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Decision Procedures for Logics
of Consequential Implication
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Abstract The paper introduces a new kind of implication named “conse-
quential implication”, which is a variant of traditional connexive implication
lacking a certain monotonicity property and allowing the distinction between
analytic and synthetic conditionals. A system CI.0 for analytical consequen-
tial implication is proved to be definitionally equivalent to Feys-von Wright
system T, and so decidable by the standard tableaux method. Three systems,
named CI*0, CI*1, and CI*2, are then introduced as axiomatic and linguis-
tic extensions of CI.0 in which synthetic conditionals are definable. It is
shown that these three systems may be translated into certain extensions of
T whose language contains new linguistic objects named “quasi-variables”.
Since the latter systems are proved to be decidable by the tableaux method,
it follows that this method gives a decision procedure also for the related sys-
tems of consequential implication.

1 Introduction The aim of this paper is to give practical decision procedures
for a family of logics which will be named logics of consequential implication.
Since the method to be proposed is a refinement of the method of semantic
tableaux for propositional modal logic, a familiarity with the first part of Hughes
and Cresswell [6] is presupposed.

Logics of consequential implication aim to be a viable alternative to logics
of the Stalnaker-Lewis kind. A philosophical framework for the present anal-
ysis is given in Pizzi [11]-[13].

The minimal characterizing properties of any relation which we are willing
to identify as of consequential implication (CI) are the following:

(a) If p CI q then it is false that p CI —g (Boethius’ Thesis)

(b) It is not a logical truth that (pAgq) Cl g

(c¢) The law of monotonicity —i.e. that p CI g implies (pAr) CI (gar)—
does not hold.

(d) The logic of analytical consequential implication is not coincident with
the logic of synthetic consequential implication.

Points (a) and (b) are strictly interlinked: if we had (p A q) CI g, then we
would have both (p A =p) CI p and (p A =p) CI —p, which would be a coun-
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terexample to (a). For the same reason, Duns Scotus’s law (p A =p) CI q can-
not be a theorem for consequential implication. In a two-valued framework, a
desirable feature of consequential implication is, therefore, that only a contradic-
tion should consequentially imply another contradiction and be consequentially
implied by it.

(a) and (b) are well-known features of so-called connexive implication (see
Angell [1] and McCall [8] and [9]), but (c) and (d) are not. As regards (c): the
law of monotonicity is an axiom in McCall’s systems.! But let us suppose that
the symbol “—” stands for a logical-or-analytical Cl-relation. Let us suppose that
p stands for “Philip is a bachelor”, g for “Philip is a male”, and r for “Philip
is married”. Then a reading of (p = q) D (p A7) = (g A r)) is: “if Philip is a
bachelor he is male” implies “if Philip is a bachelor and is married he is a mar-
ried male”. But the antecedent here is analytically true (it could be a theorem of
any logic extended with meaning postulates) while the consequent is unaccept-
able from a connexive viewpoint, since a contradiction here consequentially im-
plies a contingent statement. Analytical consequential implication should,
therefore, exclude the law of monotonicity, even if it should admit its weakened
form O(pAr)D (P g) D (PAT)—>(gAr)).

As regards (c): connexive logics have been formulated with no attention to
the role of presuppositions in consequential reasoning, and so they are unfit to
render the peculiarities of ordinary synthetic conditionals, especially of the coun-
terfactual kind. In this respect consequential implication is more in the spirit of
Reichenbach [14].

2 Definitional equivalence of CLOand T  Let us call CI.0 the following sys-
tem of analytical consequential implication, whose axioms are subjoined to the
standard propositional calculus PC (“L” is an abbreviation for “p A =p” and
(‘T” for “p v _|p”):

Ax@@) (p—g)A(g—r)D(p—r)

Ax(b) (((pAg)> L)A(p>L)A(g— L) D(p—q)
Ax(c) " (par)=>L)D((p—q)D(pAr)y—(gnar))
Ax(d) (-p->-g)D(q—p)

Ax(e) (p—1)D(L-p)

Ax(f) (L-p)D(p—1)

Ax(g) (p—~q)D~(p—q)

Ax(h) p-p

Ax()) (p—q)D(pDgq).

Rules Modus Ponens (MP) for D; Uniform Substitution (US); Replacement
of Proved Material Equivalents (Eq).

Definitions O0A=4¢T-A4;0A4A=40-A4;AoB=4(A->B)A(B—A).

A decision procedure for CI.0 can be simply given showing that CI.0 is
definitionally equivalent to the well-known Feys-von Wright system T. The def-
inition in questionis A » B =4 0(A D B) A (0B D CA) A (OB D OA). Thus
the theorem to be proved is the following:

T1 T + Def— is equivalent to C1.0 + Def .
L1 Every thesis of T + Def— is a thesis of CI.0 + DefO.
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We have to prove that the axioms and the rules of T are theorems of CI.0.
The first axiom of T, Og D g, is proved in the following way:

(1) (p>qg)D(PDq) Ax(i)
@ (T-q)D>(TDgq) 1), T4
B TDO(T—-9)D9q) (2), PC
4 (T->qg)Dg (3), MP
(5) Og>gq 4), Def O.

In order to prove the second axiom, O (p D ¢) D (Op D Ogq), we have first
to prove O (p A q) D Ogq, namely, (T — (pAq)) D (T — q). The proof makes
use of Op D Op, which easily follows from the preceding theorem.

