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1 In his 1949 paper, "The completeness of the first-order calculus", Henkin
developed what is now called the method of (individual) terms1 to establish that
every consistent set of statements of a first-order language L has a model of
cardinality α, a the number of statements of L. The idea is to start with such a
set S, construct a so-called term-extension L+ of L by adding a new terms to the
vocabulary of L,2 extend 5 to a maximally consistent and term-complete set Soo
of statements of L+,3 and construct a model of S& whose domain consists of the
terms of L+. When restricted to L, the model in question automatically consti-
tutes one of S. Henkin's result has come to be known as the Strong Complete-
ness Theorem for First-Order L. Another, and more familiar, version of the
theorem has it that if a statement A ofL is true in every model of a set S of state-
ments ofL, then A is provable from S. Henkin himself did not bother to prove
this. He merely proved the special case of it, known as the Weak Completeness
Theorem for First-Order L9 where S is 0 .

A model like the one Henkin constructed for his set Ŝ , is commonly known
as a Henkin model. It is the kind of model in which each member of the domain
"has a name". Henkin accomplished this by making each member of his domain
a name of itself, a radical move at the time. In consequence, though, the restric-
tion of his model to L does not constitute a Henkin model of S, a pity in the
event that S does have such a model.

To commemorate the publication of Henkin's paper, we offer here two new
completeness proofs for first-order Z,.4 The language considered by Henkin had
an unspecified number of terms to start with, but those played no special role
in his proof. The one we construct in Section 2 has denumerably many, and these
will play a crucial role in our proofs. In the first of them, begun in Section 3 and
concluded in Section 5, no new terms will be added; in the second, presented in
Section 5 and relating to truth-value semantics,5 denumerably many will be. The
proofs are sharpenings of proofs of Leblanc's in [10]. They have two cases each,
Case One minding the consistent sets of statements of L that extend without the
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use of new terms to a maximally consistent and term-complete one, and Case
Two minding the rest. Importantly, given our purpose, the former sets prove to
be the sets of statements of L that have a Henkin model. And, importantly in
its own right and for our two proofs, which hinge on this, the former sets also
prove to be the sets of statements of L that are (what we call) instantially con-
sistent, i.e. the sets of statements of L from which no contradiction is (what we
call) instantially provable.

The notion of instantial provability is a straightforward generalization of the
notion of provability in omega-logic; and its distinctive rule, according to which
a universal quantification of L is provable from the set of its infinitely many in-
stances in L, is a straightforward generalization of the omega-rule of omega-
logic.6 Henkin had already identified the consistent sets of statements of L that
have a Henkin model in a 1954 paper, "A generalization of the concept of
omega-consistency", but that identification, we feel, is less natural than the one
offered here.

We touch in Section 6 on the history of these various notions, and then turn
to more special, but rather intriguing, matters. As we will have shown in Sec-
tion 4, any term-complete set of statements of L that is consistent in the stan-
dard sense is also instantially consistent. So there might be a temptation to
conclude that consistency in the standard sense plus term-completeness amounts
to instantial consistency. Not so: the set of all the substitution instances in L of
a quantification (VX)A of L, though instantially consistent, is generally not
term-complete. There might also be a temptation to think that term-consistency
and instantial consistency are the same. Not so again, though counterexamples
are harder to come by. Henkin had constructed in his 1954 paper a term-con-
sistent set of statements of L that in effect is not instantially consistent: it fea-
tured two monadic predicates and the identity sign ' = ' . And we constructed
another in Weaver [14], which featured two monadic predicates but not ' = ' . We
construct two more here, one featuring one dyadic predicate but not ' = ' , the
other featuring one monadic predicate and ' = \ The last of these counterexam-
ples cannot be improved upon: as we go on to show, any term-consistent set of
statements of L that features a single monadic predicate but not ' = ' is instan-
tially consistent, and hence has a Henkin model.

2 The first-order language L whose strong completeness we prove has as its
primitive signs countably (i.e., finitely or denumerably) many predicates, these
denumerably many (individual) variables:

•* > y* Z) x 9 y > z, j

these denumerably many terms:

t i , t 2 , . . . ,

listed here in alphabetical order, the three logical operators '—', 'D', and 'V, the
two parentheses '(' and ')'> and the comma V. And its denumerably many state-
ments, presumed to be arranged in some alphabetical order, are of the follow-
ing four forms: (i) P(TUT2,..., Tn), where P is an n-adic (n = 1,2,...)
predicate of L and TΪ9 T2,..., Tn are n not necessarily distinct terms of L;
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(ii) -A, where A is a statement of L; (iii) (A D B), where A and B are statements
of L; and (iv) (VX)A, where Xis a variable of L and the result >1(T/X) of re-
placing ^ everywhere in A by a term Γ of L is a statement of L.7 We presume
the four logical operators '&', V, 'Ξ=', and '3\ used only in Section 6, to be de-
fined in the customary manner. And, for brevity's sake, we omit outer paren-
theses whenever clarity allows.

Usually, one would acknowledge as the axioms ofL the statements of L of
such forms as these six:

Al AD(BDA)

A2 (A D (B D O) D ((A D B) D (A D C))
A3 (~AD ~B)D (BDA)
A4 (VX)(A DB)D ((VX)A D (VX)B)
A5 A D (VX)A
A6 (VX)ADA(TZX),

plus the statements of L of the form (VX)(A(X/T)), where A is an axiom of
L and Γis a term of L. Given a statement A of L and a set S of statements of
L, one would next acknowledge as a. proof of A from S in the standard sense any
finite sequence of statements of L whose last entry is A, and every one of whose
entries is: (i) a member of S, (ii) an axiom of L, or (iii) the consequent C of a
conditional B D C of L and both B and BD C occur earlier in the sequence. And
one would then say that A is provable from S in the standard sense, for short,

S\-A,

if there exists a proof of A from S in the standard sense.
A proof of A from S in the instantial sense, on the other hand, would be any

countable sequence of statements of L whose last entry is A, and every one of
whose entries is as in (i)-(iii) above or is (iv) a quantification (VX)B of L and
all the substitution instances B(tι/X)9B(t2/X),... of (VΛ^B in L occur ear-
lier in the sequence. And one would say that A is instantially provable from S,
for short,

ShΛ,

if there exists a proof of A from S in the instantial sense.
In each account, (iii) is of course modus ponens, the Elimination Rule for

'D' of natural deduction. In the second, (iv) is the rule of infinite instantial in-
duction. As it is a (nonstandard) Introduction Rule for 'v\ we call it Vli.8

As the reader well knows, a statement of L is provable in the standard sense
from an infinite set of statements of L if, and only if, provable in that sense from
a finite subset of it (Point One). However, a statement of L may be provable
in the instantial sense from an infinite set of statements of L and yet not be prov-
able in that sense from any finite subset of it (Point Two). (VX)A, for exam-
ple, is provable in the instantial sense from the set of its substitution instances
in L, but it is not generally provable in that sense from any finite subset of that
set.

