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Recursive Surreal Numbers

LEON HARKLEROAD*

Abstract This paper considers effectivizations of the two standard develop-
ments of the surreal number system, viz. via cuts and via sign sequences.
Properties of both versions of "computable surreals" are investigated, and
it is shown that the two effectivizations in fact yield different sets of surreals.

Introduction In this paper we shall examine recursive versions of the system
of surreal numbers. One motivation for doing so, of course, is simply the
recursion-theoretic urge to effectivize a mathematical structure of interest and
thereby gain further insight into that structure. But another motivation derives
from the fact that the surreals include both the ordinals and the real numbers.
Thus a notion of "recursive surreal number" may be used to unite, as part of a
single recursion-theoretic system, two structures that have been studied in depth
individually, namely, the constructive ordinals and the recursive reals.

Both of the usual ways of characterizing surreals—via sign sequences and via
cuts —have natural effectivizations. As we shall see, however, the two effectivi-
zations possess different properties and, indeed, give rise to different sets of sur-
reals. Briefly, a sign sequence is a (possibly transfinite) sequence of +'s and - ' s ,
i.e., a function from an initial segment of ordinals to the set { + , - } . Surreal num-
bers may be defined as sign sequences; this is the approach taken in Gonshor [2],
On the other hand, the original treatment of surreals in Conway [1] defines them
as (equivalence classes of) cuts and then derives the sign sequence representation.
A cut is an object {L\R}, where L and R are sets of surreals such that each ele-
ment of L is less than each element of R (the ordering relation being built up in-
ductively along with the surreals). We will freely assume the results in [1] and [2]
as needed.
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Standard recursion-theoretic notation will be used. In particular, N =
{0,1,2,... }, {<Pn)neN is a fixed effective enumeration of the p.r. functions, and
Wn = dom φn. Convergence and divergence of a computation will be repre-
sented by I and ΐ, respectively. In working with the constructive ordinals, we will
use the notations 0, \x\Θ, and <0 as in Rogers [4]. In this paper h will be re-
served to denote a recursive function such that for all a GO, Wh(a) = [b:b <©
a}. Finally, ω! will denote the least uncountable ordinal, and ωfκ will denote the
least nonconstructive ordinal.

1 Effectivizing sign sequences In the sign sequence approach to surreal
numbers, a surreal is thought of as a function which maps an initial segment of
ordinals to { + , — }. From this viewpoint we may think of a recursive surreal as
such a function that is also computable. In particular, we will work with func-
tions whose domains are initial segments of constructive ordinals. By using 0 to
represent the constructive ordinals and the even and odd numbers to represent
+ and —, respectively, such functions may be coded as maps from N to N. Thus,
in this approach, recursive surreal numbers will be coded as certain p.r. func-
tions, whose p.r. indices will then be used to index the corresponding surreals.
More precisely, we define a set 8 of surreals, an index set / 8 of natural numbers,
and an index map g: / s -» 8 as follows:

Begin by setting / s = [n: 3ύf G 0 {Wn = Wh(a))}, where h is as described in
the Introduction. Thus, for each nGlg, dom φn encodes an initial segment of
constructive ordinals. Corresponding to φn, when n G /g, is a (sign sequence)
surreal —which we shall denote g(n) —defined by

{ +, if φn(x) is even

- , if φn(x) is odd

ΐ,if^(*)ί.

We will usually write gn for g(n). Notice that gn is defined only when nGlς and
that, of course, g is not injective. Finally, we let 8 be the set of all such effec-
tively computable surreals, i.e., 8 = {gn' n £ /g).

As mentioned in the Introduction, it is desirable for this set 8 of surreals to
include all constructive ordinals. In fact, 8 satisfies an even stronger property:

1.1 Proposition The ordinals in 8 are precisely the constructive ordinals.
Moreover, an Ig-index for a constructive ordinal may be effectively computed
from any Q-indexfor it—there is a recursive function f such that for all a GO,
f(a)GlgandgΆa) = \a\Θ.

Proof: The s-m-n Theorem implies the existence of a recursive/ such that for
all x,y,

/ χ (θ, if yGWh{x)

[ ΐ , otherwise.

