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Quantified Modal Logics of Positive Rational
Numbers and Some Related Systems

GIOVANNA CORSI

Abstract The quantified modal logics QK4.3.D.X and QS4.3 are shown to
be characterized by the Kripke models based on the extended frames with
nested domains (Q%, <,D) and (Q*, <, D), respectively, i.e., the set of pos-
itive rational numbers ordered by the numerical relation ‘less than’ (‘less than
or equal to’). Moreover, for each n = 1, the logics C,.QK4.3.D.X (C,.QS4.3)
are shown to be characterized by the Kripke models based on (reflexive) tow-
ers of rank at most » and with nested domains. Other quantified extensions
of QK4.3 are considered and proved Kripke complete as well.

0 Introduction In Corsi [1] the author introduced the method of diagrams
and applied it to quantified intermediate logics, in particular to Dummett’s logic
LC quantified. The same method turned out to be extremely useful in proving
completeness results of various quantified modal logics. It is well known that
“completeness” is rare in quantified modal logics and several incompleteness
results have been established, see Ghilardi [4],[5] and Shehtman and Skvortsov
[6]. Now, if we limit ourselves to logics correct with respect to some class of con-
nected, transitive, and reflexive frames, we are confronted with the fact that at
the propositional level Bull’s Theorem tells us that any such logic is Kripke com-
plete, whereas, at the quantified level, quite the opposite seems to be the case.
In this paper, I show how to characterize classes of Kripke models with nested
domains based either on the positive rational numbers or on some subset of
them. The notion of diagram was first introduced for QS5 in Fine [3].

1 The logics QK4.3, QK4.3.D.X and 054.3 Let £ be a first-order modal
language, L € £, "o =gsa— L and T =4 L = 1. QK4.3 is the quantified
modal calculus obtained by adding to the normal propositional modal logic K
the following axioms and rules:

4 Oa - O0a
3 OaeAa—->8)vO(OBAL— )
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v Vxo (x) - a(x/y), where yis free for x in o.
3 a(x/y) » Ixa(x), where yis free for x in .

B — a(x)

UG ——— where xis not free in G.
B - Vxo (x)

EP M where x is not free in 3.
Ixa(x) -

As is well known, Axiom 4 corresponds to transitivity and Axiom 3 to weak con-
nectedness. QK4.3.D.X is the logic QK4.3 plus axioms

D Ooa- O«a, and
X OO0« - Oa.

QS4.3 is the logic QK4.3 plus axiom
T Oa-c.

D corresponds to seriality, X to density, and T to reflexivity.

We recall that a relation R is said to be weakly connected iff (VRw A vRZ —
wRz v ZRw v w = 7), connected iff (WRzv ZRwv w = 2Z). R is a linear order if
R is reflexive, transitive, connected, and antisymmetric; R is a strict linear order
if R is transitive, connected, and irreflexive.

QK4.3 is the least logic considered in this paper, and we denote by L any logic
which extends QK4.3. ‘b o’ means that « is a theorem of L and A Fy, « that
FLBi A...A B,— «, for some finite subset of wffs 3;,...,8, of A. When no
confusion arises, we omit the ‘L’.

Here is a list of theorems that will be useful in what follows.

Lemma 1.1 The following are theorems of QK4.3:

(a) OVXa - VXDa

(b) O(B— OVXa (X)) » OVX(B — Oa (X)), where X do not occur in (3.

(c) OVX({(B(X) A Oa) = d(X)) » (Oa — OVE(B(X) = (X)), where X do not
occur in .

(d) OvX¥(a Ay —3d) > (Qa —» OVX(y — 3)), where X do not occur in o.

() O(a—d)—[O0(O0Ad—- T aAa)— 000 - OaA—a)]

@) O(a = na)— O«

(g (O(a—- O3 A0@a—03)AO(a—93) = (Ca— 13)

(h) Ofa - OVX(B(X) AOa A "a—y(X)] - [Ca - OVE(B(X) A Oa A
= = y(X))], where no variable of X occurs in «.

Proof: (a)-(f) are theorems of QK4, and (h) is derivable from (g) by substitut-
ing VX¥(B(X) A O—a A na — (X)) for 4. Notice that, once the substitution is
made, QK4 | O (Oa — 3) A O(a — 9), where ¥ do not occur in «. The follow-
ing is a proof of (g).