1) (pAgag)—> L FL—> 1, FpcgArg=pAr-gnag, Eq
2 (HAO(PAg)A—-DOg)D (PAgQ)—q) Ax(b), pAq/p
(3) (O(pArg)A—-0q) D (pAg)—q) 1), ), MP
@ (To>PANA(T—=g)D((Prg)—q) Ax@), Fcro Top=p->T
G) (BPAA(T-g)DU(prg)—q) (3), FOp D Op
©6) (T->(PAg)D(pArg)—q) @), (5), PC
M OAg) D ((PAq)—>q)AT0(pAQ) 6), PC
@ (To>(PAg)A(PAG)—>q)D(T—q) Ax(a), T/p, PAQq/q, q/r
9 O(pag)DOg (7, (8), PC, Def O.
O(p D q) D (Op D Ogq) then follows by the following proof:
M OpDAT—->g)D (P> (PAQq)) Ax(c), T/p, p/r,bpc TADP=p
@ (T-p)D(p~>(PAQ) D(T—>(pAQ)) Ax(a), T/p, pAq/r, p/q
(3) OpD (OgAOp) D O(pAg)) 1), (2), PC, DefO
4) (OpaOgq) D 0O(pAgq) (3), FOp D Op, Ax(i), PC
) (OpAO(pDg)DO(pA(PDQ)) 4,pDa/4q
6) (OpAO(pDq)D0O(pAQ) (5), Fec(PA(PD Q) =pAg
(7) O(pag)DOgqg Preceding Theorem
® (OpAaD(pDg)DOgq (6), (1), PC
®) O(p>Dq)D(0Op>0g) (3, PC.

The proof that rules MP, US, Nec. of T are derived rules of CI.0 is trivial
and will be omitted. We also omit the proof of the equivalence p > g = (T —
(POGNA((T—>2g)D (T —>=p)A(T—q)D (T~ p)), correspond-
ing to the definition Def—, which can be shown to be a theorem of CI.0.

Lemma 2 Every thesis of CI1.0 + Def is a thesis of T + Def—.

The proof of the lemma makes use of the well-known decision procedure for
T. The procedure begins by replacing in the axioms of CI.0 any occurrence of
A—->Bwith OA DB)A(OBD OA) A (OB D OA), and goes on decompos-
ing the resulting formula in a suitable conjunction, testing the conjuncts by T-
tableaux and then applying the PC law known as Theorema Praeclarum:

(TPr) (PO A(rds)D((par)D(gns)).

Axiom (d), for instance, may be simply proved by showing that the following
wffs are theorems of T:
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(di) O(pDgq)D>0O(—g D p)
(dii) (Og D> Op) D (O—pDOq)
(diii) (0g D Op) D (O-p D 0O~gq)

and then applying TPr.

Notice that all the axioms of CI.0 with the exception of Ax(f) and Ax(g) are
theorems of T if “—” is replaced by “=” or “D”, so that it is not difficult to
prove the result for them by TPr. (For the details of these proofs see Pizzi [12].)

We will then restrict ourselves to the proofs of Ax(f) and Ax(g), which are
as follows:

Proof of Ax(f): (L - p) D (p— 1) equals, by Def—, (O(L Dp) A (OpD
CL)A(OpDOL)D(O(pD L)A(OLDOp)A(OL D Op)).

By the tableaux method it may be easily checked that the following wffs are
T-valid:

) OLDOp)D(OLDOp)
(fii)) (OpDOL)DDO(pD L)
(fiii) (Op D> O4) D (O4 D Op).

By the completeness of T they are T-provable, and the desired result follows
by TPr.

Proof of Ax(g): To simplify the proof we notice that Ax(g), namely Boethius’
thesis, is equivalent to the so-called Aristotle’s thesis = (p — —p), which we will
call (g'). That (g’) follows from (g) is simply proved by substituting p for g in
(g) and applying Modus Ponens. The derivation of (g) from (g’) is as follows:

M (p=q)A(g——p)D(p—p) Ax(a), ~p/r
2 " (p—>-pP)D(P—q)D~(p—q)) (1), PC, Ax(d)
3) (p—=q)D~(p—gq) ), ).

The proof of the T-validity of (g’) is in two steps. (T-models are here 3-tuples
(M, R, V) such that M is a nonempty set of possible worlds m;, m,, ms,...;
R and V are defined as in Hughes and Cresswell [6]. The rules for tableaux con-
struction are substantially the same as the ones expounded in this book.)

(a) If V(p, m;) = 0 the following tableau closes:

- (B(p D =p) A (0mp D Op)a(d-p D Op)
0 1 1 1 1 0 1 00
+ +

'ml

-p s p O p
01 1 01 01
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(b) If V(p,my)=1, V((pD —p),m;)=0,s0 V(O(pD -p),m) cannot
be 1, contrary to what follows from the Reductio hypothesis.

To conclude the proof of the lemma we would have to show that the rules
of CI.0 are derived rules of T. The proof is trivial and will be omitted. We
omit also the simple proof of the equivalence Op=O(T D p)A(OpDOT)A
(Op D OT), corresponding to Def (I, which turns out to be a thesis of T.

Being equivalent to T, CI.0 is then decidable, and the procedure is simply
given by the tableaux method used for T. From the completeness of T and the
equivalence result there also follows a completeness result for CI.0.

We list here some theorems and nontheorems of CI.0:

Theorems
(O(pAag)A—-0qg) D (PAg)—q)
C(pAar)D((P—=q)D(pPAr)—q))
(T->p)D(p—>T)
(OgA-0O(pvg) D (g~ (pVvQ)
(CgAa-0O(pva@) D (((pvag)—>r)D(p—T)
(OgAOp) D (p—q)
(p—q) D (p—q).
Nontheorems
(p—=q)D((pAr)—(gnar))
(prq)—-p
p—(pva)
l-op
p—T.

