~ Bb | A, where b is new. Then G,,, ~VxB, o ~ VxB | (~Bb & o ~
Bb)/A, by the deduction theorem (and importation). Then, by generalization
(since b is new), G,, ~VxB, a ~ VxB | ¥Yx((~B & a ~ B)/A). By confine-
ment, QCA3, G,, ~V¥xB, o« ~ VxB } ~V¥x ~ (~B & a ~ B)/A, which is
equivalent to G,, ~¥xB, a ~ VxB | ~¥x(Bv ~aB)/A. It is an easily proved
theorem, using specification, CA8, and generalization, that Vx(Bv ~aB)/VxB.
The presence of o ~ VxB, which is the same as avxB, and the limited form of
contraposition available establish that G,,, ~VvxB, a ~ VXB | ~VxB/~V¥x(Bv
~aB). Two applications of detachment establish that G,, ~vxB, o ~ VxB |
A, which contradicts what is known. So G, U {~VxB, o ~ YxB, ~Bb, a ~
Bb}¥ A. G, is a subset of the premise set (G, ; does not necessarily include
a ~ VxB at this point), so G, ¥ A. Thus one cannot only add witnesses
safely, supporting the claims of existential statements, one can safely add asser-
tive witnesses—and certification to that effect. (This will be discussed in more
detail in the next section.) Hence, by induction, G ¥ A.

Other important facts about G are that it is prime—if Bv C € G, then
B € G or C € G; it is negation complete — at least one of B, ~Bis in G; and it
is deductively closed—if G | B, then B € G. Significantly, G is not negation
consistent. Most importantly, G is assertively E-complete—if 3xB € G, then Bb
and aBb are in G, for some constant b. This is trivial, given the construction
of G. Simple E-completeness —if 3xB € G, then Bb € G, for some b (which is
what suffices for classical completeness proofs) would not be sufficient.

The set G is separated into those to be true and those to be nonassertive
as follows:
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Let 7r = {B: BE€ G and ~B ¢ G}
and Na = {B: B€ G and ~B € G}.

Tr is the set that must be (simply) E-complete and making G assertively
E-complete guarantees this. The valuation, V, is defined this way:

V(B) =Tiff Be Tr,
V(B) = N iff B € Na,
and V(B) = Fiff B¢ G.

A domain-and-value semantics is easily recovered: let the domain be the set of
constants in the language and the interpretation be the identity function for
constants — I(@) = a—while for predicates I(F) = {a: Fa € Tr} (and similarly
for predicates of higher degree). Since G¥ A, A & G and V(A4) = F. A is not,
therefore valid; QCA is complete.

5 Comments on E-completeness In [6], two axiomatizations of versions of
a first-order logic using conditional assertions are presented, one for the always
true formulas and one for those which are never false. In the completeness proof
for each, a set of formulas is constructed to serve as the truths and nonfalsities,
respectively, of the recovered valuations, as in the proof presented here. There
are a couple of points worth considering that concern the difference between
making these good sets E-complete, as is done in [6], and making those sets
assertively E-complete, as is done here. The a-function is new to this presenta-
tion and so was not available in the earlier paper, but the presence of the
sentential constant, ¢, which is always true, and the defined connective, D,,
suffice to overcome the problems to which simply E-complete truth- (nonfalsity-)
sets are vulnerable. B D, C is, by definition, (¢ D B) D (¢t D C). It translates
roughly as “B is not true or C is true”.

When axiomatizing the never falses, the danger is this: in the construction
of the good set, called “G” here, any time a formula of the form 3xB is added,
a formula of the form Bb is also added, where b is one of the new constants.
Nothing in this alone guarantees that ~Bb will not be added at a later stage of
the construction, nullifying the value of Bb as a witness. If both Bb and ~Bb
are present in G, they will get the value N by the valuation function in order that
the given nontheorem can be excluded. It is only assertive contradictions that
yield everything. Thus, even though the goal is a nonfalsity set, certain formulas
in that set have to be frue. In particular, if 3xB has any assertive instances, it
can only be nonfalse if some of those instances are true. This is more than just
a matter of fine tuning the proof. Without some true instances, 3xB cannot be
true, but if even one of its instances is false, it cannot belong to the broader cat-
egory of nonfalsities without true instances. If the only instance in hand is just
nonfalse, 3xB might yet be false. A true witness ensures truth but a nonfalse wit-
ness does not ensure nonfalsity. One way to ensure the nonfalsity of 3xB when
axiomatizing the never falses is to go beyond the call of duty, as it were, and
make sure that it is true.

