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A Topos-Theoretic Approach to
Reference and Modality*

GONZALO E. REYES

Abstract This paper presents an approach to modal logic based on the no-
tion of kind or interpretation of a count noun as a prerequisite for reference.
It gives a mathematical formalization of this notion in the context of a lo-
cally connected topos & (thought of as a universe of variable sets) over a
topos 8 (thought of as a universe of constant sets). In this context, modal
operators are intrinsically definable and the resulting formal system is
described in some detail.

Introduction This paper is an essay on reference and generality in natural
languages (to borrow from the title of Geach [5]). More precisely, it is concerned
with the semantics of pronouns, proper names, and count nouns.

It is a remarkable fact of natural languages that a proper name picks up its
reference uniquely any time that it is uttered, whether or not its reference is
present at the moment of utterance, whether or not we know the reference’s
whereabouts at that moment, whether or not we are able to recognize its refer-
ence, and whether or not we are referring to events that took place in the past
or may take place in the future. My main concern will be with the following
problem: What semantical structure should be postulated for this relation (be-
tween a name and its reference) to accomplish the formidable tasks just de-
scribed? I shall propose an answer based on the notion of kind or sortal viewed
as the semantical interpretation of count nouns.

The essay is divided into two parts. In the first, “Count nouns and kinds”,
taken from an unpublished paper in collaboration with Marie Reyes, I state and
give arguments for a series of theses on reference and generality involving proper
names, count nouns, and kinds. Although this medieval practice has long gone
out of fashion, I believe it useful to understand the issues involved. Some of these
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theses have been already argued by Gupta [6] and Macnamara [13], following
the lead of Geach [5], Bressan [3] and others. Nevertheless, the most important
of the theses for the whole development, namely the modal constancy of all
kinds, is not to be found in the writings of these authors and, in fact, it con-
tradicts further theses of some of these authors.

The second part of this essay, “Topos semantics”, is an attempt to give a
mathematical formalization of the notion of kind in the context of topos theory.
It is my conviction (to rephrase Montague [17]) that philosophy, at this stage in
history, has as its proper theoretical framework category theory (which includes
set theory with “urelements”) rather than set theory alone, as Montague believed
in 1970. I believe that topos theory provides an adequate context to formalize
the basic notion of modal constancy. Furthermore, the very possibility of using
topos theory imposes very strong and, I believe, fruitful constraints on the logic
of reference and generality as we will show in some detail. To mention just two
of them: the logic of quantification and identity of a topos is the standard one;
furthermore, under the natural assumption that kinds are exponentiable (so that
higher-order logic is interpretable), modal operators are intrinsically definable
in a topos and need not be introduced as a further structure. Thus this approach
differs from others (such as in [17]) which change the logic of quantifiers to ac-
commodate the modal operators.

This concludes the description of the contents of this paper. I have left out
some developments of this approach to reference and modality which have taken
place after the first draft of this paper. Connections between modal operators
and locale theory have been studied in some detail in Reyes and Zawadowski
[19]; questions of soundness and completeness of the formal systems obtained
via this topos-theoretic approach are studied in Lavendhomme, Lucas and Reyes
[11]. Finally, this approach was developed with a view to applications to cogni-
tion and in close contact with the work on language learning of Macnamara and
the work of M. Reyes on the semantics of literary texts. The interested reader
may consult [13], Macnamara and Reyes [14], and M. Reyes.[20] for these ap-
plications.

1 Count nouns and kinds The first of our theses on reference concerns
proper names.

(1) The denotations of proper names are rigid.

This thesis asserts that a proper name, say “Nixon” has the property of denot-
ing its reference throughout all actual as well as possible situations, past, present,
and future in which Nixon appears or may appear. A biographer of Nixon would
use the single proper name “Nixon” to refer to the boy who grew up in Califor-
nia, to the young politician who won his first election, and to the president who
was forced to resign from office in spite of the different times and situations.
He may be unsure of whether Nixon won his first election by fraudulent means
and he may discuss both the possibility that he used such means and the possi-
bility that he did not to arrive at the truth of the matter. In other words, he must
consider counterfactual situations (since clearly one of the possibilities cannot
be realized) about Nixon, i.e., the reference of “Nixon”, in order to describe the
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actual course of events. Similarly, to explain Nixon’s actions, the biographer
should entertain a series of possibilities as to Nixon’s motives and evaluate them
critically. The point is once more that we are forced to consider counterfactual
situations about the reference of the proper name “Nixon”. The thesis of rigid-
ity has been forcefully argued by Kripke [9].

As an aside, let me remark that the fact that counterfactual situations have
to be considered to describe real situations is beautifully exemplified in Classi-
cal Mechanics and in the Calculus of Variations: to describe the real trajectory
of a body, we compute the Lagrangian of all its possible trajectories (most of
which are not physically possible!) and we take that trajectory for which the La-
grangian has a minimum (or a stationary value).

(2) Rigidity presupposes count nouns.

This thesis, which is characteristic of the approach we are developing, asserts
that the only way of tracing the identity of the reference of the proper name
“Nixon” throughout all real and possible situations, past or present, is by means
of a count noun such as “person” or “man”. Indeed, the boy in California, the
young politician, and the president remained one and the same person, although
he successively stopped being a boy, a young politician, and a president. We can-
not, for instance, trace Nixon’s identity through the molecules that compose his
body, since those that constituted his body at the time of his youth were different
from those that constituted his body at the time that he was a president. As Ar-
istotle pointed out, change requires something to change. There must be a con-
stancy that underlies the change of the boy into the president. The thesis
guarantees such a constancy through the count nouns to the interpretation of
which the individual experiencing the change belongs.

To make this thesis more precise, I shall state claims on the interpretations
of count nouns, the kinds. Kinds are the interpretations of count nouns such as
“person”, “dog”, “atom of hydrogen”. There are other nouns besides count nouns
(e.g., mass nouns such as “money”, “clay”, and “oxygen”), but we associate kinds
with count nouns only. Members of a kind may be individuated and counted.
We can interpret expressions such as “three dogs”, “two drops of water”, and
“three atoms of oxygen”, as well as expressions of generality such as “every dog”,
but we cannot interpret “three oxygens” or “two moneys”. I consider the notion
of kind as being so basic that it cannot be analysed in terms of more basic no-
tions. All that we can assert is that a kind has members which are individuated
and that it makes sense to say that two members are identical. Kinds are the con-
stitutive domains which allow us to use quantifiers and the equality symbol cor-
rectly. I shall not assume that equality between members of a given kind is
decidable.

An important consequence of this postulate for kinds is that members of a
kind can be counted (at least under some limitations) and that they are subject
to the logic of quantification. In fact, counting does not apply to heaps or con-
glomerates of objects, but to kinds: the same “heap” which makes up an army
may be counted as 1 army, 6 divisions, 18 brigades, or half a million men. This
point was made quite forcefully by Frege and I have nothing to add.

(3) Kinds are modally constant.
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This thesis is in fact a further development of the previous one. In fact, as
we saw in (2), kinds are what remains “constant” from situation to situation and
thus kinds are precisely the required standard against which we can understand
changes and modalities. In other words, kinds should be modally constant “by
definition”. A consequence of this thesis is that modalities can be genuinely ap-
plied to predicates only, not to kinds themselves. A member of the kind PAS-
SENGER is necessarily a passenger qua passenger. On the other hand, a
particular person who happens to be a passenger need not be necessarily a pas-
senger qua person. In this case, we are saying something about the predicate “to
be a passenger” of the kind PERSON, namely that it is not necessary. In the first,
we are saying something about the predicate “to be a passenger” of the kind PAS-
SENGER, namely that it is necessary. It follows that attempts to apply modal-
ities to kinds themselves to form new “kinds” such as POSSIBLE APPLE,
POSSIBLE CAR, or POSSIBLE MAN (as used by Gupta [6] to define “modal
constancy”) are wrongheaded. And in fact, there are serious difficulties with any
attempt to view possible apple or possible man as kinds: neither membership in
the kind nor the relation of identity are well-defined. As regard the first: Does
a portion of jelly apple count as a possible apple? Or again, does a piece of junk
metal count as a possible car? As regards identity, Quine [18] has already asked
the relevant question: How many possible fat men are there in the door? On
the other hand, we may ask of a given fruit whether it is possibly an apple and
the intuition that “apples are necessarily apples” that Gupta tried to express as
“POSSIBLE APPLE = APPLE” could be expressed rather as “the predicate ‘to
be an apple’ of the kind FRUIT is a necessary predicate”. We cannot eliminate
the kind FRUIT in this formulation, since the statement “the predicate ‘to be an
apple’ of the kind INGREDIENT IN A RECIPE is a necessary predicate” should
be false for cooking to be possible at all!