T h i s / is as desired and shows that 8 contains all constructive ordinals. On the
other hand, let gn G 8 be an ordinal. By the definition of g, dom gn = [\x\Q :
x <Q a] for some a G 0; but then gn equals the constructive ordinal \a\Q.
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Of course, constructive ordinals have many indices in Ig not of the form
f(a), so that not every property of 0 carries over to the set of Ig-indices of or-
dinals. For example, there is no effective procedure that distinguishes Ig-indices
of successor ordinals from those of limit ordinals.

Similarly, since the recursive reals may be characterized in terms of recur-
sive bit sequences, it is easy to prove the following:

1.2 Proposition The reals in g are precisely the recursive reals.

Because of the definition of Ig in terms of 0, it should not be too surpris-
ing that Ig and 0 are of the same degree of unsolvability, even though Ig is, in
some sense, much richer in elements.

1.3 Proposition Ig =τ 0.

Proof: Since xElg iff 3a(a G 0 Λ WX = Wh{a)), Ig is Π} and hence Ig < τ 0.
On the other hand, Λ: G 0 iff (h(2x) EiIgAxG Wh{2

χ)) Thus 0 is Turing re-
ducible to the join of Ig and 0'. But it is easy to see that 0 ' < τ Ig, so 0 < τ Ig.

Thus we have a system that (1) provides a natural effectivization of the sign
sequence characterization of surreal numbers, (2) incorporates both the con-
structive ordinals and the recursive reals, and (3) is no more unsolvable than the
constructive ordinals alone. Unfortunately, this system has a big drawback —
Propositions 1.6 and 1.7 will show that neither addition nor multiplication in 8
can be represented by effective computations on Ig. This fact helps explain an
anomaly in the presentation of the surreals in [2]. Even though that book defines
surreals as sign sequences, it gives no explicit formula for the sign sequence rep-
resenting the sum or product of two surreals. Rather, those operations are de-
fined in terms of cuts. Propositions 1.6 and 1.7 indicate that we should not expect
to find explicit formulas, in terms of sign sequences, for addition and multipli-
cation.

The following lemmas will exhibit two subsets of S which are both additive
and multiplicative translates of each other, yet whose sets of indices in Ig have
different recursive properties. This will imply the noncomputability of addition
and multiplication.

1.4 Lemma There exists r. e. W such that for all n G Ig, n G Wiff' gn> 1.

Proof: W= {n: both φn(\) and φn(2) are even) suffices, since a surreal is > 1
precisely when its sign sequence begins with two pluses.

1.5 Lemma Let V be any subset of N such that for all n G Ig, n G V iff
gn > \. Then V is not r. e.

Proof: By the s-m-n Theorem, there exists a recursive function/ such that for
all x,y,

f θ , i f j > = l

<PΛχ)(y)=\ 1> ify = 2 2ind<px(x)±

[ΐ , otherwise.
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Now for each m, f(m) G 7S and gf(m) is either 1 or \. In fact, φx(x)\ iff
gf(m) = l iff f(m) G F, so {x:^(x)i} is many-one reducible to F. But since
{x: φx(x)J\] is not r. e., this implies that Fis not r. e.

Thus the ordering relation < on g is not very well-behaved from the view-
point of computability on 78. Notice that this proof shows that there is no r. e.
Fsuch that for all n G 7S, n G Fiff gn > \. So < is just as troublesome as < is.
Furthermore, although the proof given is, in effect, based on the fact that the
length of a sign sequence is not computable from its 7S -index, simple modifica-
tions of the proof yield similar results that would hold even if sign-sequence
lengths were to be coded into the indices for surreals.

With the preceding lemmas, we are now in a position to show that addition
and multiplication cannot be effectively computed.

1.6 Proposition There is no p. r. ψ such that ifm,nG 7S then ψ(m,n) G 7S

and gψ(m,n) = gm + £«•

Proof: Assume, for purposes of contradiction, that such a ψ does exist, and
pick n0 G 7S with gno = \. Now, using the r. e. set W of Lemma 1.4, define
ther. e. set F= {m:ψ(m,no)(Ξ W}. For m G/8, m G Fiff ψ(m,n0) G Wifΐ
gφ(m,n0) > 1 i f f gm + gn0 > 1 iff gm + \ > 1 iff gm > \ But this contradicts
Lemma 1.5.