There is a companion problem that plagues the construction of a truth set
in the completeness proof for any axiomatization of the always trues. Because
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the inference from Bb to 3xB is truth-preserving, albeit not nonfalsity-preserving,
the presence of a witness to an existential formula in a truth set does suffice.
Moreover, once a witness to an existential sentence does get added to a truth set,
it will not be subject to forced revaluation as nonassertive because of the pres-
ence of its negation; truth sets, unlike nonfalsity sets, must remain negation con-
sistent. The problem comes before this: it is not always possible to add any
witness. Just as some formulas only have false instances, like 3x(Fx & ~Fx),
others have only nonassertive ones. 3x((Fx & ~Fx)/Fx) is such a formula. In
the case of those formulas which can have only false instances, the presence of
their negations in the truth set excludes those instances. This is not the case for
quantified formulas with only nonassertive instances. The negations of the
instances of such formulas are equally nonassertive and equally bad to have in
truth sets. Perhaps a formula like 3x((Fx & ~Fx)/Fx) can be added to a truth
set without disturbing the (negation-) consistency of that set and without giving
rise to the nontheorem to be excluded even though none of its instances
can be.

The fine tuning becomes trickier at this point. In the proof offered
here, ~vxB and a witness to ~VxB were added if vxB could not be added, not
merely if ~vxB could be added. It is easy to prove that if vxB cannot be added,
then its negation and a witness can be. Establishing that a witness can be added
solely on the basis that ~vxB can be added requires much more from the proof
theoretic machinery.

In [6], the whole problem of adding witnesses is fortuitously avoided.
“Henkinizing” the set under construction (adding new witnesses whenever an
existential claim is added) is only one way of making sure that a set is E-
complete. The method employed in [6] is “Hasenjaegering” —adding a sentence
of the form 3xB D, Bb, with b new, for each formula of the form 3xB, to the
original set, G,. These sentences are added prior to the inductive expansion of
the set. Thus, if an existential claim does get added, deductive closure will pro-
vide the witness. In addition, Dunn adds all “tautologies,” to the original set,
where these are (roughly) the truth-functionally decidable always-true formulas.
The pitfall is avoided this way, letting f be a constantly false sentence: although
Ix((Fx & ~Fx)/Fx) D, f is always true, it is not a tautology, because the quan-
tified antecedent is not subject to truth table analysis in the right way. However,
Ax((Fx & ~Fx)/Fx) D, (Fb & ~Fb)/Fb was previously added to the set, by the
Hasenjaegering. These give rise to (Fb & ~Fb)/Fb, and (Fb & ~Fb)/Fb D, f
is a tautology,. Always nonassertive existential claims are thus excluded and
even attempts to make the consequent instance of the Hasenjaegering nonasser-
tive will be frustrated by a similar, if longer, chain of reasoning. The constructed
set will indeed be E-complete and, in the terminology used here, it will be asser-
tively E-complete.

There is a related, though ultimately trivial, problem for truth sets
vis-a-vis universal formulas. Although either Hasenjaegering or (assertively)
Henkinizing can guarantee that 3-sentences have witnesses adequate to the task
of ensuring truth, V-sentences also need witnesses in truth sets. The presence of
vxB does preclude any hostile, falsifying instances since ~Bb D; ~VxB is a
theorem. The absence of all hostile witnesses, however, does not guarantee the
presence of any supporting ones: VxB D, Bb is not a theorem. At least some
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instances of VxB have to be true if it is to be true, as well as all instances having
to be nonfalse. However, VxB D, 3xB is a theorem so the “A-completeness” of
truth sets can be made to ride piggy-back on their E-completeness.

NOTES

1. Quine [8] credits Rhinelander with the notion. Von Wright [10] suggests that condi-
tionals in common discourse are conditional assertions.

2. Manor [7], van Fraassen [9], and Cohen [2] are also concerned with the formal devel-
opment.

3. Manor [7] disagrees; van Fraassen [9] also considers what he calls the “quasi-Belnap
conditional” which is nonassertive when its antecedent is not true.

4. Belnap’s own semantics suggests gaps. This presentation exploits the isomorphism
between a logic with gaps and a three-valued logic.

5. This would be similar to the role played by the assertion operator in Bochvar’s three-
valued logic or double complete negation in Reichenbach’s.

6. An extension of CA to include an implication connective provides another nondis-
junctive value for «. See [1], p. 71, and [2], pp. 111-117.

7. Belnap pointed this out in a letter.
8. This point is also made in [3].

9. See [2], Chapter 2.
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