This way of considering “possibility” and “necessity” agrees with the grammar
of these notions. Suppose that we find an archeological site with skeletons of
some anthropoids. If we are asked whether some are humanoids, we could nat-
urally reply that “three of these are possibly humanoids’s skeletons™ or “it is pos-
sible that three of these skeletons are humanoid’s”, but we would not say “there
are three possible humanoid’s skeletons”. Similarly, we do not say that Mr. and
Mrs. X have twelve possible children, but rather that it is possible for Mr. and
Mrs. X to have twelve children.

I shall distinguish sharply between kinds and predicates of a kind. Whereas
the first are modally constant and independent of any particular situation, the
second are not and whether a member of a kind falls under a predicate or not
will depend on the situation envisaged. I believe that this context does better jus-
tice to the dialectics of change, constancy, and modalities. As I said in the in-
troduction, this thesis is basic for the whole approach to the semantics of proper
names and count nouns that I develop in this essay.

2 Topos semantics

2.1 Constant sets vs variable sets in a topos On several occasions, Law-
vere has pointed out that the dialectics of variation vs constancy (which we hinted
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upon in Section 1) may be given an explicit formulation in topos theory via the
notion of a geometric morphism & — S. In this case & may be thought of as a
universe of variable sets, whereas S may be thought of as the universe of con-
stant sets (possibly with “urelements”).

I recall that a geometric morphism & — § is given by a couple of adjoint
functors

84——?7'8

such that AT and A preserves finite limits. It is customary to call A “the con-
stant functor” and I"' “the global sections functor” or “points”.

Recalling the thesis that kinds are modally constant, whereas predicates of
kinds carry the burden of change, its seems natural to identify a kind with a (con-
stant) set S of § and a predicate of that kind S with a morphism AS — Qg of &,
or, what amounts to the same, with a variable subset of AS. Indeed =in S is
given by the relation of identity of the kind in question. Basic kinds such as PER-
SON, DOG will be identified with sets of “urelements”.

It is natural, therefore, to define the category © of constant sets as the full
subcategory of & where objects are of the form AS (with S € §).

Remark This identification amounts to viewing kinds and their predicates as
the hyperdoctrine (S, Pg) (in the sense of Lawvere [12]) where Pg : S°? — Sets is
the functor defined by

P;(S) = Subg (AS) = §(AS,Q)
Pe(S L T) = Subg (AT) <207, Subg (AS)

where (Af)~! is the pull-back along Af.
It is well-known that (Af)~! has both a left and a right adjoint: 3, s

(Af)H V.
We may now express modal constancy of kinds as follows:

Assumption 1 Kinds are constant sets of the geometric morphism & — S.

2.2 The O operator In this section we show from Assumption 1 that the
modal operator of necessity (I is definable for predicates of kinds, essentially
in terms of “global sections”.

In fact, from the adjunction S = &, A 4 T', we derive the following ad-
joint maps

Qs I'(Q), 61y

essentially “by restricting A, I' to subobjects of 1”.
In more detail, given p, we define 6( p) as follows:
X £ Qg
P— X

(Qg classifies subobjects).

Applying A we obtain the equivalences
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AP —— AX

(Qg classifies subobjects)
AX —— Q¢

(A4T).

X 20 T (Q)

We remark that 6 may be defined, alternatively, as the transpose of the clas-
sifying map 7: AQg— Qg of 1 = A 1 - AQg.
Similarly, v (K) is defined for a given K as follows:

x5 1
XD

(Q¢ classifies subobjects).

We apply I' and form the pull-back
r'X) — rax
I Iﬂx
NK) — X
where Id -5 T'A is the unit of the adjunction A 4 T'. The lower horizontal map
in the pull-back diagram is classified by X %), Q.
An easy computation gives that é 4 . Furthermore, since A preserves finite
limits
d(T)=T and d(pAg)=0d(p)rd(q).
We may now define the modal operator
O=06y:T'(Q) > T'(Qe).
The following can be proved easily (or invoke the fact that O is a lex cotriple)

1. O=<1Id
2. 0%=0
3. T =T
4. O(K; A Ky) = OK; A DK

From here we can define an operator (g on predicates of AS as follows:

if AS % Qg is an arbitrary predicate of AS, we let AS Hse, Q¢ be the trans-

pose of S LDetrle), I'(Qg), where tr(p) : S = I'(Qg) is the transpose of ¢.

Example 1
S = Sets == Sets’ = &,
where I is a set. In this case, A(S) = (S);e7 and
I'(X)ien) = 11 X:.
ier
From these functors we derive

Qs=2<_—f7_’2’=1"(98)
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which are easily checked to be

I ifp=T
o(p) =
¥

ifp=1
(K) T ifK=1
LA TS ey

We shall write
é(p) = [iEI|p],~/(K) =|viel(ieK)|,

where | ... | stands for “truth-value of . . .”.
The action of (g on predicates of AS may be described simply as

ilFOgels] iff vjeIjlFoels]
foralls € S.

Example 2
S = Sets 4—%" Sets®” = g,

where IP = (P, <) is a pre-ordered set. In this case, AS is the constant presheaf
AS(Uy=SvUe€PandI'(F) = lignpopF.
The maps

Qg =2 <_j~—_> Q(1) = T'(Q)
where Q(1) = {K € P|K is downwards closed} are easily seen to be given by
é(p) ={VeP|p}, v(K)=|vUeP(UEK)|.
The action of (g on predicates of AS is easily described:
UlFOgels] iff vVePVIikels]
foralls € S.

Example 3 S 4—%—' &, where T is bounded. This means that & may be pre-

sented as the category of sheaves over a site C in S.
The maps

05 == T'(Q),

where I' (Qg) = set of closed sieves, are given by:
8(p) = closure of {C € C| p}
y(K) = |[vCE C(CEK)].

The action of (g on predicates of AS is given by C | O¢[S] iff 3{C; —
Clict € Cov(C)Vi € IVC’ € C C’ I [ S], where we have identified s € S with
its image under the canonical map S — i AS(C). For proofs of these assertions
and further details, see the Appendix.
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2.3 Locally connected topos In several examples of a topos & defined
over S, & —» S, which include the case that & — S is given as the category of
presheaves over a category in S, the functor A:S — & has a left adjoint 7o 4 A.
When this is so, 7 is called the “connected components functor” for reasons to
be discussed later. I shall be especially interested in cases that =, satisfies some
Frobenius type conditions.

The following theorems are due to Barr and Paré [1]:

Theorem 2.3.1 Let & — S be a geometric morphism. The following are equiv-
alent

(@) A is a cartesian closed functor

(b) A has a left adjoint = satisfying the Frobenius reciprocity condition

m(AS X E) =S X moE.

Theorem 2.3.2 Let & > S be a geometric morphism. The following are equiv-
alent

(@) A is a locally cartesian closed functor

(b) A has a left adjoint satisfying the generalized Frobenius condition:

wO(AS X E) ~ § x m,E.
AT T
Remarks

(1) The first condition of Theorem 2.3.1 may be reformulated as “A pre-
serves exponentials”, whereas the first condition of Theorem 2.3.2 may be refor-
mulated as “A preserves the operations I1/’s”.