3 The logic of synthetic consequential implication We have now to move
from a logic of analytic conditionals to a logic of synthetic conditionals. To
achieve this goal we can adopt a device introduced by Aqvist in [2]. (For a de-
fense of this approach see also Humberstone [7].) Aqvist’s proposal is to intro-
duce a “circumstantial” operator for the notion of ceferis paribus, whose symbol
is “*x”, This will allow us to express the basic idea that 4 consequentially implies
B iff B follows from A ceteris paribus. We could also introduce a “dual” circum-
stantial operator, defined as ®4 =4 —%-A.

The first thing to be noted is that nonmonotonicity is held to be a highly de-
sirable property for the logic of synthetic conditionals (see Ginsberg [4]). This
suggests that nonmonotonicity could be reached forbidding a rule which allows
us to infer F*A4 O *B from FA D B and retaining the simple F4A = B= F*A =
*B, which would follow having Eq as a primitive rule. The drawback of such
a choice lies, however, in the fact that it is an obstacle to proving such intuitive
laws as * (p A g) D *q. Luckily, this restriction is not strictly necessary insofar
as we are already taking for granted a logic for an implicative relation which is
nonmonotonic: we already know in fact that (4 >B) D (AAC)—-> (BAC))is
not a thesis for the logic of “—”, even if a weakened version of it is a thesis. So
we can hope to reach the desired result without introducing further nonmonoto-
nicity principles.
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To begin, let us take into consideration the system we shall call CI*0. This
system is obtained by adding to CI.0, which we already know to be equivalent
to T, two axioms for “*”, namely

CIx0.1 *pDp
CIx0.2 Op D O%p

and the rule:
R+x0 FA D B=F*A D *B.

The rule of replacement Eq is easily obtained in this system thanks to (R*0).
The primitive rules MP, US, Nec are now intended to apply not to theorems of
CI.0 but to theorems of CI*0.

This approach to conditional logic is interesting because of the fact that sev-
eral definitions of conditional operators are possible. Prima facie, the most plau-
sible is

A>°B=4%A->B,
which is of course equivalent to
A>°B =4 0(*xA D B)A(OBD O%A) A (OB D O*A).

For the reasons which will be explained on p. 634, however, it is better in the
present paper to restrict ourselves to the following weaker definition:

A>B =4 0(*ADB)A(OBD 0xA4).2

Notice that since the converse of CI*0.2 it an easily proved theorem of CI*0,
we reach the equivalence between 04 and O#*A, so that the definition of “>”
turns out to be equivalent to the definition

A>B=de(*ADB)A(OBDOA).

We will now define a system, named TV, which is different from T in being
a particular linguistic extension of it. In fact we assume that beyond the prop-
ositional variables its language contains a countable number of symbols of form
w,wa, wB. . w4 wB | wArE wAVE | where the exponents A, B, etc., if

any, are wffs of TV. The definition of a wff must be extended in this way:

1. p,q,r,...w are wffs
2. if A is a wff, = A, OA, w4 are wffs
3. if A and B are wffs, A v B is a wff.

We shall call the new linguistic objects w, w*, . . ., etc. quasi-variables: they are
not in fact variables since, although they can be uniformly substituted, as any
other wff, for propositional variables, we cannot uniformly substitute wffs for
them; substitution is, however, allowed for the atomic variables which are part
of the exponents.

The circumstantial degree (gr) of a wff of CI*0 is defined in this way:

If all the connectives are reduced to —, O, *, v:

1. If A is a wff of CI.0O(=T), gr(A4) =0
2. If gr(A) =n, gr(~A) =gr(0A) =n
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3. If gr(A) = n and gr(B) = m then gr(A v B) = max{gr(A4), gr(B)}
4. If gr(A) =n, gr(*A)=n+ 1.

A parallel definition of circumstantial degree can be given for wffs of T:

1. If A is a wff of CL.O(=T) or A is w, gr(A) =0.
2 and 3 are as in the preceding definition.
4. Ifgr(A) =n, gr(w?)=n+ 1.

The rule of Uniform Substitution in TV is not different from the one in T.
It may, however, be reformulated in more precise terms, specifying that Uniform
Substitution of wffs for atomic variables may be applied not only to variables
in standard position but also to variables which are exponents of quasi-variables.

TV includes all the theorems of T along with all the substitution-instances of
them containing quasi-variables. In the semantic tableaux for T¥ we have only
an application of the rules given for T. In other terms quasi-variables are seman-
tically treated on a par with atomic variables, and quasi-variables having iden-
tical exponents are treated as identical atomic variables.

This simple semantics for TV excludes that in this system quasi-variables
having logically equivalent exponents turn out to be equivalent wffs: w# and
w ™4 are, for instance, nonequivalent wffs and they may receive different val-
ues at the same world in a given model.

Let us now introduce an extension of TV, which we shall call T¥0, which
will be used to give a representation of the theorems of CI*0. TV0 will be the
same as TV with the addition of the axiom:

™0 OpDO(WPApD)

and of the rule

R"0 FADB=tw*Dw5

Rules US, MP, Nec are now intended to apply not to T" -theorems but to T%0-
theorems.

Remark Thanks to RY0 it is straightforward to derive the following rule:
Rw0' FA=B=twi=w?

and, since Eq is a valid rule for TV, it is simple to obtain the following extended
version of it which holds for TV0:

(Eqw) If A = Bisa T%0 thesis, then A and B may be interchanged in every oc-
currence, both in standard position and in exponent position.