1. FO[O@AA) A (OIAJ) » O aA-a]lvO[O(OaAa)A
(O-aA-a)— (030 Ad)] by Ax. 3
2. FO(O0Ad—> OaA-a)vO(O-aAa— 03 Ad)from 1 and the fact
that K4 F 08— O (OB AB)
3. FO(a—d)» [O0(O0Ad-» O aAa)— OO0 - OaA na)l
from (e)
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4. FO(10— na)—~ [O(O-aAa—=>T0dAd) - O(0O-a— 0 Ad)]
from (e)
5. FO(ax—9)—» [O(O-~aA-a—->03Ad) - O(0O-a—0OdAd)] from4
6. FO(x—=9)—»[O0(Od—~ OaA-a)vO(O-a— 03A0)]
from 2, 3 and 5
7. FO(O0-» O~aA-a)—- [O(a—»00) » O(a— Oa A —a)]

transitivity
8. FO(a-» O—a A -a)— O« from (f)
9. FO(Od-» O-aA-a)—[0(a—00) > Oal from 7 and 8
10. FO(O—-a—» 00 A0d) - [O(70 - O-a)—» O3] from 9

11. FO(a—=9d)—~» [O(ax—» 03 A0(d - O0a) = (O-a v )]
from 6, 9 and 10
12. FO(ax = ) AO(a - 09) AO(Ca —3) - (Ca— [10) from 11.

Definition 1.2 A Kripke model J\ with nested domains for the first-order
modal language £ is a quadruple (W, R, D,I') where W is a non-empty set; R is
a binary relation on W; D is a domain function such that for every w € W,
D, # @ and if vRw then D, € D,,; I is an interpretation function such that
foral we W, I,,(c) € D,,, where c is an individual constant of £ and if wRv,
then I,(c) = I,(c), I,(P") < (D,)" where P" is an n-ary predicate letter,
l1<n<uw,of £.

(W,R) (W,R, D)) is said to be the frame (extended frame) on which JM is
based. Let w € W; a w-assignment p is a function from the terms (individual
variables and constants) of £ into D,, and is such that u(c) = I,,(c). If pis a
w-assignment and d € D,,, by u*® we denote the w-assignment such that if
y # x, then p D (y) = u(»), if y = x, then p¥?(y) = d. Note that if wRv,
any w-assignment is a v-assignment.

Given a w-assignment p and an element w € W, the truth of a wff o in M
at w under p, M* E, «a, is defined in the usual way. We recall only three
clauses:

(‘NU‘ ':w Pn(tl, “ee ,tn) lff </.l.(t1), SR ’”'(tn)> E IW(Pn)
M* E,, Vxa(x) iff for all d € D,,, M**® E, o
M* E, Do iff for all v, wRv, M* F, a.

The notions of truth in M at w, M E,, o, truth in M, M F «, and validity on a
frame T, T F «, are the standard ones.

Lemma 1.3 QK4.3 (QK4.3.D.X — QS4.3) is correct with respect to strict
linear frames (serial, dense, strict linear frames— linear frames) with nested
domains.

2 Diagrams A diagram A is, roughly speaking, a set of indices with closed
formulas attached to each of them. If a sentence « is attached to an index w (i.e.,
the pair (w,a) € A), the intended meaning is that « is true at w. A diagram is
built up step by step by adding either a new index (together with a sentence) to
the diagram built so far or a sentence to an index which is already present in the
diagram. The construction has to be such that in the end the final diagram is a
Kripke model with nested domains.
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Our privileged set of indices is the set Q% of positive rational numbers, zero
included, ordered by the numerical relation “less than”, <.

With each w € Q™ we associate a countable non-empty set C,, of individual
constants such that for all v,w € Q*, if v # w, then C,N C,, = &.

For any w € Q1, the language of w,£,, is £ U {c € C,:v < w} and
Fm(L,) is the set of closed wffs of £,,.

Note that if v < w, then £, C £,, and for each constant c there is a unique
z € Q% such that ¢ € C; and a first or least (with respect to set-theoretical inclu-
sion) language, £,, to which c belongs. C, is said to be the set of proper con-
stants of z.

Definition 2.1

a. ® = Uypeg+ W, ) 10 € Fm(L,,)} is the set of all pairs each of which is
determined by a rational numbers w € Q% and a closed wff of £,,.

b. A diagram is a subset of ®.

c. I' is said to be a subdiagram of a diagram A iff I' € A.

Definition 2.2 Let A be a diagram.
a. The support of A is

Supp(A) = {w:{w,a) € A, for some WIf o}

U {v : thereis a (z,8(c)) € A and some constant ¢
occurring in 3 is a proper constant of C,}.

This definition makes sure that if a constant occurs in a wff of a diagram,
then the rational number of which it is a proper constant belongs to the sup-
port of the diagram.

b. For any w € Supp(A), the set of formulas ‘attached to’ win A, is

A(w) ={a:{wa)e A} U{T].

c. A is said to be quasi-finite iff
i. the support of A is finite, and
ii. for any v € QY, the constants of C, occurring in wffs of A are finitely
many.
If A is quasi-finite, the Supp(A) is denoted by (v,,...,v,), where v;_; < v;.
Moreover, if A is finite and Supp(A) ={v;,...,v,), then

A; =4t NA(v;).