(2) The second condition of Theorem 2.3.2 is equivalent to the statement that
mo is S-indexed, which according to [1] is the right generalization of the notion
of a locally connected topos over sets due to Grothendieck. The reason for this
terminology comes from the particular case Sh(X) — Sets, where X is a topo-
logical space. In this case, all the conditions of both theorems are equivalent to
the statement that X is locally connected. Furthermore, by identifying Sh(X)
with the category of étale spaces over X, mo turns out to be the functor which
sends an étale space over X into the set of its connected components.

I now state a second assumption on kinds.

Assumption 2 The geometric morphism & — S is locally connected.

This assumption may be stated in the equivalent form (cf. Theorem 2.3.2):
A has a left adjoint 7y 4 A satisfying the generalized Frobenius condition.

A consequence of this assumption is that kinds (= constant sets, by Assump-
tion 1) are exponentiable. Another consequence is the fact that the possibility op-
erator ¢ is definable for predicates of kinds.

2.4 MAO operators In this section we show how to define a couple of op-
erators (¢,0) on predicates of kinds from Assumptions 1 and 2. Whereas (] was
defined in terms of global sections, ¢ will be defined in terms of connected com-
ponents.
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We start from
25 == T (0)

and we define a left adjoint \ 1 6 as follows:

X 5 r(Qs)

—F (A1)

_— (Qg classifies subobjects)
K»— AX.

We apply 7, and take the image factorization

wo(K) — mp(AX)

l |

P(X)— X

The lower horizontal map is classified by X 2%,

the counit of my 4 A). Easy computations give
A6

and hence A\ (K A 6p) = NK A p. We now define O = 6N :T'(Qg) - I'(Qg) and
check, easily, that the couple (¢,00) with (0 = § satisfies the following condi-
tions:

1) ¢40

@ O=<Id<o

@) 0*=0,0%=9

(4) O(KI/\DKz):OK]/\DKz.

QS (here €Ex o A—-1Idis

A couple of operators (¢,0) satisfying (1)-(4) will be called a MAQO couple
(MAO for “modal adjoint operators™).

It is clear that we can define an operation ¢ on predlcates of AS, just as we
did for O: If AS % Qg is a predicate of AS, we let AS —%» Q¢ be the trans-

pose of S ALICIN I'(Qg), where § —*5 tr(e) —¥#%, I'(Qg) is the transpose of ¢.

Remark In the case that A has a left adjoint m, satisfying Frobenius condi-
tion we can simplify the expression of the unit ng5:S — I'AS as follows:

S -5 TAS
i (AHT)

AS 25, AS

1 x AS — AS
(mo14)

7o(1 X AS) — §
7o(1) X § 2 §

§ <, gm),

(m, satisfies Frobenius)

In other words, ng is just the constant map. From here, we conclude that
Ans:AS — ASA™M js again the constant map (since A preserves exponentials).
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Similarly, exg: ATAS — AS is just “evaluation at the unit 1 - Amg(1)”, since
ATAS = ASA™M),

These maps Ang and €55 play an important role in [17], where Montague
calls them “intension” and “extension”, respectively.

Example 1 (bis)

S = Sets Sets! = &,
I‘

where I is a set. In this case 7o((X;)ies) = [I;c;Xi is the disjoint union of the
members of the family.
Furthermore, the map A in the diagram

A
Qs =2 ‘g 21 =T(Qg)
Y

is given by

N CK) T ifK+ O
1 ifk=0;

ie, \(K)=|3iel(ic€K)|.

The action of ¢ on predicates may be described as follows: i [F Og¢[s] iff
3je Ijlk o[s] for all s € S.

We see that we obtain the usual “possible worlds” semantics for modal logic,
with I = the set of possible worlds.

Example 2 (bis)

So o
S = Sets 2, Sets™” =&
r

where P = (P, <) is a pre-ordered set in S. In this case, mo(F) = hmcop Fand
the map A in the diagram

A
Q=2 ‘;:, Q(1) = T'(Q)
Y

is given by N(K) = |aU € P(U € K)]|.
Furthermore, the action of Og on predicates AS may be described as
follows:

Ul Ogels]iff aVe P ViFo[s],

foralls e S.

The semantics thus obtained may be called the “possible situations” seman-
tics. In this case IP may be thought of as the set of (partial) possible situations
pre-ordered by the relation of “containing whatever goes on in”. A thorough
study of this semantics with applications to literary texts may be found in [20].
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Example 3 (bis) & — S is bounded and locally connected. By a theorem from
[1] we can present & as the category of sheaves over a site C of S such that the
constant presheaves are sheaves. In this case, we have the diagram

7o
S 3, Shg(C)
r

with AS(C) =S forall Ce C, ny(F) = li_r{lcop F,T'(F) = li(r_ncop F. The maps
N, 6, are given, in our case by

QS F(Qg),

<l>f~

where
é(p) = {CeC|p]}
Y(K) = |[vCe C(CEK)|
NMK) = [3IC € C(CEK)|.

In this case, the action of ¢5,g on predicates of AS may be described as fol-
lows:

ClFOsels] iff vC’' € C C'IFols]
ClFOspls] iff 3C' € C C’'IFo[s].

2.5 Locally connected and connected toposes As the reader has probably
noticed, we had a choice in our definition of the category of kinds: either as
S(I'(Q¢)) or as the full subcategory C of &(Q) consisting of objects of the form
(AS, da5)-

In this section we shall study a condition which says, roughly, that this choice
is irrelevant. We just start with the following:

Proposition 2.5.1 Let & — S be a locally connected geometric morphism.
Then the following conditions are equivalent:

(a) A is full and faithful

(b) TA = Idg

(c) mA = Idg

d) m(l)=1.

Proof:
(a) & (b) is well known and easy to check
(b) & (d) follows from I'AS = S™() | whereas
(¢) & (d) follows from the Frobenius condition on .

Notice that only the (usual) Frobenius condition is used in this proof, so we
can weaken the hypothesis to require the existence of m, satisfying this con-
dition.

We may now state the irrelevance of the choice:
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Proposition 2.5.2 Assume that & — S is locally connected and connected.
Then the lifting

A:S(T(Q)) — 8(2)
induces an equivalence of categories between S(T'(Qg)) and C.
Proof: Simple computations using Proposition 2.5.1(b).
In the presence of Assumption 2, connectivity of I" leads to further condi-

tions on the maps

Qs I'(Qg).

<l

In fact, y6 = 1o, = N6 = lgg.
Finally, we shall look again at the example of Section 2.1 to see what this
condition on connectivity means in these particular cases:

Example 1

0]
S = Sets % Sets! = &.
In this case mo(1) = mo((1);es) = 2ier 1 = I and the connectivity means that
I = 1. Therefore, connectivity brings about a collapse of the “possible worlds”
semantics to just one world. Correspondingly, ¢ = O = Id.

Example 2

o
S = Sets g SetsP” = €.
r
In this case my(1) = set of connected components of the graph IP. Therefore,
wo(1) = 1iff given U, V € P there is a finite chain of elements of IP:

UzWi=W,z...s W, =V.

Therefore, it is possible to impose a condition of connectivity on “possible sit-
uations” semantics without collapsing modal operators to the identity.

Example 3 This example is delicate and I shall deal with it elsewhere.

In Section 3 we shall see what further logical rules connectivity imposes on
¢ and O.

2.6 Sets with coincidence relation and kinds Members of a kind such as
DOG, PERSON, etc., may come in and go out of existence, contrary to mem-
bers of the set of natural numbers, say. On the other hand, kinds such as
PROPOSITION or PREDICATE OF PERSON have members that may hap-
pen to coincide at a given situation, although they are not identical.

It may well happen, for instance, that singing and working may coincide at
a situation in which precisely those who are singing are those who are working.
Nevertheless, these predicates are not identical.
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This notion of coincidence is essential to understand problems of opacity
which are ubiquitous in natural languages. Keenan and Faltz [8] have given nu-
merous examples of lack of substitutivity of “equals for equals” which do not
result from epistemic contexts of the kind “believes that”, “wonders whether”,
etc. For instance, in the situation envisaged above, those who are singing with
Fred need not coincide with those who are working with Fred. Of course mo-
dal operators create contexts for which we cannot substitute “equals for equals”
without altering truth values.

