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A Tableau Style Proof System for Two

Paraconsistent Logics

ANTHONY BLOESCH

Abstract This paper presents a tableau based proof technique that is suit-
able for proving theorems in the two paraconsistent logics; LP and Belnap's
4-valued logic. While coupled tree proof systems exist for both logics the
tableau proof system described has several advantages over them. First, it is
easier to use and second, it lends itself to first-order and modal extensions
of the above logics. Truth signs are used, in a novel way, to represent cate-
gories of truth values instead of, as is usual, single truth values.

A logic is explosive if α,-ια h β for arbitrary a and β. A logic is paraconsis-
tent if it is not explosive. It would seem likely that paraconsistent logics would
not be amenable to refutation based proof styles, like tableaux. Indeed, the
tableau (coupled tree) style proof systems that exist for paraconsistent logics (e.g.,
Dunn [3], Priest [5]) seem unnatural when compared with the very natural
tableau systems for classical logic (Smullyan [9]). Here we present a tableau based
proof system for two paraconsistent logics, LP (Priest [5], [6], [7], [8]) and Bel-
nap's 4-valued logic [1], [2], which is not only more natural than their existing
coupled tree proof systems [3], [5] but both easier to use and easier to extend to
first-order and modal versions of these logics.

The logic LP (Table 1) is just Kleene's strong 3-valued logic [4] where the
middle element denotes, paraconsistently, both true and false. By the use of
signed formulas, it is possible to construct a tableau style proof system for LP
(Figure 1). The truth signs used are T for at least true, F for at least false, T for
definitely not true (exactly false), and F for definitely not false (exactly true). Fig-
ure 2 presents the branch closure rules for this logic. Thus to show 71,72, >
yn h δ we create a tableau branch where for each γ, we add Tγ/ to the branch
and we add Tδ to the end of the branch. Then we apply the decomposition rules
to each branch until either it becomes closed (contains two signed formulas Λi a
and Λ 2 α where A{ and Λ2 are opposite in the sense of Figure 2) or is open (a
rule has been applied to each of the nonatomic signed formulas on a branch and
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-iα α Λ β avβ a D β a = β

β f t T f t T f t T f t T

f t f f f f t T t t t t f τ

a t f f t T t t t f t T f t T
T T f T T T t T T t T T T T

Table 1. Truth tables for the operators of LP, where t denotes just true, f just
false, and T both true and false. The designated truth values are t and T.

still that branch is not closed). Figure 3 shows an example of both a closed and
an open tableau. Because of the finite nature of the formulas and associated
rules, a branch will always become either closed or open after a finite number
of steps.

Now we will prove the soundness and completeness of the proof system
for LP.

T~»α F-iq T-iα f-«α

¥a Ύa Fα Ύa

TαΛ0 FcxAjS TαΛ/3 Fα Λ β

Ύa Έa Fβ Ύa Ύβ ¥a

Ύβ fβ

Ύavβ Έavβ Ύavβ tavβ

Ύa Ύβ Fa Ύa Fee Fβ

Fβ Ύβ

ΎaDβ FaDβ ΎaDβ FaDβ

Fα Ύβ Ύa Fα Ύa Fβ

Fβ Ύβ

Ύa = β FαΞβ Ύa = β Fα = β

Fα Tα Tα Fα Fα Ύa Ύa Fα

Fβ Ύβ Fβ Ύβ Ύβ Fβ Ύβ Fβ

Figure 1. Tableau decomposition rules for LP. The truth signs T, F, T, and F
are taken to mean at least true, at least false, not true and not false, respectively.
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Ύa Ύa

Ύa Fα

Fα Fα

Figure 2. The closure conditions for LP. Thus, since T and T are opposite
truth signs, if both Ύa and Ύa appear on a branch then that branch is closed.

Definition 1 A true value is one of the set {t, f, T}.

Definition 2 A truth sign is one of the set {T,F,T,F}.

Definition 3 A signed formula is a formula together with a truth sign (e.g.,
TP means P is at least true).

Definition 4 A valuation (v) is a function that maps the set of formulas to
the set of truth values such that Table 1 is preserved. For example, v(a A β) =
tiff v(a) = t and v(β) = t.

Definition 5 The signed formula Tα is said to hold in a valuation v iff
v(a) E {t,T }. Similarly, the signed formulas Fα, Ύa, and Έa hold in a valua-
tion v iff v(a) E {f,T}, v(a) G {f}, and v(a) E {t}, respectively.

Definition 6 A signed formula T is satisfiable iff a valuation v exists such
that T holds in v. Similarly, a set of formulas is satisfiable if all the formulas
in it hold in a valuation v.

Definition 7 A tableau branch is satisfiable iff a valuation v exists such that
each signed formula on the branch holds in v.

Definition 8 A tableau is satisfiable iff at least one branch on it is satisfiable.

Definition 9 A pair of truth signs are opposite iff either one is T and the other
T, or one is T and the other F, or one is F and the other F. Similarly, two signed
formulas are opposite iff their formulas are identical and their truth signs are
opposite.

TP T-iP v Q
TQ TP
TP Λ Q TQ

y\ / \
TP TQ T- P TQ
xx FP x

Figure 3. Example proof of P, Q h P Λ Q (left) and open tableau for -iP v Q,
P h Q (right).
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Definition 10 A tableau is closed iff each branch on it contains at least two
opposite signed formulas.

Definition 11 A tableau is open iff it contains a branch such that (1) no
decomposition rule of Figure 1 can be applied to a signed formula on that branch
to yield a signed formula not already on that branch and (2) no two signed for-
mulas on that branch are opposite.

Lemma 1 If a tableau T is satisfiable then it will also be satisfiable after the
application of any of the tableau formulation rules of Figure 1.