Used here for convenience and novelty are accounts of provability equiva-
lent to, but quite different from, the foregoing. They dispense, in particular, with
axioms and proofs. The account of provability in the standard sense is in two
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parts. The first one attends to provability from a finite set of statements of L.
Its eight clauses are counterparts of rules of natural deduction, and they bear the
names of those rules. The other part, attending to provability from an infinite
set of statements of L, is Point One. Because of it the sets S and 5' in the first
part may of course be infinite as well as finite. Expectedly, given Point Two, the
account of instantial provability attends at a stroke to provability from a finite
set of statements of L and provability from an infinite one.

Provability in the standard sense

Part One Suppose S a finite set of statements of L.

1. Structural Clauses:

S h A for any member A of S (Reiteration)

IfS\-A,thenSUS'\-A
for any finite set S' of statements of L (Thinning)9

2. Intelim Clauses:

IfSU [A}\- B and SU [A}V ~B If SI-—A,
for any statement B ofL, then S\-~A (-1) then SVA (~E)
IfSU [A] \-B, IfS YA andS\-ADB,
then ShADB (Dl) then SbB (DE)
IfS YA(T/X)forany term TofL IfS V (yX)A, then S YA(T/X)
foreign to S and to (VX)A, for any term TofL (vE)
thenS\-(VX)A (vl)

Part Two Suppose S an infinite set of statements of L. Then S h A if and
only if S' h A for at least one finite subset S' of S.

Provability in the instantial sense

Part One Same eight rules as in Part One of the preceding table, but with:
(i) S and S' allowed to be infinite and (ii) T subscripted everywhere to'h9.

Part Two Rule distinctive of provability in the instantial sense, with S al-
lowed again to be infinite:

If S h A(T/X) for every term T of L,
then S h (VX)A (Vl{)

Lemma 1 holds by definition. Its converse fails, of course: though instan-
tially provable from the set {P(Γ): for any term TofL],' (Vx)P(x)' is not prov-
able in the standard sense from any finite subset of the set nor—as a result—from
the set itself.

Lemma 1 IfSVA, then SV{A.

A number of syntactical notions, some of them already mentioned in the pre-
vious pages, require definition. Suppose S a set of statements of L. We shall say
that S is
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(i) consistent in the standard sense if there exists no statement A of L such
that both S h A and S h -A, inconsistent in the standard sense oth-
erwise,

(ii) instantially consistent if there exists no statement A of L such that both
S h A and S h -A, instantially inconsistent otherwise,

(iii) maximally consistent if, and only if, S is consistent in the standard sense
and, for any statement A of L that does not belong to S, S U {A} is in-
consistent in the standard sense,

(iv) term-consistent if there exists no quantification (VX)A of L such
that S \-A(T/X) for every term T of L and yet S h ~ {VX)A, term-
inconsistent otherwise,10 and

(v) term-complete if, and only if, for every quantification (VX)A of L,
S h (VX)A if S h ,4(77^0 for every term T of L . n

And for brevity's sake we shall say that S constitutes a Henkin set if, and only
if, 5 is both maximally consistent and term-complete.

A familiar set of statements of L that is consistent in the standard sense but
not term-consistent is this:

{P(Γ): for any term T of L] U {-(Vx)P(x)},

and one of the sets shown in Section 4 to be term-consistent but not instantially
consistent is this binary counterpart of it:

{P(T,T')ι for any term T and any term T' of L\ U {-(Vx)(Vy)P(x,y)}.

The notion of term-consistency is used only in Section 6.

Lemma 2
(a) If S is instantially consistent, then S is consistent in the standard sense;
(b) If S is inconsistent in the standard sense, then so is at least one finite sub-

set ofS;
(c) If Sis consistent in the standard sense, then so is either S U [A} or S U {-A}

for any statement A of L;
(d) If Sis instantially consistent, then so is either S U [A} or S U {-A} for any

statement A ofL;
(e) IfSU{ -A} f- A, then S U {— A} is inconsistent in the standard sense;
(f) IfS U {-A} h A, then SU [~A] is instantially inconsistent;
(g) If Sis consistent in the standard sense and—for any statement A ofL—either

A belongs to S or -A does, then A is maximally consistent;
(h) IfS is maximally consistent and SVA, then ~A belongs to S.

Proof: (a) By Lemma 1. (b) By Part Two of the account of provability in the
standard sense, (c) Suppose that both SU [A] and S U {-A] are inconsistent
in the standard sense. Then S h -A and 5 h — A by - I , and hence S is like-
wise inconsistent in the standard sense, (d) Proof like that of (c). (e)-(f) S U
{-A] h ~A by Reiteration. So (e) and (f). (g) Suppose S such that—for any
statement A of L — either A belongs to S or —A does, and let B be an arbitrary
statement of L that does not belong to S. Then by Reiteration both S U {B} h B
and S U {B} h ~B, and hence S U {B} is inconsistent in the standard sense. So,
if S is consistent in that sense, then S is maximally consistent, (h) Suppose S is
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maximally consistent, and suppose ~A does not belong to S. Then 5 U {-A]
is inconsistent in the standard sense, and hence S h A by ~ I and —E. So, if
S \f A, then ~ A has to belong to S.

Another version of Lemma 2(c) will turn up later.
Turning to model-theoretic matters, we understand of course by a domain

any nonempty set. D being a domain, we understand by a D-interpretation of
{the terms and predicates of) L any function that pairs each term of L with a
member of D and each rt-adic (n = 1,2,...) predicate of L with a subset of the
n-th power Dn of D. And, D being a domain, #£> a /^-interpretation of X, and
T a term of L, we understand by a T-υariant of βD any /^-interpretation of L
that is like βD except for possibly pairing with T a member of D other than

Suppose next that D is a domain, A is a statement of L, and βD is a ^-in-
terpretation of the terms of L. We say that A is true on ϋD if, and only if: (i) in
the case that A is an atomic statement P(TU T2,..., Tn), the «-tuple (dD(Tι)9

$D(T2), . . . 9SD(Tn)) belongs to UD{P), (ii) in the case that A is a negation ~B9

B is not true on βD, (iii) in the case that A is a conditional i? D C, 5 is not true
on βD or C is, and (iv) in the case that A is a quantification {VX)B and Γis any
term of L foreign to A, B(T/X) is true on every Γ-variant of βD}2

Suppose then that D is a domain, βD is a /^-interpretation of L, and S is a
set of statements of L. We say that βD constitutes a model ofS—equivalently,
that S has βD as a model—if, and only if, all the members of S are true on ϋD.
And, to accommodate a familiar and handy phrase, we say of a statement A of
L that it is true in a model βD of a given set of statements of L if, and only if,
A is true on βD.