It is not cogent to say that we are dealing with identical members of a kind
which have different properties! Nevertheless, it is quite cogent to consider mem-
bers which happen to coincide but are different (and hence they may have dif-
ferent properties).

In this section, we shall provide means to represent these facts in our theory,
by defining, for any topos &, and any complete Heyting algebra H in &, the cat-
egory of sets with coincidence relation (§(H)).

The objects of E(H) are couples (E,dg) where dg: E X E — H satisfies

() de(e,e’) = de(e'e)
(ii) Se(e,e’) Ade(e,e”) < be(e,e”).

On the other hand, a morphism (E,8g) -5 (F,8r) is a map E - Fof &
which satisfies

oe(e,e’) = dr(f(e), f(e)).

Note in spite of the similarity, this is not the category of H-valued sets of
Higgs [7] in the case of & = Sets. In fact, Sets(H) is not a topos, although it is
locally cartesian closed (and even a quasi-topos): the map (1,4,) = (1,6,) where
04 (*,%) = 0 € H is both a monomorphism and an epimorphism, but not an
isomorphism.

Theorem 2.6.1 The category &(H) is locally cartesian closed.

Proof: The terminal object is (1,6;), where 1 = {*} is the terminal object of &
and 6, (*,*) = 1 € H. The product of (E,ég) with (F,F) is the diagram

(E,8g) <™= (E X F,8exr) = (F,6F)
where E < E X F— F'is the product in & and égxr((e, f),(e’,f')) = 6e(e,e’) A
6r(f, ). The equalizer of (E,dg) :ﬁ: (F,éF) is the diagram
S
(H,8y) = (E,8¢) = (F.6r),

where H -5 E %{ F is the equalizer of & and 85 (h, h’) = 6e(e(h),e(h’)).
The exponential of (F,éf) to (E,dg) is the diagram
(FE,ﬁFE) X (EabE) - (FaaF),

where FE x E — F is the exponential in & and

Sre(ff) = [ [Be(e e’) = 8e(fe, f'e')].

e,e’€E
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Finally, the IT operators may be described as follows: if (E,ég) N (F,6F) €
&(H),

(G,66) (P,6p) p G
I1, wl = l , where l =11, ¢l
(E,0e) (F0F) F E

To describe 8, we need some preliminaries. Recall that in the category of
sets, P = 2iperllacr-1p o ! (a). Using the representation of partial functions
into G as total functions into G, we may describe P in set theoretical terms as

P ={(b;,y) € F x Gf|va € E(3x € Gy(a) = {x} © f(a) = b)
AVa € Evx € G(y(a) = {x} = ¢(x) = a))
and the map P — F'is just the (restriction) of the first projection. We now define
8p((b1,71),(b2,72)) = 8p(by, b2) AN {8e(ay, a3) = (X1, %2) | v1(ay)
= {x1} Ay2(a2) = (x2}].
We check that §, is a coincidence relation:
0p((D1,71),(b2,72)) A 6p((D2,72),(b3,73))
< 0p(by1, by) A p(by, b3) A (8e(ay, az) = b (X1, X2))
A (e (az, a3) = 6G(x2,X3))
=< 0p(by, b3) A (8e(ay, az) A de(az,a3) = 5 (X1, X2) A b (X2, X3))

=< 0r(by, b3) A (8e(ay, @) A be(az, a3) — 6g(xy, X3)),

for every ay, a,, a3, x1, x5, X3 such that v;(a;) = {x;}.
Hence,
0, ((b1,71)5(b2,72) A 8p(b2,72),(b3,73))
< 6r(b1, b3) A (V {8e(a1,a2) A 8e(az, a3) | v2(a2) = (X2}} = 86 (X1, X3))
< 6p(by, b3) A (6e(ay,a3) = 8g(x1,x3)) for all a;, a3, x;,x3
such that v;(a;) = {x;}
< 8p(by, b3) A N\ [Se(ay, a3) = 86 (X1, x3) | v1(a1) = {x1},73(a3) = {x3}}
=< 6p((b1,71),(b3,73)).
The proof that f* 411, is long but straightforward.

Remarks

(i) &(H) is in fact a quasi-topos, since (2,87) classifies regular monos,
where 87 is the coincidence relation whose value is always T.

(ii) &(H) has images: if (E,dg) £, (F,6r) € &§(H), one can easily check
that Im(f) = (f(E),d), where & is the smallest coincidence relation
containing the map 8q:f(E) X f(E) » H defined by 6y(y,»’) =
Vs =y sy =y 9 (X, X7).
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Images, however, are not stable under pull-backs, as the following example
shows in Sets (), where Q¢ = {0,1,1} with obvious operations.

Let E = {0,1,2,3}, F={0,1,2}, X = {0,1} and let 6 = 67, 6x = 61, where
&7 is the coincidence relation whose value is always equal to T € £, 6g(0,2) =
6e(1,2) = 8g(1,3) = 8(0,3) = 1 and T elsewhere and 6(0,1) = 6(1,0) = 1 and
T elsewhere. Then the diagram

(E,8g) —— (F,6p)

(X,8) —g— (X,0x)

is a pull-back, where «(0) =0, «(3) =2, a(1) =a(2) =1, u(0) =0, u (1) =2,
v(0) =0, v(1) = 3. Clearly « is an image, but Id is not! Similarly, &(H) has
suprema of subobjects which are, in general, not stable.

From our definition of morphisms in & (H) we obtain the forgetful functor
U:&(H) — & defined by

U(E,6e) =E and U(Sf) =1

Proposition 2.6.2 The forgetful functor U is locally cartesian closed and has
both a left and a right adjoint: L 1 U R.

Proof: The first statement is obvious from the description of the operations of
the category. As for the second,

L(E) = (E,8y), R(E)=(E,8;), and L(f) =R(f) =/,
where §;(e,e’) =1 € H, §p(e,e’) =0 € H.

A particular case which is of great importance for us is H = Q € &.

In this case &(Q) can be described as the category PER (&) of partial equiv-
alence relations, i.e., an object of PER (§8) is a couple (E, R) where R —~E X E
is a symmetric and transitive relation. A morphism f: (E, R) - (F, S) of PER
(&) is amap f: E - F of & such that (e,e’) € R— (f(e), f(e’')) €S. In fact, this
follows immediately from the bijection

ExE-Z25Q
R EXE

given by definition of Q.

3 The language of many-sorted modal theory and its interpretations In
our topos theoretic semantics we have variable sets (arbitrary objects of &) and
constant sets (objects of & of the form AS, with S € S). It is natural to intro-
duce fypes and sorts to be interpreted as variable and constant sets, respectively.
However, to simplify our exposition and bring forth what is new in our ap-
proach, we shall concentrate on sorts only. Furthermore the theory of types has
already been dealt with at great length by several authors.
We define sorts and terms by recursion:
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Sorts

(a) Basic sorts are sorts: passenger, person, boy, bachelor, reading, river,
etc.

(b) 1, PROP are sorts

(c) If X, Y are sorts, so are X X Y and Y¥X

(d) Nothing else is a sort.

Terms In what follows, we write “¢: X for “t is a term of sort X”.

(a) Basic constant terms ¢ € Cony are terms of sort X: * € Con;; John €
Conpe,son; run € COl'lpRopperson; meet € ConpRoppersonxperson, etc.

(b) If x € Vary, then x is a term of sort X, where Vary is an infinite set of
variables, for each sort X.

(c) Ift:Xand s: Y, then (#,s): X X Y.

(d) If x € Vary and ¢: Y, then Axt: YX.

(e) If t:Y* and s: X, then #(s): Y.

(f) 1,1 :PROP.

(g) If t,s: X, then t = s and ¢ =X s: PROP

(h) If ¢,y :PROP, then ¢ * y : PROP, where * € {aA,v,—}

(i) If ¢:PROP and x € Vary, then 3x¢,¥x¢ : PROP

(G) If ¢:PROP, then Ogp,0¢ : PROP

(k) Nothing else is a term.