Now we introduce the notion of L-coherence which turns out to be crucial for
our constructions and which reduces to L-consistency in the case of diagrams
whose support consists of only one point.

Definition 2.3 Let A be a finite diagram whose support is {v;,...,U,). A s
said to be L-coherent iff

L ¥ VE [A (/%) —» OVX [ Ay (81 /%1, 62/%)
... DVi'n[An(El/-il,eZ/xZa' . ’an/xn) - J—] L ]],

where for all k, 1 < k < n, Gy is the list ¢y, . . ., ¢kj,, 0 < ji < w, of all the con-
stants of Cy occurring in wffs of A, Ax(¢,/%1,...,Cx/%;) is the wff obtained by
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uniformly substituting for all 4, 1 < h <k, X, for ¢, in Ay, i.e., Xu1, . . ., Xp;, for
Ch1s - - - »Chjy, Tespectively, where X, is a list of variables X1, . . ., Xz, 0 < j, < w.

We will refer to ¢, as the list of proper constants of v, occurring in A.

It is always intended that the constants actually occurring in Ay are among
¢y,...,C and that all bound variables are distinct from one another.

Whenever possible and when no confusion arises, we express the above con-
dition by

LI Vi [A (%)) = OVX;[Ay(X,X%;)
—-...— 0OvVX,[A,(X,...,%,) > L] ...]], or, for short,
L HV)?I [A1—> DVXz[Az —>... DV)—C:"[A,,'" J.] e ]]

and it is always intended that for all k, 1 < k < n, the variables X, in
Ap(Xy,...,X%), or in A, are substituted for ¢, according to the definition above.

Definition 2.4 An infinite diagram A is said to be L-coherent iff all of its
finite subdiagrams are L-coherent.

Lemma 2.5

(a) If A is an L-coherent diagram, then any subdiagram T of A is L-coherent.
(b) If A is an L-coherent diagram, then for all w € Supp(A), A(w) is L-
consistent.

Proof: The proof of (a) is slightly laborious because the support of a diagram
A contains in general more points than the ones actually occurring in the elements
of A. However, this kind of difficulty arises only for the present lemmas. (a) If
A is not finite, then by Definition 2.4, T' is L-coherent. So let A be finite and
Supp(A) = (vy,...,v,>. By the definition of L-coherence and the fact that
Fao (aAT),A=AU {vy,T),...,{v,, T} is L-coherent.

Let {{z1,a1),...,{zp,ap)} be (A —T), of course, z;,...,z, are among
vi,...,U,. First we show that

ru {(UI,T),. . '9<Un,T>}, i.e.

(*) (A - Kzlsal)a- . -a<zpaap>}) U {<vl:T>,- . .,<Un,T>}

is L-coherent by induction on p.

p=0.Then A =A—{zy,01),...,{Zp,p)} and since A =AU (v, T),...,
{v,, T)}, (*) is proved.

Suppose that for i = 0,

H* = (A - {<zlsal>s o a<Ziaai>}) U KU},T),. .. 9<vnaT>}
is L-coherent, we show that
II= (A - {(Zlaa1>’ o x<zi+l!ai+l>}) U {(UI’T)a .. ,<vn1T>}

is L-coherent too.
Now, Supp(II) is obviously {vy,...,v,), so let z;,; be vy and a;,; = 5. If
II is not L-coherent, then

*'V)?l [Hl()?l) ... DV)_C‘k[Hk()Z'I, N ,)?k)

> o OVE [, (%, .., %) = L1...1...1,
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where for each j, 1 < j < n, X; are substituted for the proper constants ¢; of
v; occurring in II. For each &, 1 < h < k, let &, be the list of constants of C,,
occurring in 3 and not in II. (Since Supp(II) = Supp(A) for each constant
¢ occurring in 8, there is a v, of the support of II of which c is a proper con-
stant.) Whence

FVR [y = ... = OV&I A 3P ... 35kB(E1/ P -« 80/ Frs Ry - -« s Xk
—...— 0Ovx,[I,-»> 1]...]1...1.
So, by classical logic,
v [ = ... = OVXVP .o VP AB(Frs - - v s FresXis - - - s Xk)
—=... > 0Ovx,[I,-> 1]...]...].

Since y;,. .., do not occur in Iy, . . . ,IT;, it follows, by Lemma 1.1(b), that
FVE VI = > OVE Vo [Ty
- OV [ A B(P1se - s PrsXise o5 Xg)
-...—~>0Ovx,[I,->1]1...11...1,

contrary to the L-coherence of IT*.