4 Properties of T"0 The logical properties of TY0 can easily be proved by
a suitable extension of the methods employed for T¥. T"-models are 3-tuples
{M, R, V') with the same properties of T-models as defined in Hughes and Cress-
well [6].

The definition of a T¥0-model needs, however, an extension both in the set
of accessibility relations and in the definition of the valuation function. A T%0-
model is in fact a 4-tuple (M, R, R", V') such that:

1. M is a nonempty set of possible worlds m,, m,, ms, . ..
2. R is a reflexive dyadic relation over M
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3. RY is a dyadic relation over M
4. Vis a valuation function which is defined as in Hughes and Cresswell [6]
plus the following clauses:

VR1 If some m; exists such m;Rm; and V (A, m;) = 1, then some m; exists
such that m;Rm; and V(A, m;) = V(w?,m;) = 1.

VR2  If (w*,m;) =1 and V(w?,m;) = 0, then some m; exists such that
m;R¥m; and V(A D B,m;) = 0.

A wff A is said to be TV0-valid if V' (A, m;) = 1 for every world m; of ev-
ery TY0-model.

4.1 Soundness The key steps to prove soundness of TV are the following:
(i) The axioms of T" turn out to be T%-valid by a proof which is the same as the
standard one for T; (ii) Axiom TY0 turns out to be valid thanks to VR1; (iii)
Rule RY0 preserves validity. Let us in fact suppose by Reductio that A D B is
T%"0-valid, and that some world m; exists such that Vw4, m ;) = 1 and
V(wB,mj) = 0. Then by VR2 some R"-accessible world m; exists such that
V(A D B, m;) = 0, which is contrary to the initial supposition.

4.2 Consistency This follows from soundness along standard lines

4.3 Decidability TY0 is decidable. The decision procedure is an extension
of the procedure for T given in Chapter V of Hughes and Cresswell [6]. Beyond
the rules given there for the tableaux construction we have to introduce two fur-
ther rules:

R1 Let m; be a rectangle which is R-accessible to a rectangle m; and such
that 4 is a wff with value 1 inside m; (so possibly m; = m;). Then, provided
some operator in m; has sign “+” on it, we have to: (a) build a rectangle m; such
that both 4 and w* in it have value 1, and (b) reproduce in 7, the arguments
of the modal operators having sign “+” on them in m;. By converse, if w4 or
w4 A A receives value 0 in all rectangles m; which are R-accessible to m;, we in-
troduce in them A with value 0.

R2  Whenever we have w* with assignment 1 and w? with assignment 0 in
the same rectangle m;, we have to build a new rectangle m; in which A D B must
be assigned value 0.

It is simple to see that the procedure which has been so described must al-
ways have an end in a finite time. Let us now call R-accessible to m; the rectan-
gles which are either such in the sense of Hughes and Cresswell [6] or are built
applying R1, and R%-accessible the rectangles which are built applying R2. Then
rectangles of both these kinds include wffs which have a modal and/or circum-
stantial degree which is lower than the one of the wffs included in the rectangles
to which they are R-accessible or R¥-accessible. So, unless it ends earlier, the
procedure leads us to evaluate wffs which have zero circumstantial degree and
zero modal degree.

Notice that to simplify the procedure we may make use of the equivalence
Op = O (WP A p) and replace every occurrence of ¢ (w* A A) by an occurrence
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of OA. The resulting wff may then be tested in place of the original one since
it is equivalent to it.

A sufficiently complicated example will illustrate the method. Let us suppose
that the wff to be tested is

D =00 (W Ar) AWPAY?) D wvoaw®™y

This wff is, to begin with, simplified by replacing ¢ (w” A r) by Or. The relevant
tableaux system is the one drawn below. Notice that we omit introducing new
rectangles as an application of R1, if no argument of modal operators having
sign “+” on them in some preceding rectangle has to be reproduced.

OWor A wPrA") o wEvaaw)

0
+
,ml
R
+ Op owP
(Or A wPAVT) D wEvoaw
1 1 1 0 0

(p A W) D ((pvaq)aw®™®)
1 11 0 11 00

i m,
+

Op D Ow?P

1 0 0

+

' ms

|

)4 p; wP
~1| 1 1/0

meg my

[Since we find no inconsistency in m, and mj3, and two quasi-variables receive
assignment 1 and O respectively in m,, we open an auxiliary (R"-accessible) rec-
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tangle m, applying R2. Since w® and w®»” have assignment 1 and 0 respec-
tively in m4, we have to introduce a further (R™-accessible) rectangle ms
containing Op O Ow? with value 0, and this yields an inconsistency via R1. No-
tice that from a practical viewpoint 7, might be built simply as an extension of
m6.]

4.4 Completeness It is possible to transform a closed system of tableaux for
any wff A in a proof for A using a method which is an appropriate extension
of the one expounded in Hughes and Cresswell [6] (pp. 98-100). (For sake of
simplicity we will omit treating what Hughes and Cresswell call alternatives.) Let
us call associated to a rectangle m; the wff m; which is so defined along the
Hughes-Cresswell lines: if any modal operator occurring in a wff is definition-
ally reduced to the simple OJ, m; is the wff which is the disjunction of the only
wff in m; whose initial assignment is 0 and of the negation of all the wffs in m;
whose initial assignment is 1. We have then to distinguish two cases:

Case i. The inconsistent rectangle m; is R-accessible to some rectangle m;_;.
The inconsistency may follow by applying rule R1 or not. In the second case
the method of constructing a proof of the wff which is associated to the ex-
plicitly inconsistent rectangle is the one formulated by Hughes and Cresswell:
if 1. ..y, are well-formed subformulas of m; such that both O, ... Oy, and
¥1 - . . Yk have received an assignment, then some wff 3 exists such that

m; (Oy:iDv) Ao A (O Dv) D (BDmy) A (08D my))

turns out to be PC-valid, and then by the completeness of PC also TV-provable.
Then m; is also proved in TV0 by repeated applications of modus ponens and
PC-theorems.