A formula is a term of sort PROP. We use the following abbreviations:

Ift:X,weletE(f) =t Rt
If ¢ is a formula, we let "o =¢p— L.

We shall assume that we have defined the usual notions like “substitution of
a variable by a term”, “free variable of a term or a formula”, “a term is free for
a variable in a term or formula”, etc.

We now interpret this language in a topos & — S. The main idea, already dis-
cussed, is that sorts are interpreted as couples consisting of a constant set of &
and a coincidence relation.

Our interpretation proceeds in two steps: we first interpret sorts as kinds i.e.,
as objects of the category () of the form (AS,d,5).

Via this interpretation, we shall interpret terms and formulas in the topos &
in the usual way (cf. Makkai and Reyes [15] and Lambek and Scott [10]).

To interpret sorts in (), it is enough to interpret basic sorts. In fact, once
these sorts have been interpreted, we extend the interpretation 7 to all sorts as
follows:

I(1) = (Al1,67)
I(PROP) = (AT'Q,darq)

where p gy : T (2) X I'(Q2) » T'(Q) is defined as I' («).
Furthermore, if X and Y have been interpreted, then

I(X x Y) =I(X) x I(Y) and
I(YX) = 1(Y)!™,
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where products and exponentials in the right-hand sides refer to the cartesian
closed structure of &(Q). Furthermore, constant sets of & are exponentiable by
our assumption on & — S.

We recall that we have a forgetful functor,

8(Q) 2 &,

in terms of which we define the interpretation of sorts as follows: if X is a sort,
then | X || = U I(X). Notice that | X| is a constant set of the form AA. In the
sequel, we shall let tr(...) be the transpose of (...) given by the adjunction
AAT.

For each term #: X and each sequence X = (x, ..., X,) of distinct variables
such that the free variables of ¢ are among the elements of ¥, we define by re-
cursion | X: ¢ : | X1 X ... X| X.| = | X| € & as follows:

a. Basic constant terms ¢ € Cony are interpreted as global sections |c| :
1 - | X| € &. If % is any sequence of (distinct) variables of sorts X,

o X, welet | Zrc] | X% .. X[ Xa] = 1 25 | x| be the com-
posite of the unique morphism | X[ X... x| X,| - 1 with |c|.
b. If x; € Vary, then | ¥:x;| = =, the i projection.
c. Ift:Xands:Y, then
[1%:<t, s> | = <%= 2], %25
d. If x € Vary and #: Y, then |[X:Nx¢|: | Xi|X...x|X,| = |Y]I¥! is
defined to be exponential transpose of the map
[Xx:e] = | Xl .. X[ Xal X | X[ = Y]
(we assume that X x consists of distinct variables).
e. If 1: Y* and s: X, then |%:¢(s)|| = ev o (|X:¢|,|X-s| ), where ev:
1Y I¥x| x|~ |x].
f. 1Z:T) = [X1|%...x| X = 1=a1-25 ArQ
[Z:1] = [ X[ %...x[|X.] = 1=A1-2% ATQ.
g. || X:t=s]| is the composite
X:t, | %: Atr(A) x|)
"Xl"XX"XnH e, 1 %:s])> "X"X"X“ tr(A ) x| ATQ,
where A x classifies the diagonal | X || » | X[ X || X||
|%:¢ = s| is the composite
%:t|, | %: Atr () x))
Xl x, ) R x ) x| x| 224 AT,
where ("X" ,6||X") = I(X)
h. |X:e x| : | X1[X...X]|X.]| = AT'Q is the composite
1 X0 x| X, | <L, Apg x ATQ AL, ATQ
where * : Q@ X Q@ — Q is one of the operations v,A,— on .
i | X:3xe] | X% ... X]| X,] = AT'Qis defined to be Atr(3, (eg° | Xx: ¢]))
1%:vxe| : | X1[X ... X| X,|— AT Qis defined to be A tr(V,, (e | ¥x: ¢])),

where 7: | X[ X ... X[ X, | x| X| = | X1]X...X|X,| is the canonical
projection.
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|%: 0l : | X1]X. .. X|X,| = AT'Q is the composite
1 X% .. x| X, | 222 ArQ 42, ATQ
[%: Q| : | X1]X...X%X|Xn] = AT is the composite
IXi0%... x| X, | 2L arg 4%, aTg.

Remark The reader has certainly noticed that we have defined a nonstandard
interpretation of formulas as maps into AI'Q, rather than Q. However, glven such
a nonstandard interpretations of a formula ¢, | X;|X ... x| X,| 2=¢L, Arg
we obtain a standard interpretation of ¢, namely, | X | X ... X|X,| —M Q
simply by composing || ¥: ¢| with the counit eq: ATQ — Q

To finish this section, we shall describe a formal system MAO (for “modal
adjoint operators”) based on Gentzen’s sequents. These sequents, following
Boileau and Joyal [2] will be expressions of the form I' |y ¢, where I is a finite
set of formulas (of the language already described), ¢ a single formula and X
a finite set of variables containing all the free variables of I" and ¢. We shall as-
sume that sequents satisfy 1-8 below. This system partly follows [10], p. 134:

1. Structural rules:

1.1 pkxp
IFtxpTU(p)lxq
T I-Xq
T l-xq
Fru{pr}txq
Tr I-Xq
T Fxun g
1.5 r I-XU(,V] 14
Tlt/y] bx olt/y]’
where ¢ is free for y in ¢ and I'.

1.2

1.3

1.4

2. Logical rules:

21 pkxTand L kxp.

22 rtxpnagqiffritxypandrtbyxq
pvgbxriffptyrandgbxr

23 pkxg-oriffpagltxr

24 prx Vxp iff p Fxuix e
Ixp bx piff ¢ bxygx) D
provided that x & X.

3. Identity rules:

3.1 |-Xt =t
3.2 t=s,0[t/x] bx ols/x],
provided that ¢ and s are free for x in ¢.



4.1
4.2

4.3

wnin W
N =

5.3

6.2

6.3

7.1
7.2
7.3

7.4
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Rules on special symbols:

Fx;X = * (x € Var))
{a,b) ={c,d)Fxa=c
<a’b> = (c,d> I_X b = d
F,Z = <x9y> I_XU[x,y,z} "4
r '_XU{z] 4 ’
provided that x and y are not free in I" or ¢.

Coincidence rules:

Fx %= *
(a,by R (c,d)Fxaxc
{(a,b) K{c,d) Fx bRd
ac,bRdlx(ab)=
x=y I-XyHl_x
fRE& xRy bExflx)=8(y)
T, xRy Fxuixy f(x) X8(Y)
ThyfRg

provided that x and y are not free in I'.

(c,d)

’

Rules for the A-calculus:

FxAxt(x) =t,

provided that x & X.

FAxe(7) = ¢lt/x],

provided that ¢ is free for x in ¢.

T }_XU(xl t=s
T Fx Axt = Axs’

Rules for modal operators:

O bx ¢ ¢ Fx O
O bx OO0 00p Fx Op
¢ Fx OCp COe kx ¢

ind 2
Oe - 0Oy

K 2
Qp— Oy’

377

This completes our system. We have not tried to describe it in the simplest
or most economical way.
To state a soundness theorem, we first need a definition. Let |.| be an
interpretation of the language already discussed in a locally connected topos
& — S. We say that a sequent I' by g is valid under |.| iff eg o |X¥:AT'|| <
eq e | X:q|, where X is a sequence of distinct variables of X. Similarly, we say
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that a rule of inference is sound under | .| if the conclusion is valid whenever
the premises are.

Theorem 3.1 (Soundness of MAO) Assume that the geometric morphism
& — S is locally connected. Then all sequents of MAO are valid and all rules of
inference of MAO are sound, under any interpretation.

Proof: To simplify our computations, we first define a forcing relation as fol-
lows: ClFelay,...,a,] iff CEtr(eqe [X:¢|)(ay,...,a,) where tr(...) is the
transpose of (...) for the adjunction A 4T.