Proof: Let T' be the new tableau. Let (B* be the branch the rule is applied to.
Since T is satisfiable, it must have a branch (B that is satisfiable. We have two
cases:

1. (B* Φ (B. Since no rule was applied to (B, (B will still be a branch of T'
and thus T' will be satisfiable.

2. (B* = (B. We show that for at least one branch produced by a rule all the
new signed formulas hold. Let T be the signed formula the rule is applied
to. Since (B is satisfiable, T must hold for some valuation v. We have
twenty cases; for brevity, we will show only two:
(a) T = Tα A β. The formulas added to the branch will be Tα and Ύβ.

Since Tα Λ β holds, we know that v(a Λ β) G {t,T } and hence that
v(a) G {t,T) and v(β) G {t,T}. Thus Tα and Ύβ must also hold and
thus T' will be satisfiable.

(b) T = Tα D β. The formulas added to the two new branches will be Γα
and TjS. We show that at least one of them will hold. Since Tα D 0
holds, we know that either v(a) G {f,T} or v(β) G {t,T}. Thus either
Fα or Tβ must hold and thus T' will be satisfiable.

Lemma 2 If there is a closed tableau for a set of signed formulas Γ then Γ
is not satisfiable.

Proof: Assume that Γ is satisfiable and a closed tableau exists for Γ. We show
a contradiction. Let T be a tableau consisting of the signed formulas of Γ on a
single branch. Since Γ is satisfiable, T will be satisfiable. By Lemma 1 every new
tableau we construct from T will also be satisfiable, including the final closed
tableau. But examination of the closure conditions for LP (Figure 2) shows that
no closed tableau can be satisfiable. Thus we have a contradiction.

Theorem 1 The above tableau system is sound.

Proof: We show that if Γ = ^ 7 ^ 7 2 , . . . ,Ύyn,Tb] has a tableau proof then
Ti>72» »T« \~ δ. From Lemma 2 if Γ leads to a closed tableau then Γ is not
satisfiable and hence 71,72,... ,yn H 6 is a theorem.

Definition 12 A signed Hintikka set H is a set of signed formulas such that:
1. For any propositional letter p it is neither the case that both Ύp G H and

Tp G H, nor that both Fp G H and Fp G H, nor that both Tp G H and
F p G H .

2. If T-iα G H then Fα G H.
3. etc. (according to Table 1).
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For example, {TP V ( Q Λ R),TP) and {TP V ( Q Λ R),TQ Λ R, TQ,TR} are
both Hintikka sets. It's worth noting that a signed Hintikka set can never con-
tain both Tα and Tα, or both Fα and Fα, or both Tα and Fα.

Lemma 3 Every signed Hintikka set is satisfiable.

Proof: Let H be a signed Hintikka set. We show that a valuation v can always
be constructed from H in such a way that every signed formula in H holds. Let
v be constructed as follows:

1. If for some propositional letter p, Tp E H then v(ρ) = f.
2. If for some propositional letter p, Fp E H then v(ρ) = t.
3. If for some propositional letter p, neither Tp E H nor Fp E H then

?(p) = T.

4. If v(a) = f then V(^OL) = t.
5. etc. (according to Table 1).

From Condition 1 of Definition 12 it follows that v is well defined over predi-
cate letters. By structural induction it follows that every signed formula in H
holds in v.

Lemma 4 Every open branch ($>ofa tableau has a corresponding signed Hin-
tikka set containing all the signed formulas of (B.

Proof: Since (B is open, none of the closure conditions of Figure 2 apply for any
proposition p and thus Condition 1 of Definition 12 must be satisfied. The other
conditions follow by structural induction over signed formulas.

Theorem 2 The above tableau system is complete.

Proof: We need to show that if 71,72,... ,?„ h δ then Γ = {Tγ!,T72,... ,Tγπ,
Tδ) produces a closed tableau. We shall show the contrapositive; i.e., if Γ pro-
duces an open tableau then 71,72, . ,yn W δ. Assume Γ produces an open
tableau. Then it must have an open branch (B and, by Lemma 4, (B will have a
corresponding Hintikka set H. Thus, by Lemma 3, that set must be satisfiable
and hence Γ must be satisfiable; thus 71,72, . ,yn V" δ.

First order and modal extensions to LP can be handled in the usual ways.
More interesting is the fact that, with a minor change, the above system also
applies to Belnap's 4-valued logic (Table 2) where the original logic has been
extended to include material implication D (but not =). Since truth value gaps
are present in this logic, Tα and Fα can no longer be a valid closure condition.
For convenience, the new closure conditions can be found in Figure 4. The sys-

Tα Tα

Fα Fα

Figure 4. The closure conditions for Belnap's 4-valued logic. Thus, since T and
T are opposite truth signs, if both Tα and Tα appear on a branch then that
branch is closed.
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-iα αΛj3 avβ a D β

β ± f t T ± f t T ± f t T

± ± ± f _L f ± x t t ± J_ t t
f t f f f f ± f t τ t t t t

a t f J_ f t T t t t t _ L f t T
T T f f T T t T t T t T t T

Table 2. Truth tables for the operators of Belnap's 4-valued logic, where t denotes
just true, f just false, T both true and false, and JL neither true nor false. The
designated truth values are t and T.

tern is both consistent and complete with the proofs following the earlier proofs
very closely.

In conclusion, the tableau system presented above is interesting in two ways.
First, it provides a simple proof system for two paraconsistent logics. And, sec-
ond, it demonstrates a novel use of truth signs—instead of, as is usual, having
a one to one correspondence between truth signs and truth values the proof sys-
tem uses truth signs to represent categories of truth values.
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