Lastly, we call a /^-interpretation βD a Henkin D-interpretation of L — and,
when #£> constitutes a model of a set S of statements of L, we say that it con-
stitutes a Henkin model of S—if, and only if, βD pairs each member ofD with
a term ofL as well as each term of L with a member of D.13 Plainly, a quanti-
fication (VX)A of L is true on a Henkin ^-interpretation βD of L if, and only
if, A(T/X) is true on βD for every term Γof Z. 1 4 Proof of the fact is in [10], but
as it is lengthy we do not reproduce it here.

When *=' is added (as in Section 6) to the vocabulary of L, these changes are
in order:

on p. 213, T -Tf counts as a statement of L when T and T' are terms of L,
on p. 215, Part One of the account of provability in the standard sense must fea-

ture these additional rules, in the second of which A (T7/T) is the result of re-
placing T somewhere in A by T',

\-T=T (=1) IfS\-AandS\-T=Γ,

then S \Ά(Γ//T) (=E)1 5

and

on this page, paragraph 1, clause (i) in the account of A is true on βD must read
(i) in the case that A is an atomic statement of the form P(Tλ, T2,..., Tn),

<βD(Tι),βD(T2),... ,$D(Tn)) belongs to 3D(P), and in the case that A
is an atomic statement of the form T= T', βD(T) = βD(T').
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The changes that in the presence of ' = ' must be brought to the completeness
proofs in Sections 3-5 are like those Henkin brings to his own proof. We shall
not rehearse them here.

3 Sharpening the first result obtained by Henkin in his 1949 paper, we es-
tablish that any instantially consistent set of statements of L extends to a Henkin
set (=Theorem 1). Proof of this calls for Lemma 3, where the term Tconstitutes,
if you will, a witness of ~ (yX)A. In Henkin that term would be new to L; here,
by contrast, it is one of the terms of L. Two other versions of Lemma 3 will even-
tually turn up.

Lemma 3 If S U [~(VX)A] is instantially consistent, then so is S U
{~ (VX)A,~A(T/X)} for at least one term T of L.

Proof: Suppose S U {~(VX)A,~A(T/X)} instantially inconsistent for every
term Tof L. Then, by - I and ~E, S U {~ iyX)A) V{A(T/X) for every such
Γ, hence by Vli S U {~(VX)A} h (VX)A, and hence by Lemma 2(f) S U
{~ (VX)A) is instantially inconsistent.

This attended to, let S (also called So for convenience's sake) be a set of
statements of L that is instantially consistent; for each n from 1 on, let Sn be
defined as follows, with An there the alphabetically nth statement of L and in
Case 3 Γthe alphabetically earliest term of L such that, owing to Lemma 3,
Sπ_i U {Ani~B(T/X)} is instantially consistent:

Sn_ι U {~An} ifSn_x U [An] is instantially inconsistent (Case 1)

Sn_ι U [An] ifSn_χ U [An] is instantially consistent and An is not a
o __ I negated quantification (Case 2)
^n — ]

Srt_i U [An,~B(T/X)) ifSn-X U [An] is instantially consistent and
An is a negated quantification — (VX)B
(Case 3);

and let S^ be defined as follows:

Soo = U Sn.
«=o

By the construction of Sn, Lemma 2(d), and Lemma 3, Sn(n = 1,2...) is in-
stantially consistent if SΛ_i is. But, by supposition, So is instantially consistent.
So, by mathematical induction on n,Sn(n = 0,1,...) is instantially consistent,
and hence by Lemma 2(a) is consistent in the standard sense. But, if so, then S^
too is consistent in that sense. For suppose S^ were inconsistent in the standard
sense. Then by Lemma 2(b) so would be some finite subset of So,,16 and hence
by Thinning so would be Sn for some n or other. But, by the construction of Sn

and that of 5^, either A belongs to S& or ~A does, this for any statement A of
L. So by Lemma 2(g) S^ is maximally consistent. Suppose next that, for some
quantification (V^)^ of L,S VB(T/X) for every term ToΐL, but S*, 1/ (VX)B.
Then by Lemma 2(h) - (VX)B belongs to SΌo. But, if so, then by the construc-
tion of So, there exists an n such that — (VX)B belongs to Sn9 and hence by the
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construction of Sn there exists a term of Tof L such that ~B(T/X) belongs to
Sn and hence to S^. So by Reiteration S^ h ~B(T/X) for at least one term Γof
L, and hence Soo is inconsistent in the standard sense, contrary to the result just
obtained. So S^ is term-complete. So:

Theorem 1 IfSis instantially consistent, then S extends to (a set of statements
of L that constitutes) a Henkin set.

The parenthesis is of course for emphasis. The Henkin set to which Henkin's own
S in [5] extended was made up of statements of a certain term extension L+ of
L. As announced in Section 1, the one to which our S extends is made up exclu-
sively of statements of L.

Suppose now that a set S constitutes a Henkin set, and —adapting Henkin's
construction of a model to suit our own needs —let D be {<t1',

<t2

?,...}, and let
ύD be this ^-interpretation of L:

βD(T) = T for each term T of L

and

βD(P) = i<Tι,T2,...,Tn):S\-P(Tι,T2,...,Tn)}

for each n-adic (n = 1,2,...) predicate P of L.

Owing to the maximal consistency of S,

Sb~A if and only if SVA

and

S h A D B if and only if S \f A or S h B;

and, owing to the maximal consistency and the term-completeness of S,

S h (VX)A if and only if S h A(T/X) for every term TofL.
So each member A of S is true on βD, as an induction on the number of logi-
cal operators in A will show. But βD is a Henkin /^-interpretation. So:

Lemma 4
(a) If S constitutes a Henkin set, then S has a Henkin model;
(b) If S is a subset of a Henkin set, then S has a Henkin model.

So Case One of our first Completeness Proof for First-Order L:

Theorem 2 If S is instantially consistent, then S has a Henkin model.

Case Two of the proof is to the effect that if 5 is consistent in the standard
sense but not instantially consistent, then S again has a model, but not a Henkin
one. We postpone consideration of it until Section 5, however, and devote the
balance of this section and the next to various results about Henkin sets, Henkin
models, etc.

Suppose first that S h A, and look back at our account of instantial prov-
ability. A transfinite induction on the nine rules there will establish that
S U {-A] cannot have a Henkin model. So:

Lemma 5 IfS has a Henkin model, then S is instantially consistent.
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So by Lemma 4(b):

Theorem 3 If S extends to a Henkin set, then S is instantially consistent.

Theorem 1 can therefore not be improved upon: being instantially consistent is
a necessary, as well as sufficient, condition for extending to a Henkin set. Nor
as a result can Theorem 2. So:

Theorem 4
(a) 5 has a Henkin model if and only if S is instantially consistent',
(b) S has a Henkin model if and only if S is a subset of a Henkin set.