Let us however suppose that at the end of the procedure the inconsistency
is found by applying Rule R1. Let us write A (OB D ¢ (W? A B)) to indicate
the conjunction of wffs of form (OB D ¢ (W? A B)) such that B and w? are in
m; and receive a value in some rectangle m;, R-accessible to m;, by an applica-
tion of R1. Let us suppose that some m; turns out to be explicitly inconsistent.
Then it follows that

m/: A" (OB D O (wZ AB)) D m)
is PC-valid or T"-valid and, by the completeness of T%, T"-provable and there-
fore TV0-provable. By repeated applications of modus ponens and PC-theorems
then m; and m; are also proved in T%0.

Since by hypothesis m; is R-accessible to m;_;, if m;_; is the wff which is as-
sociated to m;_,, m,_; is provable adapting the method in Hughes and Cress-
well ([6], p. 100).

Case ii. Let us suppose that the inconsistent rectangle m; is R"-accessible to
m;_;. The wff in m; has form A D B and, by a standard argument, it turns out
to be TY-provable and then T¥0-provable. We know that the rectangle m;_, is
such that in it ¥(w?) = 1 and V(w?) = 0. But this means that V(w* D w?) =
0 for the value assignments in m;,_,, and that (w* D w?) D m,_, is T%-valid; so,
by the completeness of TV, it is T¥-provable and T"0-provable. Since w* D w?
turns out also to be TV0-provable applying Rule R%0 to theorem 4 D B, m;_;
turns out to be a T¥0-theorem applying modus ponens.



628 CLAUDIO PIZZI

To conclude, since every rectangle beyond the first is either R-accessible or
RY-accessible, we have a tool to move in any possible case from the wff asso-
ciated to a rectangle to a wff associated to the preceding one in any given
tableaux system. So, in a finite number of steps, we reach a proof of the wff con-
tained in the first rectangle, which is the wff under test.

5 Decidability and other properties of CI*0 We are now interested in
transforming the decision procedure for T"0 in a decision procedure for CI*0.
With this aim we introduce a mapping from wffs of CI*0 to wffs of T"0. Let
Tr be the function which maps wffs of CI*0 into wffs of T¥0 (which we will call
Tr-images) and is defined by:

If p is any atomic wff, Tr(p) =p
If A,B,C... are wffs of CI*0:
Tr(—A) = °Tr(A4)
Tr(A AB) = Tr(A) A Tr(B)
Tr(OA) = O(Tr(A))
Tr(*4) = w4 A Tr(A).

The representation theorem is the following:

(RT) A is a CI1%0 thesis if and only if Tr(A) is a T0-thesis.
(RT) follows from Lemmas L1 and L2:

L1 If A is a CI*0-thesis, Tr(A) is a TVY0-thesis.

The proof is by induction on the length of the proofs in CI*0.

(a) L1 holds trivially for the axioms with no circumstantial operators.

Axiom CI*01, i.e. *p D p, has as a Tr-image (w” A p) D p, which is an ob-
vious T"0-thesis.

Axiom CI*02, i.e. Op D Ox*p, has as a Tr-image Op D ¢ (W” A p), i.e. Ax-
iom TV 1.

(b) Induction Step: Let us suppose that the theorem holds for all the #» rows
of a proof in CI*0. We shall prove that it holds also for row n + 1. Being Eq a
derived rule in CI*0, the rules which can be applied to move from a row to the
following one in the proof are MP, Nec, R*, US:

(MP) Let us suppose that the property holds for rows of form A and 4 D
B, which means that in TV0 Tr(A4) and Tr(A4 D B) are theses. Since
Tr(A D B) = Tr(A) D Tr(B), by modus ponens Tr(B) will also be a the-
sis. But Tr(B) is the Tr-image of B, which is also derived in CI*0 via MP
by A and A D B.

(Nec) FA = FOA is a rule both in CI*0 and in T"0. So in T¥0 we have
by Nec that FCO(Tr(A)) follows from FTr(A4). But O(Tr(A)) equals
Tr(OA), which is the Tr-image of [ A.

(R*) In T™0 we have as a derived rule R*0: FA D B= F(w? A A) D (WBA
B) which follows from RY0 by TPr. The conclusion of the rule equals
Tr(*A D *B), and we have in CI*0 4 D B = F*A4 D *B; so any ap-
plication of R0 leads from Tr-images of CI*0-theorems to Tr-images
of other CI*0-theorems obtained via R*.
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(US) Let us take into account only the case of wffs which, after an applica-
tion of US, come to contain at least one circumstantial operator. Let us
symbolize by A[C] any wff A containing one or more occurrences of C
and by A[C/p] a wff A which is obtained by substituting C for every oc-
currence of p. Then we may have the following steps:

(1) From A[ p] by US of C[*B] for p we obtain A[C[*B]/p].
(2) From A[*p] by US of C for p we obtain A[C/p].

These steps in TV 0 are mirrored by

(1’) From Tr(A[p]) by US of Tr(C[*B]) for p we obtain
Tr(A[Tr(C[*B])/p]).
(2") From Tr(A[*p]) by US of Tr(C) for p we obtain Tr(A[Tr(C)/pl).

It is straightforward to see that the results of the substitutions in (1’) and (2")
are equivalent to Tr(A[C[*B]/p]) and to Tr(A[C/p]), and this ends the proof.