By a slight modification of the above proof, we likewise obtain:

1.7 Proposition There is no p. r. ψ such that ifm,nGlg9 then ψ(m,n)elg

and gφ(m>n) = grngn-

In fact, the proofs of Propositions 1.6 and 1.7 actually yield the stronger re-
sult that addition or multiplication by a fixed element of S will not always be
representable by an effectively computable map on 7g.

2 Effectivίzing cuts The cut approach to the surreals, like the sign sequence
approach, has a natural effectivization. In this section we shall examine a defi-
nition of recursive surreal number, based on cuts, that yields more desirable re-
sults than the sign sequence version of Section 1. This suggests that, for
recursion-theoretic purposes at least, it is more appropriate to deal with surreals
as cuts than as sign sequences.

Since the cut approach to surreals is based on an inductive construction, the
fact that this approach lends itself well to a recursive treatment should not be
overly surprising. We shall effectivize the cut construction by working with sur-
reals {7,|i?} where the sets L and R are represented by r. e. sets of indices. This
is comparable to the way that indices in 0 of constructive ordinals may be spec-
ified in terms of r. e. sets of indices of smaller ordinals or the way that recur-
sive reals may be characterized in terms of Dedekind cuts produced by r. e. sets.

Specifically, we will inductively build up an index set 7 e of natural numbers
and an index map c from 7e to the surreals. β will denote the set of surreals in-
dexed. Inductively, assume that for each ordinal (3<αwe have defined a set
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IQ £Ξ N and a function cβ mapping / | into the surreals such that if 7 < β < α,
then II c / | and c 7 c c'3. Writing /<?α for U ^ < α / | and c < α for U/ 3 < αc^, define
I§ to be {2XV\WX c /<« Λ ^ c /<« Λ (Vm E »i)(V/i E Wy)c<a(m) <
c<a(n)}. Further, for each a = 2*3' E /g, define cα(α) to be [L\R], where
L = { c < α ( m ) : m E Wx] and R = {c<α(n):ne Wy}.

Since each Ig is a subset of N, the induction cannot add anything new
at any stage α, with α uncountable. Thus this construction builds up Ie =
Uα<C01/e and c = U Q ; < ω i c

α . In analogy to the notation of Section 1, we write cn

for c(n) and 6 for [cn:n E / e }.
It will be useful to have available a slightly different induction that yields / e .

The main shortcoming with the version just given is that it defines the sets IQ in
terms of the ordering relation < on the surreals. Since that relation is external
to the induction, the recursive properties of the induction become hard to ana-
lyze. But in [1] the ordering is defined inductively along with the surreals. If we
incorporate that definition into our induction, the amount of constructivity pres-
ent will be more evident. The following version will inductively build up the index
set in stages /§ and simultaneously build up the relations LT and LE (represent-
ing < and <, respectively). The use of both LT and LE allows the construction
to proceed via a positive induction.

For the induction, assume that for each ordinal β < α we have defined sets
Jί c N, LT^ c N2, and LE*3 c N 2. Defining J§α, LΊ<α, and LE < α as usual,
construct 7g, LTα, and LEα by:

/g = {2*3': Wx c /<« Λ Wy c /<« Λ vm E Wx\ln E Wy(m,n) E LT<£*}

L T α = {(293^2^30 E (J§α)2:(lm E Wr{m,2sV) E LE < α )

v(3«G ^(2^3 r,/2)ELE< O ί)}

LEα = {(2^3Γ,2530 E (J§α)2: (V« E Wt(2^3r

yn) E LT < α )

Λ (Vm E Wq{m,2sV) E LT< α)}.

The definitions of LTa and LEα are just different ways of expressing the in-
ductive definition of [1] for the ordering of the surreals. And so this induction
builds up the same index set as the IQ version. Specifically, Ie = Uα<ωι Jg. In
fact, the induction generating the sets /g closes long before a?! since it is a pos-
itive induction with arithmetical definitions, the closure ordinal will be at most
ωfκ. Since an index for an ordinal α cannot appear in / | for any β < α, this
implies that C will contain no nonconstructive ordinals. On the other hand, 6
includes not only all the constructive ordinals, but also the recursive reals and
everything else in 9 (Later, we shall see that 6 properly contains Q.) Moreover,
the inclusion of 9 in 6 is computable. Namely, we have:

2.1 Proposition 9 ^ 6 ; in fact, there is a p. r. r such that if n E / s , then
τ(n) E / e withgn = cτ(n).

Proof: The proof is short and reasonably straightforward, but an outline of the
meaning behind the formulas might be useful here. This theorem says, in essence,
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that we can effectively pass from a sign-sequence representation of a surreal in
8 to a cut representation of that surreal. Questions of computability aside, how
are the two representations related? If a surreal is specified by some sign sequence
φ, it is also specified by the cut [L\R], where L (respectively, R) is the set of sur-
reals given by the initial segments of φ that are cut off immediately before a +
(respectively, a —). Given an index for a computable sign sequence, it is easy to
generate effectively the indices for these initial segments. The conversion from
sign-sequence indices to cut indices may then be built up inductively via the
Recursion Theorem.

Now for the details: we again use the recursive h described in the Introduc-
tion. Also, by the s-m-n Theorem, there exists a recursive p: N 2 -• N such that
for all y and n, φP(y,n) is the restriction of ψn to domain Wy. Now further ap-
plication of the s-m-n Theorem yields recursive/! and/ 2 such that for all n,

Wfι(n) = {p{h(x)9n):φn(x)ise\en} and

Wfl{n) = {p(h(x),n):φn(x) is odd).

For «6/g, ^fι(n) a n d Wf2(n) are sets of indices for φn

9s initial segments as de-
scribed in the previous paragraph. Then by the Recursion Theorem, there is a
p. r. r satisfying τ(m) = 2*3 y, where Wx = {τ{a):a G Wfχ{m)} and Wy =
\τ(b):b G W/2(m)}. A routine induction argument verifies that r is as desired.

As previously remarked, the induction for the sets JQ is positive with arith-
metical definitions. Thus 7 e = U«<ωi JQ is Π{, implying that 7 e < τ 0. So, as in
Section 1, we have a natural effectivization of a characterization of surreal num-
bers which encompasses both the constructive ordinals and the recursive reals and
is no more unsolvable than the constructive ordinals. However, this system has
the advantage of allowing at least the basic ring operations to be represented by
effective computations on indices.

2.2 Proposition There are p. r. σ, μ, and π such that if m,n G IQ, then
σ(/w,/i), μ(m), and π(m,n) G 7 e with c σ ( w > π ) = cm + cn9 cμim) = - c m , and

Cπ(m,n) = ^m^n*

Proof: By the Recursion Theorem, there exists a p. r. σ satisfying σ(2^3r,253') =
2*3Λ where Wx = [σ(a,2s3t):a G Wq) U [σ(2g3r,b):b G Ws] and Wy =
{σ(ay2

sV):aE: Wr] U \σ(2q3r,b) :b G Wt}. Since this condition on σ expresses
the inductive definition of surreal addition, σ is as desired. Similar applications
of the Recursion Theorem yield μ and TΓ.

One consequence of this proposition is that the ordering relation is noncom-
putable over 6, as it was over g.

2.3 Corollary Let n0 G 7e and X c N be such that for all m e As, m EX iff
cm > cn0 Then X is not r. e.

Proof: Again, let r be as in Proposition 2.1, σ as in Proposition 2.2, and let
cni = - | . Defining Kas [m:σ(σ(τ(m),no),nχ) G X}9 we have that for m G
7g, m G Fiff c τ ( m ) + cnQ + cnχ > cnQ iff c r ( w ) >\\ΐΐgm>\. Since by Lemma
1.5 V cannot be r. e., neither can X.
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Notice that, according to the comments following Lemma 1.5, this corollary
also holds with > replaced by >.

It is an open question whether or not the taking of reciprocals can be rep-
resented by effective computations on Ie-indices. The standard definition of the
reciprocal of a surreal number x involves case-splitting in terms of sgn(jc). In light
of Corollary 2.3, this could pose some problems.

Earlier, we saw that Q ζQ; the following theorem will show that the con-
tainment is proper. In fact, a specific surreal, with sign sequence of length ω 2,
will be constructed that belongs to C but not to 9 Using that surreal and Prop-
osition 2.2, we will prove, as a corollary, that β contains real numbers other than
the recursive reals.