Clause (a) is a generalization of the Completeness and Soundness Theorem for
Omega-Logic.17

4 Theorem 1 also holds for S consistent in the standard sense and term-com-
plete rather than instantially consistent. The resulting theorem, the converse of
which we already know to fail, has two important consequences regarding in-
stantial consistency and instantial provability.

Lemma 6 Let X be foreign to A. Then:
(a) \-(VX)(A DB)D(AD (VX)B);
(b) IfS h (yX)(A D B), then SU[A}\- {yX)B.

Proof: (a) Let Γbe an arbitrary term of L foreign to {(VX)(A D B),A] and
to (VX)B. Then {(VX)(A D B),A] h (VX)(A D B) by Reiteration, hence
VyX)(A DB),A] \-ADB(T/X) by VE,18 hence [(VX)(ADB)9A) \~B(T/X)
by Reiteration and DE, hence i(vX)(A D B),A] h (VX)B by VI and the hy-
pothesis on T, and hence (a) by Dl. (b) Suppose 5 h [yX)(A D B). Then
SU [A}\- (yiX)(A D B) by Thinning. But S U {A} h {VX)(A D B) D (A D
(VX)B) by (a) and Thinning. Hence SU{A}\-AD (VX)B by DE, and hence
5 U {A} \- (yX)B by Reiteration and DE.

Lemma 7 If Sis term-complete, then so is SU [A] for any statement AofL.

Proof: Suppose S is term-complete; and, A being an arbitrary statement of
L and (VX)B an arbitrary quantification of L, suppose S U ( ^ ) h B(T/X)
for every term T of L. Then S h A D B(T/X) for every such Tby Dl, hence
S h {VX){A D B) by the term-completeness of S, and hence S U {A} h (VX)B
by Lemma 6(b), this when Xis foreign to A. Otherwise, suppose Y a variable
foreign to A. Then, clearly, S U [A(Y/X)) h B(T/X) for every T, hence S U
{A (Y/X)} h (VX)B, and hence S U {A} h (\/X)B. So S U {Λ) is term-complete.

Lemma 8
(a) IfSis consistent in the standard sense and term-complete, then so is either

SU{A}orSU{~A]for any statement A ofL;
(b) IfS U {- (vX)A} is consistent in the standard sense and term-complete, then

so is SU {- (VX)A,~A (T/X)} for at least one term of T of L.

Proof: (a) By Lemma 2(c) and Lemma 7. (b) Suppose S U [~(VX)A] is
term-complete. Then by Lemma 7 so is S U [ - (VX)A,~A (T/X)} for every term
T of L. Suppose further that S U {- (VX)A,~A(T/X)} is inconsistent in the
standard sense for every term Γof L. Then, by - I and ~E, S U {- (VΛ^) h
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A(T/X) for every such T, hence S U {~(VX)A} h (VX)A by the term-com-
pleteness of 5 U {~ (VX)A}, and hence 5 U {- (VX)A} is inconsistent in the
standard sense by Lemma 2(e).

Given Lemma 8, proof that S extends to a Henkin set when consistent in the
standard sense and term-complete mimicks the proof of Theorem 1. You define
Sn(n = 0,1,...) and S^ as before; presuming that SΛ_i(n = 1,2,...) is consis-
tent in the standards sense and term-complete, you next show—using Lemma 8
in lieu of Lemma 2(d) and Lemma 3—that Sn also is; and given that Sn(n =
0,1,...) is consistent in the standard sense, you then show in the same way as
before that S^ constitutes a Henkin set. So:

Theorem 5 IfSis consistent in the standard sense and term-complete, then
S extends to a Henkin set.

The result is a generalization of another version of the Strong Completeness The-
orem for Omega-Logic.

Hence these two results regarding instantial consistency and instantial prov-
ability:

Corollary 1 Let S be term-complete. Then:
(a) S is consistent in the standard sense if, and only if, S is instantially consistent',
(b) S \-A if, and only if, S h A.

Proof: (a) Suppose S is consistent in the standard sense. Then by Theorem 5
and Theorem 4(b) S has a Henkin model, and hence by Lemma 5 5 is instantially
consistent. Hence (a) by Lemma 2(a). (b) Suppose S hi A, in which case S U
{-A} h A by Thinning. Then by Lemma 2(f) S U {-A} is instantially incon-
sistent, hence by (a) S U {~ A] is inconsistent in the standard sense, and hence
S V A by - I and ~E. So (b) by Lemma 1.

Corollary 1 permits this alternative proof of Theorem 3. Suppose S were in-
stantially inconsistent and yet did extend to a Henkin set Soo. By Thinning S^
would be instantially inconsistent, hence by clause (a) of the corollary Soo would
be inconsistent in the standard sense, and hence by Lemma 4(a) S^ would not
constitute a Henkin set.

5 We exploit results in Leblanc [8] and [10] to conclude our First Complete-
ness Proof for First-Order L. Throughout, we take a set S of statements of L to
be infinitely extendible if, and only if, denumerably many terms of L are foreign
toS. 1 9

Lemma 9 / / S U { - (VX)A} is consistent in the standard sense, then so is
SU{~(VX)A,~A(T/X)} for any term Tof L foreign toSU{~(VX)A}.

Proof: Like that of Lemma 3, but using VI in place of Vlj.

Now suppose that in the preamble to the construction of the set Sn in Section 3,
Tis taken to be the alphabetically earliest term of L foreign to Sn-λ U {An} . 2 0

Together with Lemma 2(c), Lemma 9 then delivers this second variant of The-
orem 1:
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Theorem 6 IfSis consistent in the standard sense and infinitely extendible,
then S extends to a Henkin set.21

And, together with Lemma 4(b), Theorem 6 delivers this variant of Theorem 2:

Theorem 7 If Sis consistent in the standard sense and infinitely extendible,
then S has a Henkin model.22

The model in question is of course that on p. 219, with {%',%',...} serving as
D and βD(T) taken to be Titself, this for each term Γof L23

Next, understand by

(i) the double rewrite of a statement A of L the result of simultaneously
substituting %' for V> %' for 't2\ . . . everywhere in A,

(ii) the double rewrite of a set S of statements of L the set S itself when S
is empty, otherwise the set consisting of the double rewrites of the var-
ious members of S, and

(iii) the double rewrite of a D-interpretation ύD the ^-interpretation 5|>,
where

Q2

D(P) = βD(P) for each predicate P of L

as before but

3|)(V) = $D(%i') for each ifrom 1 on.

It is easily verified that

Lemma 10
(a) If S is consistent in the standard sense, then so is the double rewrite of S;
(b) If the double rewrite ofS is true on βD, then S is true on the double rewrite

ofβD.