L2 If Tr(A) is a TYO-thesis then A is a C1*0-thesis.

The proof is by induction on the length of the proofs of T*0.

(a) The theorem holds trivially for the axioms of T%¥0 shorn of quasi-
variables and for T"1.

(b) Let us suppose, by Induction hypothesis, that the theorem holds for all
the n rows of a proof which are Tr-images of CI*0-wffs. We have to prove that
it holds also for row n + 1. Let us suppose that row n + 1 is a Tr-image of B
and let us prove that B is a CI*0-thesis. We will omit the trivial case in which
Tr(B) = B, so we will take into consideration only rows n + 1 whose form is
Tr(B) [w? A A].

We have to consider the possibility that Tr(B) is derived from preceding rows
thanks to US, MP, Nec.

(US) We have to take into account two cases:

Case a: Row n + 1 is derived, via US, from some preceding row
which is a Tr-image. There are three subcases to be considered since
Tr(B) [w* A A] may be obtained via US from some preceding row which
has one of these forms: (1) Tr(B)[w" A r]; (2) Tr(B)[p]; and (3)
Tr(B) [ p A q]. By Induction hypothesis each one of them is a Tr-image.
So in Subcase 1 we have in CI*0 a counterimage-theorem of form B[ *r]:
from this we may obtain by Uniform Substitution of A to r B[*A], whose
Tr-image is just Tr(B) [w? A A]. In Subcases (2) and (3) we have in CI*0
counterimage rows of form B[ p] and B[ p A ¢]. In Subcase (2) we obtain
the same result as before by Uniform Substitution of *A for p. In Sub-
case (3) we put *4 in place of p and A4 in place of g. So the result in the
third subcase is a row of form B[*A4 A A]. But *A A A = %A is a simple
CI*0-theorem, so that by Eq we again obtain obtain B[*A] as a theorem.

Case b: Row n + 1 is derived from some preceding row which is not a
Tr-image. This means that at least one quasi-variable occurring in this row
is not conjoined with a wff which is its exponent. We shall call free the
quasi-variables lacking these properties. So in this row we will have wffs
of form B[w4 A C] or B[w€ A A] which are such that substituting inside
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the wffs in parentheses we reach as row n + 1 a theorem of form B[w* A
Al], shorn of free quasi-variables.

Notice however that in any such case we may construct an alterna-
tive proof of B[w“ A 4] in which US is applied not to B[w® A 4] or to
B[w“ A C] but to their variants B[w€ A C) A A] or B[(w2 A A) A C].
From the latter we obtain in fact B[(Ww* A A) A A], hence B[w4 A A]. We
have to consider that in the proof of B[w* A C] derived from the
tableaux construction the free quasi-variable w* is introduced either by
Substitution of w* for a propositional variable or by Rule R¥0. We may
however obtain the desired variant either by substituting w* A A for p or
by employing the derived rule F4 D B = F(w? A A) D (w8 A B). An
analogous argument works of course for B[wC A A]. In this new proof
the row to which US is applied is then a Tr-image, and by Induction
Hypothesis we assume that its counterimage is a CI*0 thesis. But from
B[*A AC] or B[#C A A] we obtain in CI*0 B[*A4 A A], and from the
latter, by Eq, B[#A], which is the counterimage of B[w* A A].

(MP) Here too we have two possible cases:

Case a: Tr(B) is derived from two preceding rows which are Tr-images,
for instance Tr(A) and Tr(A) D Tr(B). But Tr(A) D Tr(B) = Tr(A D
B), so by Induction Hypothesis and modus ponens this means that in CI*0
B is also a thesis.

Case b: Tr(B) is derived from two rows A and 4 D Tr(B), where A is
not a Tr-image. Here the argument parallels the one given for US. Both
A and A4 D Tr(B) have two variants shorn of free quasi-variables, 4’ and
A" D Tr(B)’, whose counterimages by Induction Hypothesis are also CI*0-
theses. Then by suitable substitutions and applications of modus ponens
we reach B as a theorem of CI*0.

(Nec) The rule of Necessitation is part of the axiomatic basis of both CI*0 and
TY0. It cannot lead from a theorem which is not a Tr-image to another
which is such, so the argument is simply the converse of the one for Nec
in Lemma L1 (see p. 628).

As regards rule R%0, this rule leads from theorems of form FA O B to the-
orems of form Fw“# O w®, which are not Tr-images even in the case in which A
and B are Tr-images, so it must not be taken into account in the proof of the
lemma. This ends the proof.

After proving the preceding Representation Theorem it is very simple to for-
mulate the decision procedure for CI*0. If A is any CI*0-wff, one must calcu-
late its Tr-image Tr(A4) and test it by the tableaux-method. If Tr(A) turns out
to be TV0-valid it is also, by the completeness of T"0, TV0-provable: so, by the
Representation Theorem, its counterimage A4 is CI*0-provable. If the test gives
a negative result, Tr(A) is not T"0-provable and so neither is A CI*0-provable.

5.1 Completeness A simple corollary of the Representation Theorem is also
the completeness of CI*0. We may define in fact CI*0-validity in this way: a wff
A is CI*0-valid iff its Tr-image is TV0-valid. If A is CI*0-valid, its Tr-image is
so by definition T%0-valid, and by the completeness of TV0 it is provable in
TY0. By the Representation Theorem this implies that A4 is CI*0-provable. Con-
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versely, if A is CI*0-provable, by the Representation Theorem Tr(A) is TV0-
provable, so by the completeness of T%0 it is CI*0-valid. So A is CI*0-provable
iff it is CI*0-valid.