Lemma 3.2 I satisfies the usual clauses for the forcing of Beth-Kripke-
Joyal.

Proof: We shall do only the clause v, the others being similar. Let A4 X
AB L&Vl ATQ We have the following equivalences:

Clvyplal

Cetr(ege |x:Vye|)(a)
Cetr(Vreleao | (x,2):0))(a)
(Va(eae | (X, ) :0D)c(a) = Tc

By definition of Vv, the last line is equivalent to VC’ - C € C Vb € B (eq °
I e »):ele(a,b) = Ter.

Using Proposition A.4 of the Appendix once again, this is equivalent to
VC'>CeCVbEBC Etr(ege || (x,¥):0|)c (a,b)
which, in turn, is equivalent to
vC'->CeCvbeBC'IFgla,b]

(definition of I)

(definition of [x: Vye|)

(Proposition A.4, Appendix)

by definition of |-
By the argument used in Proposition 4.1 (§4), one can easily conclude that

€g° | X-AT| <eqo[X:9]
precisely when their transposes satisfy
tr(ege |X:AT|) <tr(ege || ¥:0]).

Therefore, validity of the sequent T' Fx g under | ... | is equivalent to
vC e C(CIFAl'[ay,...,a,] = Clqlay,...,a,l).

But this is the usual notion of validity under which sequents and rules which
do not involve ¢,,<X may be proved valid and sound, respectively. For other
sequents and rules, validity is straightforward: for instance, the first two axioms
of 5.3 state that d;x is symmetric and transitive, whereas the rule of inference
of 5.3 expresses the coincidence relation of an exponential. Finally, the sequents
in Group 7 just assert that (¢,) constitutes an MAO couple.

If we impose connectivity, a new sequent, the connectivity axiom below, is
validated.
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Connectivity axiom:

Indeed, we have the following result whose proof will appear elsewhere:

Theorem 3.3 (Soundness of MAO with Connectivity axiom) Assume that the
geometric morphism & — S is locally connected and connected. Then all se-
quences of MAO as well as the Connectivity Axiom are valid and all rules of in-
Jerence are sound, under any interpretation.

4 Kinds and variable sets with coincidence relation The main result of this
section concerns the relation between S(I'(Q)) and &(Q). We first “lift” the
functor A to a functor

A:S(I'(Q)) - &(Q)

which sends (X,8,) into (AX,8,y), Where 6, x is the transpose of 6y via the
adjunction A 4T, i.e., 8o x = 6g ° Ay and sends (X,dx) 7, (Y,8,) into Af.

Proposition 4.1
(a) by is a coincidence relation iff b, x is a coincidence relation.
(b) fis a morphism of S(T'(Q)) iff Af is a morphism of &(Q).

Proof: Easy exercise in transposition. As an example, the assertion that
Oax(E1,62) N Oax(&s,83) = 8pax (€1, &3) is equivalent to the existence of the
dotted arrow in the commutative diagram:

AX X AX X AX {(dax°(m1, m2),0ax°(m2, T3),8ax (71, 3)) X QX0

l/\xﬂ

|
i
< — O x Q,

which in turn is equivalent (by taking transposes) to the existence of the dotted
arrow of the commutative diagram

XX XXX {(dxe(my, m2),0x (w2, 3),6x° (1, T3)) F(Q) X F(Q) X F(Q)
lP(A)XI‘(Q)

i
i
i
1l
1
4

I'(=) - T'Q xTQ.

But this last statement is equivalent to dx (xy,X2) A dx (X2, X3) < dx(x1,X3).
Similarly, the assertion that Af is a morphism is equivalent to the existence
of the dotted arrow in the commutative diagram:

AX x AX Saxlar:dixald, g »
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By taking transposes, this is equivalent to the distance of the dotted arrow in

X x X x5, pgy x T(Q)

.
<
~~o
~<
~~o
S~

T T(=).
But this last condition says that f is a morphism.

l_’roposition 4.2 Assume that & — S is a geometric morphism (A :l I'). Then
A:S(T'(Q) — &(Q) preserves finite limits and has a right adjoint A 1T such that
the following diagram is commutative:

S(I'(Q) == &(Q)

LM[R L”u]R

S <—T—' &

=

Proof: The fact that A preserves finite limits is easy and left to the reader.

We define T as the functor which sends (E,8¢) into (T'(E),dr(g)), where
ér) = I' (8g), and which sends a morphism (E,8g) - (F,df) into I'(a):
I'(E) »T'(F).

Proposition 4.3
(a) or(g) is a coincidence relation
(b) I'(a) is @ morphism of S(T"(Q)).

Proof: Let us prove (b) only, since (a) is quite similar.
The assertion that « is a morphism is equivalent to the factorization of the
horizontal map as indicated:

E x E S0elraxe) , g

~~..
~.

Applying I to this diagram, we obtain the factorization through I'(<) —
I'Q x I'Q of the map <ér),0r ) °I' (o) X I'()), i.e., we obtain that I' (o) is
a morphism.

We now check that A 4 T. In other words, we have to check that we have a
natural bijection:

(AX,8,x) —— (E,8¢) € 8(0)
(X,8x) oy (T'(E),br) €S(T'(2)

where tr(a) is the transpose of a via A 4 I'. Since this bijection exists at the
level of maps of & and maps of S, it is enough to show that « is a morphism iff
tr(«) is a morphism. Once again we have the following equivalences:
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o is a morphism

\\\\\
.
~~
~.

~~.
~—e
~~.

tr(«) is a morphism
In fact, the last equivalence follows from
tr(dgoa X a) = dp() o tr(a) X tr(a),

as can be easily checked.

Theorem 4.4 Let & — S be a geometric morphism A4T. If A:S— & has a
left adjoint 7o A, then A:S(T (R)) — &(Q) has also a left adjoint Ty A such
that the diagram

0

S(r(Q)) 42 _, ()

L[;”R ‘_;_—L] £UIR

is commutative.

Furthermore, if ©y: & — S satisfies the Frobenius’s condition, then so does
To: &(Q) - S(I'(Q)).

Proof: We define Ty : §(Q)—S(I' (Q)) as the map which sends (E, 6¢) into( o (E),
xo(E)), Where 8, . will be defined presently, and a morphism f: (E,8g) —
(F,dF) into mo(f) : mo(E) = mo (F). Later on, we shall check that 7, is a functor.

We first define the transpose of 8, , namely 85, : (AmoE)? - Q, as the fi-
nal structure on AmoE for which ng: E —» AwgE is a morphism of §(Q). In other
words, 8, is the smallest coincidence relation 6 on AwyE such that §g < 60 2.

To make this definition precise, let D = {§ € 2(4™E) | 5 i a coincidence rela-
tion and 8¢ < 8 o) > QA™E’, Furthermore, let e:ID X (AmE)? > @ (A™E x
(AmoE)? <% Q be the restriction of the evaluation to functions in D. If é:
(AmoE)? - QP is its exponential transpose, we define ar,E to be the composite

Samoe: (AmoE)? 55 QP 10,
Using set-theoretical notation

dare. = N[0 € Q™ 15 e D),
OE
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Claim

() de < dar,e ° Mt

(b) If d and d’ are coincidence relations on X, then d < d’ iff tr(d) < tr(d’)
(¢) If d is a coincidence relation on my(E), then 6., < d iff 8¢ < tr(d) ° n%.

Proof:
Ad(a): 8¢ < 6 o % for all 6 € D (by the very definition of D). Therefore,
8e < N{8°7E[8 € D) = Sprye = .
Ad(b): simple exercise in transposition as in Proposition 4.1.
Ad(c): =: from (a),
8 < tr(dxy(e)) ° N < tr(d) o 1k
«: Since d is a coincidence relation, so is tr(d) (Proposition 4.1)
and hence

OanoE = tr(0xye) < tr(d).

This implies (by (b)), that 8, < d.

Let us show that 7y is a functor; more specifically, let us show that my(f) :
wo(E) = mo(F) is a morphism in S(I'(Q)), provided that f is a morphism in
&(Q).