This done, suppose S consistent in the standard sense but not instantially con-
sistent. S cannot be infinitely extendible, for if it were, then by Theorem 6 it
would have a Henkin model, which by Theorem 4(a) it cannot have. However,
the double rewrite of S is infinitely extendible, and by Lemma 10(a) is consis-
tent in the standard sense. So by Theorem 7 that double rewrite has a Henkin
model, the one on p. 218, and hence by Lemma 10(b) S itself has as a model the
double rewrite of that model. Expectedly, the second model is not a Henkin one,
there existing no term T of L such that $2

D(T) = %\ none such that β%(T) =
t 3 , . . . .

So Case Two of our first Completeness Proof for First-Order L:

Theorem 8 If Sis consistent in the standard sense but is not instantially con-
sistent, then S has a model—though not a Henkin one.

So S U {-A} is inconsistent in the standard sense if S U {-A} has no model.
So, by - I and ~E, S V A if A is true in every model of S.

Importantly, {<t1',
<t2

>,...} —the domain in both cases of our first Complete-
ness Proof—is denumerable. But, any set of statements of L that is consistent
(in the standard sense) has a denumerable model. So, owing to the Strong Sound-
ness Theorem for First-Order L, any set of statements of L that has a model is
consistent (in the standard sense). So any set of statements of L that has a model
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has a denumerable one (= Skolem's Generalization of Lόwenheim's Theorem).
These are of course familiar results, but Henkin may have been the first to ob-
tain them as corollaries of a Strong Completeness Theorem.

Turning to our second proof, take the substatements in L of a statement A
of L to be: (i) A itself, (ii) B when A is a negation ~ B, (iii) B and C when A is
a conditional BD C, (iv) B(T/X) for any term T of L when >1 is a quantifica-
tion (VX)B9 plus (v) any substatement in L of any substatement of A in L; and
take //ze substatements in L of a set S of statements ofL to be the substatements
in L of the various members of S.24 Also, given a statement A of L, a set Σ con-
sisting of all the atomic substatements of S in L and possibly other atomic state-
ments of L as well, and a function β from Σ to {T,F}, said function called as
usual a truth-value assignment to the members o/Σ, count A true on Q if, and
only if: (i) &(A) = T when A is atomic, (ii) B is not true on d when A is a ne-
gation - 5 , (iii) 5 is not true on & or C is when A is a conditional BD C, and
(iv) B(T/X) is true on CE for every term T of L when 4̂ is a quantification
(VX)B.25 Last, given a nonempty set S of statements of L and a truth-value as-
signment G to the atomic substatements in L of the various members of S, count
S true on & if, and only if, every member of S is true on Q.

As the reader may wish to verify, a Henkin set 5 of statements of L is true
on this truth-value assignment d to the atomic substatements of S in L (and on
none other):

(T if A belongs to S

F otherwise.

So Case One of our second Completeness Proof for First-Order L:

Theorem 9 IfSis nonempty and instantially consistent, then S is true on at
least one truth-value assignment to the atomic substatements of S in L.

But, clearly, no set of statements of L that is instantially inconsistent can be true
on a truth-value assignment to its atomic substatements in L. So this counter-
part of Theorem 4:

Theorem 10 Let S be nonempty. Then:
(a) S is true on at least one truth-value assignment to the atomic substatements

of S in L if and only if S is instantially consistent;
(b) S is true on at least one truth-value assignment to the atomic substatements

of S in L if and only if S is a subset of a Henkin set.

Owing to Theorem 10(a), the truth-value of a nonempty set S of statements
of L — a function of the truth-values of the atomic substatements of S in L—is
F always when S is instantially inconsistent; otherwise it is either T or F.2 6

Case Two of our second proof is just a bit more work. Let L+ be the result
of adding denumerably many new terms to the vocabulary of L, and extend to
L+ every definition in Section 2, that in this section of an infinitely extendible
set of statements of L, and that in this section again of the substatements in L
of a statement of L and of a set of statements of L. Clearly, all sets of statements
of L are infinitely extendible qua sets of statements of L+. So, owing to Theo-
rem 6:
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Theorem 11 If a nonempty set S of statements ofL is consistent in the stan-
dard sense, then S extends to a Henkin set of statements ofL+.

So Case Two of our second Completeness Proof for First-Order L:

Theorem 12 If a nonempty set S of statements ofL is consistent in the stan-
dard but not the instantial sense, then there exists a truth-value assignment to the
atomic substatements of S in L+ —though not to those in L only—on which S
is true.

In view of Theorem 12, the truth-value of a nonempty set S of statements of L
is a function of the truth-values of the atomic substatements of S in L+, that
truth-value F when the set is inconsistent in the standard sense, otherwise either
T o r F .

One brand of truth-value semantics, that of Dunn and Belnap in [2], under-
stands by a term-extension L+ofL any first-order language that is exactly like
L except for having countably many new terms; and it takes a set S of statements
of L to be truth-value verifiable by fiat when S is empty, otherwise if S is true,
for some term-extension L+ of L, on at least one truth-value assignment to the
atomic substatements of S in that L+. The preceding results guarantee that S is
truth-value verifiable if, and only if, S is consistent in the standard sense. With
a set S of statements of L said to logically imply a statement A of L if, and only
if, S U {-A} is not truth-value verifiable, one may then conclude that S logically
implies A if, and only if, S h A. And, with a statement A of L said to be logi-
cally true if, and only if, 0 logically implies A, one may further conclude that
A is logically true if, and only if, 0\-A. Another brand of truth-value seman-
tics, that of Leblanc in [9], dispenses with term-extensions, rather taking S to be
truth-value verifiable—when nonempty—if, and only if, the double rewrite S2

of S is true on some truth-value assignment to the atomic substatements of S2

in L. There too S logically implies A if, and only if, S V A, and A is logically
true if, and only if, 0 V A.21

6 The rule Vli is our extension to terms in general of a rule in certain systems
of arithmetic according to which a quantification (VX)A is provable from the
denumerably many results of replacing X everywhere in A by a numeral. The
rule, proposed by Tarski in a lecture of 1927 and published seven years later in
Tarski [13], was called by him—we noted in Section I —the rule of infinite in-
duction. Also known for a while as Carnap's rule, it is now commonly called the
omega-rule of omega-logic.291 The strong completeness of omega-logic follows
from Theorem 3 above; and Theorem 3, conversely, can be had from the Omit-
ting Types Theorem in [1] by a straightforward generalization of the Omega-
Completeness Theorem there (Theorem 2.2.9 and Proposition 2.2.13, respec-
tively). And it follows from results in Section 3 and results of Henkin's in [6]
(Theorem 7, p. 194) that the notion of instantial consistency is equivalent to
Henkin's notion of strong T-consistency for the case where Γ consists of all the
terms of L. "Strongly Γ-consistent" is of course the other way we mentioned in
Section 1 of identifying the sets of statements of L that have a Henkin model.