5.2 Non-triviality of the circumstantial operator It is enough to prove that
p D *pis not a CI*0-theorem. If it were, Tr(p D *p) would be a TV0-thesis.
But p O (w” A p) is not T"0-valid, and this concludes the proof.

6 The system CIx1 We are now going to introduce an extension of CI*0
which we will call CI*1. CI*1 is the result of subjoining to CI*0 the axiom

CI*¥1 (*pA*q) D *(pAQg)

and of course we shall also introduce a parallel extension of T%0, which will be
named TV1. TV1 is the result of adding to TV0 the axiom

™1 (W2 Aw?) DwPre,

The equivalence (#p A *q) = *(p A q) is an immediate consequence of CI*1,
while (w” A w?) = wP™? is an easily obtained law of TV1. TV1 has obviously
among its theorems (W” A p) A (W9 A q)) D (WP A (p A q)), which is the Tr-
image of CI*1.

The properties of TV1 are proved by simple extensions of the proofs for
TY 0. One has obviously to add that TV 1-models are like T¥0-models (see p. 624)
with the further clause

VR3  If V(w4,m;) =1and V(W8,m;) =1, V(w*"B,m;) = 1.

(Alternatively: if V(wA*8, m;) = 0 either V(w*, m;) =0 or V(w2, m;) =0.)
The properties of CI*1 follow by simple extensions of the ones of CI*0. In fact
we have:

6.1 Soundness Soundness and consistency follow by a suitable extension of
the proof given for CI*0.

6.2 Decidability Since we now have at our disposal the equivalence between
wP™ and w” A w9, we may “normally” simplify the procedure with suitable re-
placements of w””? by w” A w? or vice versa. The full procedure is however an
extension of the procedure for CI*.0 mirroring the introduction of VR3. Thus
decidability, completeness, and nontriviality follow from the corresponding re-
sults for CI*0 by suitably extended arguments.

7 The system CI*2 A third system of consequential implication, which we
will name CI*2, is the result of adding to CI*0

CI¥2 (*pAgq) D (*qAp).

Axiom CI*1 is easily seen to be a theorem of this system, which hence prop-
erly includes CI*1. Substituting p A g for g we also easily obtain from CI*2
(*p A q) D *(p Aq), which mirrors the simple idea that the ceferis paribus clause
is something invariant in respect of the members of any conjunction having
a *-formula as a conjunct.
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The latter fact simplifies, to a certain extent, the definition of the represen-
tation of CI*2 on the extension of T% which may be chosen as a tool for this
aim.

We may in fact define a new system, to be named T%2, adding to TV0 the
axiom

™2 O(WPApP)D O(WAD)

which by TV0 and Eq equals Op D ¢ (w A p). But in this extended system the
rule of Uniform Substitution must be restricted in the following way. Let us call
w-formulas the wffs w, —w, Olw, 00— w and anyone of these having as a prefix
an arbitrary combination of negation signs and modal operators.

Then the Restricted Rule of Substitution (RUS) may be formulated as
follows:

(RUS) Uniformly substituting a wff for any atomic variable in a T%2 the-
sis we obtain a TV2-thesis, provided the result of the substitution does not con-
tain any subformula of form « o 3, where “o” is any truth-functional operator
and o and 3 are w-formulas.

The reason for this restriction is to avoid that the simple w may be proved
as a theorem, for instance by the following proof (which violates the restriction
at step (2))

1) OpDO(WApP) V2, PC
2) 0w D O(WA W) ), -w/p
3B) "O(WA W) D 00w (2), PC
4) Ow ?3), Fr=O(w A w), MP
BG)w @), FOp D p.

The mapping from CI*2 to T"2 is different from the one defined for CI*0
since it may now be simplified by putting Tr(*A4) = w A A. By this new defini-
tion the axiom T%2 is not a Tr-image, while Op D ¢ (W A p) is such: indeed, it
is the Tr-image of Axiom CI#*1. The Tr-image of Axiom CI*2 becomes now
((wAD)Aq) D ((WA Q) Ap), which is a substitution instance of a PC-theorem.
Notice that CI*2 needs no restriction on substitution which is parallel to the one
of T2, since no wff containing a truth-functional compound of w-formulas is
a Tr-images of any CI*2-wff.

7.1 Properties of CI*2 A T%2-model is like a TY0-model (see p. 624) with
the addition of the following clause:

VR3 If some m; exists such that m;Rm; and V (A4, m;) = V(wA,mj) =1
then some m; exists such that m;Rm; and V(A,m;) = V(w,m;) = 1.

The proof of the validity of the axioms of TV0 is easily extended to Axiom
T%2. The only complication concerns the rules, since we have now to prove that
Uniform Substitution is validity-preserving only with the required restriction.

We may reason as follows. Since T%2-models are like TY0-models except for
VR3, RUS would lead to a nonvalid substitution instance only if, substituting
w, w4, or A4 inside a T"2-valid wff, we were to obtain a wff semantically imply-
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ing that at least one m; exists such that V(O (w4 A A),m;) =1 and V(O (WA
A), m;) = 0. But the latter assignment would be possible only if at every possi-
ble world m; such that m;Rm;, V(w A A, m;) = 0. This might happen only for
one of two different reasons: (1) A is a T -contradiction. This is, however, to be
excluded, otherwise ¢ (w* A A) should also have everywhere value 0. (2) 4 =
—w. This is, however, also impossible, since the substitution-instance which
would be so obtained is a w-formula, and this is excluded by the restriction on
the Substitution. It is so proved that Restricted Uniform Substitution is valid-
ity-preserving, while unrestricted Substitution is not.