In fact, consider the coincidence relation d = 6,,(r) ° (7o.f )2. Since tr(d) »
1% = tr(8,,(F) o 9% f2, we have that

Oe < Op o f2 < tr(8rg(r)) o7 o f2 =tr(d) o nE.

By applying (c), we conclude that &, < d. We now check that 7, 1 4, i.e.,
that we have a natural bijection

70(E,0e) -5 (X,8x) € S(T(Q)
(E,8e) 20 A(X,8x) € 8(9).

Since tr( ) gives such a bijection for maps, we need only show that f is a mor-
phism iff tr(f) is a morphism. But we have the following equivalences:

wo(f) is a morphism

Oro(e) < Ox o f?

de < tr(dx o f?) o nt
O < dax° (Af)? ot
g < dax o tr(f)?

Assume now that g : & — S satisfies the Frobenius condition. We shall prove
that its lifting satisfies the same condition, i.e., we shall prove that if (F,ér) =
(EsaE) X (AY,SAY)’ then (WO(F)’BWO(F)) = (WO(E),B,,-O(E)) X (Y,BY)

By assumption, 7o(F) = mo(E) X Y and we need only prove that

Oro(r) ((@,),(a’, ")) = bxyg)(a,@") NOy (3, ¥7).
We claim that this condition is equivalent to

(%) Bargr) (0, ), (@ 7)) = bamee (@, @) Aday (£, 7).
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In fact, this follows from the last claim (b) and the fact that the transpose of
[(a,a’), (3, ") = bxoEy (@@’ ) NOy (3, )] s [((a, @), (§, §7)) = Oamee (0, ') A
day (&, ¢')] as follows from the equivalence

mo(E)? x Y2 en@T0vm) gy o 1) L4, (@)

(AToE)? x AY? (8@ Tu0vm) | A o APQ AR, ATQ

exEj ls
(BaxoE° 71,85y ° )
QxQ —— 0

(Notice that the square is commutative by naturality of e.)

Oamer (0, §), (', §)) = damee (o, @”) Aday (£, 7).

But < follows from functoriality. To show =, define

6((1,0{,) = n [6AY(§‘s g-,)_)éAwoF(a, ;)’(a” g-l))]

(5, ¢)EAY?

Claim O < 6o nE.

Proof: d(ne(e),ne(e’) = N, year? [0ay($, $7) = Sanr((me(e), §),(ne(e’),
C'N]. Since 8x < 8ppr o NF= dpmorong X AYZ,

d(ne(e),ne(e) = ) [8av($8") = 8r((e, §), (€ 5]

(5, ¢)€eay?
= 6E(e’ el)a
since 6r((e, §), (€', {') = de(e,e’) Aday($,¢).
By claim (c), 8ar, ) < 6 and we conclude
Oamoe(a,a’) Aday($,§) < 0(a,a”) Aday (£, §7) < daner((a, §), (s £7)).
The rest of the proof is straightforward and left to the reader.

The obvious next question is whether 7y: §(Q2) — S(I'(Q)) satisfies the
generalized Frobenius condition whenever my: & — S does.
To answer this question, we need some preliminaries.

Lemma 4.5 Let (E,0e) € 8(Q). Then danye: (AmoE)? - Q is the smallest
coincidence relation containing the map 85 : (AmoE)? — Q defined by 65(a, a’) =
V?]E(B) = a,nE(e')=a’6E(ea e/)~
Proof: From 8g < 8a,,e ° 12 we conclude that
86(a,a’) =\ Be(ee) < dage(a,@’).
ne(e)=c
ne(e’)=a’
Furthermore, it is obvious that 8¢ < 8§ o TIE_, and this implies that the smallest
coincidence relation containing 8§, namely 8§, satisfies the conditions
‘% = 6A1r0E

O < 58"17%.
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Since 8, e is the smallest coincidence relation satisfying the second condition,
B(E) = 6A‘ll'oE'

Recalling from the remark after Proposition 2.6.2 (§2.6) that &(Q) can be
alternatively described as the category of partial equivalence relations on objects
of &, we may formulate the previous lemma as follows:

Lemma 4.6 Let (E,0g) € &(Q). Then 6;}OE(T) is the smallest partial
equivalence relation on AwoE containing S — (AwoE)?, where S is given as the
image factorization

E2 ", (Am,E)>

s‘/

of n2.

Lemma 4.7 Assume that o : & — S satisfies the generalized Frobenius con-
dition. If

(F,0p) — (E,d¢)
(AY,5AY)—A7‘—’ (AX,85x)
is a pull-back, then for all (a, {),(a’,{’) € AnyF,
86(a, ') Aday (£, ') =86, §), (s §)).

Proof: 85(a,a’) Aday (5, ¢) = Ve(e)=a, ne(e’) =o' O (€, €") ABay (§, ). Since
the diagram
neXAY

E X AY AmgE X AY
F > A‘lroF

nr

is a pull-back, the right-hand side of the last equality is equal to

V de(e,e) Aday($, ) = 86(a, §),(a {)).

1r(e, $)=(a, {)

nr(e’, §)=(a’, )
Corollary 4.8 Let & » S be a geometric morphism A - T such that A has a
left adjoint w1 A satisfying the generalized Frobenius condition. If for every
E € &, the image of a partial equivalence relation R — E? under the map E? —%»
(AmoE)? is again a partial equivalence relation, then the lifting 7y: &(Q) —
S(I'(Q)) also satisfies the generalized Frobenius condition

Proof: In this case, 8y, = 65 = 85.
In particular, in Example 1 (§2.2), i.e.,

o
o
Sets _A, Sets’,
T
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the lifting of m, satisfies the generalized Frobenius condition, since 5x;), :
(X:): = (1, X;); is monic.

On the other hand, the following example (particular case of Example 2
(§2.2)) shows that the lifting of xy, does not always satisfy this generalized
Frobenius condition (even when 7y does). Consider 2 = {0 — 1} and

)

o

A 20p
Set = , SetP,

In this case, AS = (S =5 S), mo(Eo -5 E;) = E, and T'(Ep -5 E;) = Eo,
with obvious actions on morphisms. The object of truth-values is @ = (Q,
Q,), where @, = {0,1,1}, 2; = {0,1}, €(0) =0, e(1) = e(1) = 1. Using our iden-
tification £(Q) = PER(E), define (E, R) as follows:

E = (Eo = {0,1,2,3} = {0,1,2} = E;)
with «(0) =0, a(1) = a(2) = 1, a(3) = 2;
R = (Ry 2 R;) where
Ro = {(0,0),(1,1),(2,2),(3,3),(0,1),(1,0),(2,3),(3,2)}
R, =E}

and @ is the restriction of o2.
Define (F, S) by means of the pull-back diagram

(F,S) > (E,R)

l I

(A[0},(A(0})%) —5— (A[0,1},(A{0,1})?)

where i = {0} — {0,1} is the inclusion, u#4(0) = uo(3) =0, ug(1) = u(2) =1,
©1(0) = u;(2) =0 and u, (1) = 1. Obviously, « is a morphism. From the defi-
nition of (F, S),

F=({0,3) =5 {0,2))
5= (So £ 8y),

where S, = {(0,0), (3,3)}, S; = {0,2}2, o’ is the restriction of o and 8’ is the re-
striction of 2.
The map E 25 Am,E is given by the diagram

Ec ——

al llde.

EITEl

We compute the image of R under 5 to obtain R’ = (R - R}) where
R} = {(0,0),(1,1),(2,2),(0,1),(1,0),(1,2),(2,1)}, R; = E? and  is the restriction
of the identity.

In other words, the smallest partial equivalence relation containing R’,
BA_,,I.OE(T) = E X E. Thus, 6,,-05 = 67.

On the other hand, F —£» Ax,F is given by
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FOL’Fl

afl lldp.

F, T F,

The image of S under 5%is S’ = (S} LN S1), where Sj = {(0,0),(2,2)}, S1 =
{0,2}2, and &' is the restriction of the identity. But then S’ is already the partial
equivalence relation 853, (T).