The notion of term-consistency is an extension to terms in general of the no-
tion of omega-consistency introduced by Gόdel in [4]; and the notion of
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term-completeness is a similar extension of the notion of omega-completeness
introduced by Tarski in [13]. As for the notion of instantial consistency, it is our
extension to terms in general of the notion of consistency in omega-logic. Sets
of statements of L that are instantially consistent are term-consistent, of course,
the way sets of statements of omega-logic that are consistent in omega-logic are
omega-consistent. But, as reported in Section 1, sets of statements of L that are
term-consistent are not always instantially consistent, and hence sets of state-
ments of omega-logic that are omega-consistent are not always consistent in
omega-logic. Henkin's own set in Henkin [6] is a case in point, as are these three
sets which we mentioned in Section 1 :

Sx = {(3Λ:)PI(Λ:)) U ( P I ( Γ ) D -P^Γ ' ) : for any term T and any term T'ofL]

U [P^T) D (ly)F2(y):forany term TofL]

5 2 = {~(Vx)(Vy)P{x,y)}U {P(T,Γ): for any term Tandanyterm T'ofL]

and

S3 = {(3x)P(x)} U (P(Γ) D (ly)(y*U & ~P(y)): for any term TofL}

U (P(Γ) D (Γ ΦUD P(T')):forany term Tand any term T ofL}.29

That S2 is instantially inconsistent is immediate, given Reiteration and Vli. Proof
that the other two sets are instantially inconsistent calls for this lemma, proof
of which is familiar:

Lemma 11 Let X be foreign to B. Then S h (3X)A DBifShi VΛQ (A D B).

Since obvious steps deliver

Si h i ( V x ) ( P 1 ( x ) D ^ P 2 ( r ) )

for every term T' of L, we readily have

and, since similar steps deliver

we have by the definition of <3>

Si h ~ ( Y y ) ~ P 2 O 0 .

Lastly, similar steps and the definition of '&' will deliver both

S 3h(3.)')(.y*t 1&~P(j>))

and

S 3 h ~ ( 3 > ' ) O ' * t 1 & ~ P O > ) ) .

Our proof that each of Si, S2, and 5 3 is term-consistent uses the following
lemma, which provides a sufficient (though not necessary) condition for a set of
statements of L to be term-consistent.

Lemma 12 If there exists a denumerable set Σ of terms of L such that, no
matter the member T of Σ, every T-variant of a given model ofS also constitutes
a model of S, then S is term-consistent.
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Proof: Suppose a certain ^-interpretation βD of L constitutes a model of S;
suppose there exists a denumerable set Σ of terms of L such that, no matter the
term T of Σ, every ^variant tfjof βD also constitutes a model of S; suppose
there exists a quantification (VX)A of L such that 5 V ~ {VX)A and let T be
the alphabetically first member of Σ that is foreign to (yX)A. Then, by the
Strong Soundness Theorem for L, (yX)A is not true on βD, and hence there ex-
ists at least one Γ'-variant #£' of βD on which A (T/X) is not true. But, by the
second supposition on S, S is true on £f £'. So there exists a model of S in which
A(T'/X) is not true. So, by the Strong Soundness Theorem for L, S \fA(T/X)
for at least one term T of L. So S is term-consistent.

So, tackling S l f let Z> be {1,2,3}, and let βD be any ^-interpretation of L
such that SD(T) = 3 for every term ToϊL, M'Pi ' ) = {1}, and M T 2 ' ) = ί2)-
'(ax)?! (x)' and *(3^)P2(>;)' are clearly true on βD; and, since Pi (T) is not true
on βD for any term Γof L, Pi (Γ) D ~P 2(Γ') is true on βD for every term Γand
every term 7" of Z, and Pi(Γ) D (3^)P2(^) is true on βD for every term Γof
L. So βD constitutes a model of S\. Consider now any term-variant βJ* of 0£>
that assigns 2 to a certain term T* of L. Since neither of 2 and 3 belongs to
^ Γ ί m P i ( p D ~P 2 (Γ'), F^T) D ~P 2(Γ*), and P^Γ*) D (3^)P2(j;) are
all true on β^. Consider then any term-variant #£* of βD that assigns 1 to a
certain term T* of L. Since neither of 1 and 3 belongs to ^(^i), Pi(Γ*) D
~P2(:Γ) and P^Γ) D ~P2(Γ*) are true on β£; and, since '(3j>)P2(.y)' is true
on #£*, P! (Γ*) D (3j>)P2(y) is true on #£*• So all the term-variants of βD con-
stitute models of S{. So by Lemma 12 Sx is term-consistent.30

Tackling S2, let D be {1,2,3} again, and let βD be any ^-interpretation of L
such that βD(T) = 3 and 3D(V) = {<1,1>,<2,2>,<3,3>,<3,1>,<3,2>,<1,3>,<2,3>}.
βD clearly constitutes a model of S2. Consider now any term-variant βp* of βD

that assigns either 2 or 1 to a certainjterm T* of L. Since <2,2> and <1,1> belong
to 3£*('P'), P(r*, Γ*) is true on #£*; since <3,2> and <3,1> also belong to #£*,
P(Γ, T*) is true on 3^*; and, since <2,3> and <1,3> also belong to β£, P(Γ*, T)
is true on 5ί£*. So all the term-variants of βD constitute models of S2. So by
Lemma 12 52 is term-consistent.

And, tackling S3, let D be {1,2} this time, and let βD be any D-interpreta-
tion of L such that βD(T) =2 for every term T of L and βD(Ψ*) = {1}. βD

clearly constitutes a model of S3. Consider now any term-variant 3#* of βD that
assigns 1 to a certain term T* of L other than 'ti\ a ^-interpretation of L on
which P(Γ*) is true. Then '(ly)(y Φ \χ & ~?{y)Y is true on #£*, since true on
βD; and Γr ^ t{ D P(Γ') is true on β&', since β^(Tf) belongs to 35*(βP') when
Γ' is the same as Γ*, otherwise T' Φ tx is false on £)J*.31 So there exists a
denumerable set Σ of terms of L9 namely the set of all the terms of L other than
%9, such that, no matter the member T* of Σ, every T*-variant of βD consti-
tutes a model of S3. So by Lemma 12 S3 is term-consistent. So all three of Si,
S2, and S3 are instantially inconsistent but nonetheless term-consistent.