Consistency follows from soundness along standard lines.

Since the Representation Theorem may be reformulated, and indeed simpli-
fied in the light of the new definition of the mapping from CI*2 to T%2, the
soundness of CI*2 is simply proved along the lines followed for CI*0. Decid-
ability, completeness, and nontriviality of the circumstantial operator are also
proved along the same lines.

8 Theorems and nontheorems of CI*0, CI*1, CI*2 Here is a list of the-
orems and nontheorems containing the *-operator of CI*0, CI*1, CI*2. Since
we know that every system properly includes the preceding one in the given order,
the nontheorems are given only for CI#*2, being understood that the theorems
listed under every system are nontheorems in the preceding one in the given
order.

CI*0
p>p
p D O*p
(p—q)D(p>q)
-(p>p)
(p>q) D (p>7q)
C(prq) D ((PAg)>q)
OxpD (p>(pVvQ)
OpD (((pvg)>r)D(p>r))
*p D Op
(p>q)D(*pDq)
C(xpAa*xq) D ((P>1r)D (PAg)>T))
C(prq) D(p>r)D(PAg)>T))
(=OpA—=0q) D (P> q)
O*p D Op
O%xT
&T.

CI*1
(pAg)>r)D (OxpAO=xqg) D 0Or)
(pAg)>q) D (*pA*q) 3q)
O((pag)Dr)DO(*pA*q)Dr).
CI*2

(p>q)A(@g>r)D(p>r)
*p = ®¥p,
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Nontheorems
(pAq@)>p
p>(pvq)
(p>q)D(~g>p)
(p>r)D>((pag)>r)
(p—>q)D*(p>q)
p>T
1L>p
(p>T)D(T>p)
*T.

Remark 1 CI*2 allows us to prove the transitivity of conditionals, even if the
logic of the conditional operator is essentially a nonmonotonic one.

Remark 2 The main drawback in adopting A >° B =4r *A — B as a defini-
tion of the synthetic conditional is that *4 — A, i.e. 4 >% A4, does not turn out
to be a thesis unless we introduce (14 O [0*A as an additional axiom. However,
CI*2 cannot be extended in this way. If it were, in fact, from *T — T we would
derive the equivalence T « *T (by a theorem listed on p. 622), so T = *T. But
thanks to the law (p A *g) D (¥p A g), it would follow (pA*T) D (¥pA T),
hence (p A T) D (*p A T), hence p D *p.

9 Final remarks A feature of CI*0, CI*1, CI*2 which could be an object
of criticism is that Op in them collapses to O*p, so that O (p A g) collapses to
O* (p Aq). This result amounts to saying that the notion of consistency becomes
indistinguishable from the one of “consistency with what is presupposed”. It
would be easy to reply by observing that the distinction is not so clear, as a matter
of fact, in many cases: if one says “Bizet is French” and “Bizet is Italian”, these
two statements are inconsistent insofar as we know that Italy and France are in-
dependent countries, but they would both be true in a possible world where Italy
is a part of France or France is a part of Italy.

If someone is under the impression that the notion of possibility which is so
obtained is too comprehensive, we may suggest that a solution could be reached
subjoining the axioms for “*” not to system T but to Burks’ system of “causal”
modalities (see [2]). As is well known, this system is obtained by adding to sys-
tem T the following axioms for a new modal operator [cl:

Ax(1) Op>DEp
AxQ2) GEpDp
AxQ) [E(p>Dgq)D (EpD [Eg).

To the Axiom CI*0.1 we could now add, in place of CI*02,
(CI*%02') [p D El#*p

and, since the converse implication also becomes a theorem, ©p takes the mean-
ing of “p is logically and physically compatible with the presuppositions”, and
©(p A q) could be read as “p and g are logically and physically compatible with
the presuppositions”, or “p and q are cotenable”, in the sense of cotenability de-
vised in Goodman [5].
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Let us then define a new connective “>” in this way:
A> B =4 [(*A D B) A (©BD ©*A).

Since all the theorems in J now have a duplication given by theorems in [€], we
will have a duplication of the theorems for “>” in terms of “>>”. In particular,
we will derive

Q@(pAr)D((p>»q)D (PAr)>q))

and its equivalent with ©%(p A r) in place of ©(p A r), but not ¢(pAr) D
(p>q)D (pAr)>q).

The models for Burks’ system are 4-tuples (M, R, R¢, V') where M, R, V are
like the ones for T and R€ is an accessibility relation such that R° < R. The de-
cision procedure for this new system, and so for wffs containing “>”, is easily
reached by suitable modifications of the one given for CI*0. The details of this
construction lie, however, beyond the scope of the present paper.
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NOTES

1. See for instance McCall’s system CFL in [9], p. 442. The system presented in Pizzi
[10] includes the law of monotonicity, and so is intermediate between logics of con-
nexive implication and logics of consequential implication.

2. This abridged definition allows us to avoid vacuous truth but cannot avoid that a tau-
tology turns out to be conditionally implied by any consistent statement. In fact O*A4
implies (by PC) (OB D O*A), and OB implies [1(*A D B); so, by TPr, OxA A OB
implies A > B. 0A D (A > T) also turns out to be a theorem. These seem to be par-
adoxical results for the corner operator, even if they are compatible with Boethius’
Thesis. Readers who find that a logic of synthetic conditionals has to avoid this
kind of behavior are justified in thinking that only “>°” is the correct connective for
synthetic conditionals. A treatment of the logic of “>°” is outside the scope of the
present paper, even if it may easily be obtained using the tools introduced in Sec-
tion 3. See however Remark 2 on p. 634.
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