Since in this case 6,,(r) = (ar,F)o, We obtain that é,,r) (0,2) # T and
hence that the diagram

(7o (F),0x0(F)) —— (o (E),0x,(8))

| &

({0},6T) ——— ({0,1},671)

is not a pull-back.
We finish this section with a reformulation of Frobenius conditions for 7
in terms of properties of A.

Proposition 4.9 Let & —» S be a geometric morphism A - T'. Assume that
A:S(T'(Q)) = &(Q) has a left adjoint Ty 4 A. Then A preserves exponentials
(respectively 11} operations) iff Ty : 8(Q) — S(I'(Q)) satisfies the Frobenius con-
dition (respectively the generalized Frobenius condition).

Proof: This is just a formal computation (cf. Theorem 5 of Barr-Paré [1]): for
the case of exponentials, e.g.,

[7o(E) X X, Yisray = [To(E), Y¥Isra) = [E, A(Y¥)]g(q
[To(E X AX), Y]sra) = [E X AX,AY]gq) = [E,AY2X]g(q).

Therefore, (by Yoneda) 7o (E X AX) = #o(E) X X iff A(YX) = AY2X, The case
of IT; operations is similar.

Corollary 4.10 Let & - S be a geometric morphism A A T. Assume that A
has a left adjoint m satisfying the Frobenius condition. Then the lifting
A:S(I'(Q) — &(Q) preserves exponentials.

Remark The counterexample Set?? — Set together with Proposition 4.9
shows that A: Set(I'(2)) - Set*” (2) does not preserve the II; operators al-
though m,: Set®*” — Set satisfies the generalized Frobenius condition.
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Appendix In this Appendix, we derive the main result of Example 3 (§2.2),
namely the relation between forcing relation for O¢ in terms of forcing relation
for .

Recall that we had a topos & — S bounded. This means that & may be pre-
sented as the category of sheaves over a site C in S. We have the diagram

Shg(C) =&

/‘/ |

Ao op
S == §¢
[

where a is the “associated sheaf functor”, A, is the constant presheaf
Ao(S)(C) =SvCe C, Fo(F) = lianop F,A = aAo, I'= Poi.
To describe the maps Qg 4—1' I' (Q¢) we recall some definitions and a lemma
Y

(cf. Moerdijk [16]): a sieve K is a set (in the sense of S) of objects of C such that
Ce K and C’' - C e C implies C’ € K. The closure cl(K) of a sieve K is [C €
C|3{C;— Clics € Cov(C)Vi € I(C; € K)}. A sieve is closed if it coincides with
its closure.
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Lemma A.1 I'(Qg) = set of closed sieves
8(p) =cl{C € C| p}
v(K) = |vC € C(CEK)].

Proof: We first show that I'y(Q) = liglcop Q, where Q is the object of truth-

values of S©”, is in bijective correspondence with the set of sieves on C. In-
deed, defining ¥ (uc)cec) = {C € Clidc € pc} and #(K) = {{f:C'->C|C’ €
K}}cec one easily checks that ¢ and ® are inverse to each other and establish
the desired bijection. Let us recall that Qg is defined by the equalizer iQg <

Q %_; Q, where j is the topology defined by the site C, i.e.,
idg

Jjo(K) = {f: C" > C|3{C] 25 C"}ics € Cov(C')Vif o o; € K.

This allows us to conclude that the couple ¥, ® restricts to a bijection be-
tween elements in I'(Qg) = T (iQg) = liglcop iQ¢ and closed sieves. By identi-

fying I" (Qg) with closed sieves on C, the counit AT'Qg La, Qf is now given by
(8g)c(K) = (#(K))c = the C* component of (K). (This argument was sug-
gested by M. Zawadowski.)

To show the formula for 6(p), we first assume that p is a global section
p:1—-Qand then go over to S/S. Let P> 1 € S be the subobject classified by
p. Then * € AP(C) iff 3{C; - C};c; € Cov(C) Vi € I * € P. By identifying
AP < 1 with the closed sieve {C € C|* € AP(C)}, we conclude that

8(p) =cl{C e C|* € P}
=cl{C € C| p}.

The formula for v (K) follows from the adjunction 6 - v.

We would now like to find the forcing relation C I Og[£], ¢ € AS(C) in
terms of the forcing relation for ¢. To solve this problem, we need some prelimi-
naries.

Lemma A.2 Consider the diagram

Fo Fy
A=—B=—(,
0 1

where F; 4 U; (i = 0,1) with units given by Idy, =& UyF,, 1dg = U, F; and
counits given by FoUy <% Idg, F;U; =5 Ide. Then FyFy 4 UyU, with unit
given by

n:1dy = Uy U  Fi Fy
A= Up(n1)Fya) ° (m0)a
and counit given by
e:FiFyUyU; - Id¢e
C» (e0)c = (e1)c° Fileou,(0))-
Proof: Simple computation.

Corollary A.3 The following diagram is commutative
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FoUpUy (C) ~2949), 1, Fy Fy Uy U3 (C)
€U (C) Ui (ec)
U (O)
Proof: Look at its transpose and use Lemma A.2.

We now apply these results to

S ‘lf: SC” &2 She(C).

We let Idg 2% TyAp, Idge> % ia be the units and AoTy <& Idge», ai <5
Idshg(c) be the counits of the corresponding adjunctions. Furthermore, we de-
fine A = aA,, T' =T/ and let 5, € be the unit and counit, respectively.

Let AS % Qg € € be given and consider the diagram (*)

Aons , AgTAS —22T2 , A, TQ
*) AOSQASI 1«0),-,,
(M1)a,s iAS —_— i
The square commutes by naturality of ¢, and the triangle also commutes:
AgS ——2918 A TAS
(m )Aosl l (n1)a,ras
ialoS vy iaA,TAS
l
“ iAS

In fact, iexs° (11)a,ras = (€)ias by the corollary and ieps© iAys = i(exs° Ays) =
i(Id) = 1d.
We compute (*) at C € C to obtain (in S)

ras —r® Q) =Ty3iQ)

ns
N < l l (eodin)e
((m1)a,8)c

iAS(C) o i (o)

(ip
The map (e;);q is just what we called (#(K)c in Lemma A.1.
Let I = (11)a,s to simplify the notation.

Proposition A.4 ClF el(ls)c(s)] iff C € T (¢)(ns(s)).
Proof: We have the following equivalences:
Clkel(ls)(s)]
(ip)c((Us)c(s) = Tc
((e1)in)cT (0) (ns(s)) = T
CeT(e)(ns(s))

(def of IIF)
(*)

(def of (e1)in).
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The following answers the question about |l for OJ:

Corollary A.5
(1) CIF Oel(ls)c(s)] iff 3{C; = C}ier € Cov(C) Vie IVC' e C C' I
ells)c (s)].
(2) CIFOpl£] iff3{C;> Clics € Cov(C) Vi€ I35, € S £| C; = (L), (s:) A
3 [ Cij—’ C,'}j S COV(C,')VjVC’ eCC'l+ go[(ls)c»(s,-)] .

Proof:
(1) From Proposition A.4 and the definition of [J, we obtain

ClF Opl(ls)c(s)] iff C € OT (@) (ns(s)) = oy (T () (ns(5))
iff C € c/{C € C||vC’ € C(C’ €T (¢)(ns(s) ]}
iff 3{C; > C};c; € Cov(C) Vi€ IVC’ € C
C" €T (¢)(ns(s)
iff 3{C; > C};c; € Cov(C) Vi€ IVC’ € C
C'IFol(ls)c (5)]

) ClFOp[f] iff 3{C; > Clie; € Cov(C)VieI3s; € S
| Ci = (Is)c,(51) A Ci k- Del(ls)c (5]
iff 3{C; » Clic;€Cov(C) Vields;e S
£|Ci = (Is)c,(s:)) A3{C;; — Ci}
€ Cov(C;) V¥C’' € €
C'IF ol(Is)c (si)].