Though sufficient for a set of statements to be term-consistent, the condi-
tion in Lemma 12 —we parenthetically remarked —is not necessary. For proof,
let L have as its predicates the denumerably many monadic predicates TV,
Φ 2 \ . . . let D be {1,2,...}; let βD be the ^-interpretation of L such that
M V ) = n and 3D(Ψn') = {n} for each n from 1 on; and let S consist of the



HENKIN'S COMPLETENESS PROOF 227

statements of L that are true on βD. S is easily verified to be maximally consis-
tent and term-complete, and hence term-consistent. Now let D be this time any
set of cardinality no less than 2, and let βD be this time any ^-interpretation of
L that constitutes a model of S. It suffices to show that, for each term T of L,
there exists a Γ-variant of βD that does not constitute a model of S. With an
eye to that, let βxβ be, for each n from 1 on, the % '-variant of βD such that
$D(%') - #£>(%*') f° r s o m e m o ther than n?1 By the construction of S,
Ψm(tm)9 belongs to S; hence, 3/>( V ) belongs to βD('Pm

y); hence, βιβ(%9) be-
longs to βD(Vm'); hence, 3£( V ) belongs to 3£(T m ); hence, T w ( t r t ) ' is true
on 5Ĵ 5; and, hence '-Pmίt,,)' is not true on βιβ. But, by the construction of S
again, ' ~ P m ( t Λ ) ' belongs to S. So 0^ does not constitute a model of S.

Proof of our closing result uses this lemma, proof of which we leave to the
reader:

Lemma 13
(a) Let X be foreign to B. If S h (3X)A and S h (IX) ~ A, then S h

-(V*) - ((A & ~B) v (~A & B));
(b) IfSVA^ B, then S\-~((A& ~B) v (~A & B)).

This attended to, consider a first-order language Lι that has a single predi-
cate, say, T \ that predicate a monadic one; and, given a domain £> and a £>-
interpretation Sjj of L1, let R be this binary relation on D:

i(d,d'): rf E fli>(T') //, α/irf o/i(y if dr G ^ ( T ' ) } .

/? is easily seen to constitute an equivalence relation on D. So let [d] be for each
member doϊD the equivalence set of d with respect to R; let [D] be the set con-
sisting of the resulting equivalence sets; and let β\D] be the [D] -interpretation
of L1 such that

3[z>] (T) = [3ι

D(T)] for each term TofL1

and

It is easily verified that [D] consists of just D when 5i>('P') is either D or 0 ,
otherwise of both dl

D(T9) and its complement, and hence that [D] is either of
cardinality 1 or of cardinality 2. And it is easily verified that a statement of L1,
and, hence, a set of statements of L1, is true on ϋD if, and only if, true on β{D].

Consider now a set S of statements of Lι that has no Henkin model, and
suppose first that either S \f (3ΛΓ)P(ΛΓ) or S V (3x) - P(x). Then either S U
{( VΛ:) - P(x)} or S U {(Vx)P(x)} is consistent in the standard sense. So, by the
counterpart for Lι of the Strong Completeness Theorem for L, there exists, for
some domain D or other, a ̂ -interpretation 3ι

D of Lι, and hence a [D]-inter-
pretation β{D] of L1, on which S is true. But under the present circumstances
[D] has to be of cardinality 1, and hence β\D] has to constitute a Henkin [D]-
interpretation of Lι. So, S has a Henkin model, something ruled out here. So,
S h (3x)P(x) and 5 h (3x) - P(x). So, by Lemma 13(a),

S h ~ (VJC) - ((P(jc) & ~P(Γ')) v (~P(x) & P ( r ) ) )
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for any term T' of Lι. Suppose next that there exist a term T of Lι and a term
T of L1 other than Γ such that S I / P ( Γ ) Ξ P ( Γ ) . Then there exist a term Γ
of Lι and a term T of L1 other than T such that S1 U {~ (P(Γ) s P(Γ'))} is
consistent in the standard sense. So, by the counterpart for L1 of the Strong
Completeness Theorem for L, there exists, for some domain D or other, a D-
interpretation 3ι

D of L1, and hence a [£>]-interpretation £f[£>] of L1, on which S
is true. But under the present circumstances [D] has to be of cardinality 2 and
β\D] has to pair each one of the two members of [D] with a term of L1. Under
the present circumstances, therefore, β\D] has to constitute a Henkin [Z>]-inter-
pretation of L1. So S has a Henkin model, something ruled out here. So S h
P(Γ) s P(Γ') for any term TofL1 and any term T of L1 other than T. So, by
Lemma 13(b),

S h ~((P(Γ) & ~P(Γ')) v (~P(Γ) & P(Γ')))

for any term Tof Lι and any term T' of L1 other than Γ. So S is term-incon-
sistent.

So:

Theorem 13. Let Lι be a first-order language that has a single predicate, that
predicate a monadic one, and let S be a set of statements of Lι. If S is term-
consistent, then S has a Henkin model.

Consider then a set S of statements of L that features a single predicate, that
predicate the monadic predicate 'P' of L1; and suppose S is term-consistent.
Owing to Theorem 13, there exists for some domain D or other a Henkin D-
interpretation βx

D of L1 on which—in its capacity as a set of statements ofL1 —
S is true. But βι

D readily extends to a Henkin /^-interpretation of L as a whole
on which S is true as well: pair each predicate of L other than 'P' with 0 . So by
Lemma 5 S is instantially consistent. So, given Lemma 2(i):

Corollary 2. Let Sbea set of statements ofL that features a single predicate,
that predicate a monadic one. Then S is term-consistent if, and only if, S is in-
stantially consistent.

So, whereas the set

{~(Vx)(Vy)P(x,.>>)) U {F(T,T'):for any term T and any term T ofL}

is term-consistent though instantially inconsistent, its monadic counterpart

{- (Vx)P(*)} U {P(Γ) :for any term T of L]

is term-inconsistent because instantially inconsistent.
In summary, then, for a set S of first-order statements to have a Henkin

model, it is (i) sufficient and necessary that 5 be instantially consistent (Theo-
rem 2), (ii) sufficient, but not necessary, that S be consistent in the standard sense
and either term-complete (Theorem 5) or infinitely extendible (Theorem 6), and
(iii) necessary, but not sufficient, that S be term-consistent (Lemma 2(i)), unless
of course S features a single predicate and that predicate is a monadic one (Cor-
ollary 2).33
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NOTES

1. More exactly, the method of (individual) constants. But we prefer here to talk of
terms.

2. Because of the role they eventually play, these new terms have been called witness
terms.

3. The sets we call here term-complete and those we call below term-consistent are
called in [14] and some other places omega-complete and omega-consistent, respec-
tively. The present appellations seem more appropriate, as the omega terminology
(due to Gόdel in [4] and Tarski in [13]) has generally been used in connection with
a special kind of terms, numerals.

4. The notion of a double rewrite used in the first of them was suggested by Hintikka
to Leblanc at the time the latter was writing [7].

5. Truth-value semantics, it so happens, was anticipated by Henkin in his 1949 paper,
a fact acknowledged by Dunn and Belnap in [2].

6. As the omega-rule of omega-logic has been called the rule of infinite induction, our
generalization of it could be called the rule of infinite instantial induction. However,
for a reason given in Section 2 we shall name it Vli.