2.4 Theorem Q Φ<5.

Proof: We will construct a surreal x E C\9 in terms of a retraceable set. Spe-
cifically, there exists (see, e.g., McLaughlin [3]) r. e. Γsuch that its complement
fis not r. e. and such that f c dom φ for a p. r. φ satisfying:

(1) range φ <Ξ dom φ
(2) φ(n) < n for all n E dom φ
(3) if f = [zo,Z\9Z2, ••'} where z0 < Z\ <z2 < - »then φ(z0) = z0 and, for

allfl, φ(Zn+ι) =zn

Notice that for n E dom φ, {φ(n)9 Φ2(n), Φ3(n),... ) is a finite set whose ele-
ments may be effectively determined from n.

Take the sign sequence of length ω 2 whose first ω terms are —'s and which
has a + in position ω + k when k E Γand a — in position ω + k when kGT. Let
x denote the surreal represented by this sequence. Because Γis not recursive, the
sequence does not correspond to a p. r. function and so x $. g. To show that
x E C, it suffices to find r. e. Wq9 Wr c / g such that x = {L\R} when L =
{gn:neWq},R = {gn:neWr}. For, given such Wq and Wrf x = c2S3Ϊ, where
Ws = [τ(n) :neWq},Wt = {τ(n) :nEWr).

The construction of Wq will be straightforward, using only the recursive
enumerability of T. Let Tm denote the finite subset of T generated up through
stage m of its enumeration, and let D = {a:a <G b] for some fixed b with
\b\Q = ω 2. By the s-m-n Theorem, there exists recursive/! such that for
all m, n

0, if nE:D and | n |© = ω + k for some k E Tm

Vfiim) (n) =A 1, if Λ is any other element of D

t, otherwise.

Define Wq to be range/i. The surreal g/^m) is represented by the sign sequence
of length ω 2 all of whose terms are — 's, except for +'s in the positions ω 4- k
where k E Γm. Thus not only is each g/^m) less than x, but also x is the least
surreal of sign-sequence length < ω 2 that is greater than all surreals in
L = [gn:ne Wq\.

The construction of Wr is slightly more complicated and uses the retracing
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function φ described at the beginning of this proof. Let Tm and D be as before.
Again by the s-m-n Theorem, there exists recursive f2 such that for all m9n

0, if n G A I n \Θ = k9 and m G Tk

1, if Ai G A I«I© = fc, and m £Tk

0, if # G A I Λ |o = ω + m, and m G dom φ

0, if/? G A |Λ|O = ω + k, k < m, m G dom φ,
*/2<m><">=« mdk£{φ{m)iφ2{m)χl/3{mh }

1, if n G A |Λ|O = ω + k, k < m9

and k G iφ{m),φ2(m),φ3(m),... }

ΐ, otherwise.

Set Wr = range/2. Each g/2(m) is represented by a sign sequence of length either
ω + m + 1 or ω, according to whether m G dom φ or not. If m G Γ, this sign se-
quence contains +'s among its first ω terms. If m G f, (1) the first ω terms
are -'s, (2) for 0 < k < m - 1, the term in position ω + k is + when k E T9

- when k G T9 and (3) the term in position ω + m is +. So each g/2(W) is
greater than x, and x is the greatest surreal of sign-sequence length < ω 2 that
is less than all surreals in R = {gn:n E Wr}.

Combining the above results, we have that x is the only surreal of sign-
sequence length < ω 2 that lies between the surreals in L and those in R. But this
implies that x = {L \ R}.

2.5 Corollary C contains a real number that is not a recursive real.

Proof: We continue to use the notation of Theorem 2.4. Since, by Proposition
2.2, β is closed under addition, ω + x G C. On the other hand, ω + x is repre-
sented by the sign sequence of length ω with + (respectively, —) in position k
when k G T (respectively, k G T). So ω + x is a nonrecursive real.

By Proposition 2.1 and Theorem 2.4, the collection of sign sequences of sur-
reals in β includes all computable sign sequences and some noncomputable ones.
Whether there is some nice characterization of this collection remains open. An-
other open question is suggested by the use of x to define the nonrecursive real
ω + x. Does x appear at an earlier stage of the cut induction than ω + x9 i.e., is
there an a for which x has an index in I§ but ω + x does not? More generally,
for y G β, can the least a for which y has an index in /g ever differ from the
length of ^'s sign sequence (which equals y's "birthday" in the construction of
[ID?
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