7. The statements of L are of course closed ones: indeed, open statements will play no
special role here, nor will the distinction between bound variables and free ones.
And, due to (iv), identical quantifiers cannot overlap in a statement of L. So, when
both (VX)A and A are statements, as happens in A5 further down in the text, X
is sure to be foreign to A, (vX)A is sure to be a so-called vacuous quantification,
and —for any term T of L —A(T/X) is sure to be A.

8. Vli ensures, by the way, that if A is an axiom of L, then (\/X)(A(X/T)) is instan-
tially provable from any set of statements of L. So clause (ii) in the account of in-
stantial provability could be weakened to read: "(ii) an axiom of L of one of the six
forms A1-A6".

9. The two accounts could be refined some. In the first,

If S h A, then S U [B] h A for any statement B of L

would obviously do as Thinning', and, given either version of Thinning,

{A}VA

would obviously do as Reiteration. And, given Vli, VI could be dropped in the sec-
ond account. However, in the absence of VI, Lemma 1 would no longer hold by
definition alone, and a substitute proof that it does hold—though relatively straight-
forward—would nonetheless be too lengthy for inclusion here. So we forgo these
refinements.

10. The notion defined here is that of term-consistency as regards *V\ S would be said
to be term-consistent as regards '3' if there exists no quantification (3X)A of L such
that S h ~A(T/X) for every term TofL and yet S h (3X)A, term-inconsistent as
regards '3 ' otherwise. The two notions are equivalent.

11. The notion defined here is that of term-completeness as regards *v\ S would be said
to be term-complete as regards '3 ' if, and only if, for every quantification (lX)A
of L, S VA(T/X) for at least one term Γof L if S h (3X)A. The two notions are
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equivalent when S is maximally consistent, but not necessarily so otherwise. For ex-
ample, the set [A: \-A] is term-complete as regards 'V', but not as regards '3' :
'(3y)((3x)P(;t) D P(y))9 is provable in the standard sense from {A:\~A}, but
(3x)P(x) D P(Γ) is not for any term Γof L. What the rule vli does is to declare
the set [A(T/X): for any term TofL] term-complete as regards V .

12. Clause (iv) would be course not do if L had only finitely many terms. We could re-
quire of Γthat it be the alphabetically earliest term of L foreign to A, but the present
course often proves more convenient.

13. For this to be possible, D must of course be countable.

14. The resulting interpretation of (VX)A is of course the substitutional one, that in
clause (iv) above being by contrast the objectual one.

15. =1 is obviously more of an axiom than a rule, but the labels ' = ' and *=E' do prove
handy.

16. Only in this step and like ones taken in variants of this proof in Sections 4 and 5 is
Lemma 2(b) appealed to.

17. Disconcertingly, the result is referred to on p. 81 of [1] as just the Completeness
Theorem for Omega-Logic.

18. In view of Note 7 the condition on X here is equivalent to A being a statement of
L and A (T/X) is A itself. A like remark, but with B in place of A, will apply at two
further points in the text.

19. The appellation is Robert K. Meyer's.

20. The construction of S{, S2i... may entail adding to S denumerably many statements
of L of the form ~ (vX)B and, when S is not instantially consistent, Lemma 9 re-
quires that in each case the witness term Γbe foreign in effect to 5. So, denumer-
ably many terms of L — or on p. 224 of the term-extension L+ of L—that are
foreign to S must be on hand. Henkin requires instead that there be on hand as
many new terms as there are primitive signs of L. But there are of course as many
of them as there are statements of L. Hence the phrasing of the matter on p. 1.

21. The converse of Theorem 6 fails, of course: though not infinitely extendible, the set
[P(T): for any term TofL} nonetheless extends to a Henkin set.

22. Hence any finite set of statements of L that is consistent in the standard sense has
a Henkin model, and so does any set of statements of L that is consistent in the stan-
dard sense and features no term. Carnap would have described the latter set as one
of purely general statements of L.

23. Lemma 9, by the way, has this other corollary, which, thanks to Theorem 5, makes
for an alternative proof of Theorem 6. Suppose that S is consistent in the standard
sense and infinitely extendible; suppose that, for some quantification (yX)A of L,
S \-A(T/X) for every term Tof L; suppose that S \f (VX)A nonetheless; and let
Γ* be the alphabetically earliest term of L that is foreign to S U [ - (VX)A). Then
by Thinning S U i~(vX)A,~A(T*/X)} \-A(T*/X), and hence by Lemma 2(e)
S U [~(VX)A,~A(T*/X)} is inconsistent in the standard sense. But, since S \f
(VX)A, SU{~ (VX)A} is consistent in the standard sense, for otherwise S h (VX)A
by ~I and ~E. Hence by Lemma 9 S U {- (VX)A,~A(T*/X)} is consistent in the
standard sense. Hence the third supposition is untenable. Hence 5, if consistent in
the standard sense and infinitely extendible, is term-complete, and, hence, thanks
to Theorem 5, extends to a Henkin set.
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24. The point of the qualification 'in V will appear shortly. The appellation 'substate-
ment' is an adaptation to this context of the more customary 'subformula'.

25. The interpretation of (VX)β here is of course the substitutional one.

26. And because of Theorem 10(b) Henkin sets have been called truth sets, an appel-
lation which may have originated with Quine in [12]. See [10] for more on truth sets.

27. The truth-value semantics in [2], used in [10]—[11] also, is thus in line with our first
Completeness Proof here, that in [9] in line with the second.

28. See pp. 212-214 of Feferman [3] for more on the history of Tarski's rule, and pp.
76-93 of [1] for more on omega-logic and related matters.

29. As the reader will have noticed, 'P* throughout the paper is a syntactic variable rang-
ing over the predicates of L. *P\ on the other hand, is to be thought of as an ac-
tual predicate of L (and of L1 on pp. 227-228): a dyadic predicate when appearing
in the set S2, a monadic one on all other occasions. Ί Y and T 2 ' are likewise to be
thought of as actual monadic predicates of L, as are 'Pi ' , 'P 2 ' , . . . on pp. 226-227.

30. See [14] for another proof that S2 is term-consistent. Our original version of the set
featured denumerably many predicates. Elliott Mendelson pointed out to us that two
suffice.

31. In the case that T is distinct from V , Pfti) 3 (T' Φ ix D P(Γ')) is not true on
the '^'-variant β^ of βD that assigns 1 to %': since β^(Tf) has to be 2, P(tO and
T' Ψ tλ are both true on β^ but P(F') is not. Hence our requiring of T* that it be
distinct from 'V.

32. It is to allow for this that we require of D that it be of cardinality no less than 2.
When D is of cardinality 1, the only T-variant of βD is βD itself. In the absence of
' = ' , any set of statements of L that has a model of cardinality 1 does of course have
one of any cardinality greater than 1.

33. The main results of this paper were announced at the Annual Meeting of the As-
sociation for Symbolic Logic, University of California, Berkeley, January 13, 1990.
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