We are now ready to show that I' is L-coherent. ' U {{v;,T),...,{(v,, T)} =
TUKH,TY,...,. &, T U Ky, T, ..., {us, T}, where each ¢; € Supp(T") and
each u; & Supp(I"). Let I'* =T U {K¢,,T),...,{t,T)}.

Suppose that for j < s, I'* U Kuy, T),...,{u;,T)} is L-coherent, we show
that I = '™ U {u;T),...,{uj—1,T)} is L-coherent too. Let Supp(Il) =
(Wi, oy Wi, Wiy - - -, Wp) and wy_; < u; < wy. I1is not L-coherent iff

l'V)-él [Hl(il) ... DV)'c'k[IIk(il, . .,)?k)
—>... DV)?,,[H;,()'C'I,...,)?;,)—' J.] ...]...],

where for each j, 1 <j < h, X; is substituted for the list ¢; of the proper constants
of v; occurring in A. Then, by Axiom 4,

l’Vfl [Hl(il) ... CIEIV)?k[Hk()?l, SN ,)—C.'k)

... []V)?h[Hh()?l,...,fc,,)—» J_] ]],
and so, by classical logic,

I‘V)?l [I'Il()?l) -»...>0d[T- Dka[Hk()?l, . ,.??k)

... DV)?,,[H,,(XI,,)?;,)—» J.] ]] ],
contrary to the L-coherence of I'* U {{uy,T),...,{u;,T)}. Therefore I'* is
L-coherent and consequently, I' is L-coherent too. Analogously if #; < w; or
uj > Wy

(b) If A(w) is not L-consistent, then Fa; A...A a, > L for some
wifsay,...,a, EA(w). Let &y, ..., be the constants occurring in (a; A ... A @)

and for each i, 1 <i =<k, let v; € Q* be the rational number such that ¢; C C,,.
Suppose that v, <. .. < v trivially v, < w, consider the case in which v, < w. So
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FYX [T —=... = OVA[T - 0OV, (e A... A @)
(51/)?1,...,6](/)?]()—* J_]] . e ]

So the diagram I' = {w, «;) : 1 < i < n} is not L-coherent, contrary to the fact
that it is a subdiagram of A.

Lemma 2.5(a) will often be assumed without mentioning it when we take for
granted that any diagram that extends an L-incoherent diagram is L-incoherent
too.

Lemmas 2.6-2.11 guarantee that a given diagram, if L-coherent, admits of
being extended to an L-saturated one.

Lemma 2.6 Let T be an L-coherent diagram such that v; € Supp(I"). For any
a € £, ifT'(v;) b o and all the constants occurring in o are proper constants
of elements of the support of T, then T' U {v;,a)} is an L-coherent diagram.

Proof: If T'(v;) b «, then for some By,...,8;r € I'(v;), Bis-..,0k F .
I'U {{v;, o)} is not L-coherent iff for some finite subdiagram A of T', AU v;, a)}
is not L-coherent. Let Supp(A U Kv;,a)}) =<v,...,0;,...,U,) and assume
that Bl’ v ,Bk (S A(U,‘). Then

PR (AL (F) = ... = OVE[A (R, .. B AR, ..., %)
oo OVE AL (F, .y ®) = L1012 1,

where for each j, 1 < j < n, X; is substituted for the list ¢; of proper constants
of v; occurring in A U [(v;,a)}.
Since A(v;) F a(¢y,...,C), then A;(X,...,%) Fa(¥,...,X;) and so

FvX [A; — ... = OVX[A; —»...— OvVX,[A,— L]...]...1,
contrary to the L-coherence of T'.

Lemma 2.7 Let A be an L-coherent diagram. If {w,0a) € A then
(@) AU {z,0a)} is L-coherent, where w < z and 7 € Supp(4A),
(b) AU {z,a)} is L-coherent, where w < z and z € Supp(A).

Proof: (a) The proof is by induction and it will be enough to show that
vv[w=<v<z—->AU (v,0a)} is L-coherent] only if
AU {z,0a)} is L-coherent.

If AU {{z,0a)} is not L-coherent, then for some finite subdiagram I' of A,
I' U {{z,0«)]} is not L-coherent. Let Supp(T') = vy,...,Vk,...,0,) wWith
Z = vg. Then
Fvi [T1(%) = ... OV [T (X1, - -2 k1)
g Dka[Fk()?l, e ,.)?k) A Do
> o OVE [T, (s s ®) = L1112 1,
where for each j, 1 < j < n, X; is substituted for the list ¢; of proper constants

of v; occurring in T'. Since O is at most a formula of £,, and w < v, no vari-
ables of %, occur in Ja, whence by Lemma 1.1(c),
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FvX [T —...— OVX_([Th_1 A Do
- OVX [Ty —...—» Ovx, [T, > L]...1]...1.

But this contradicts the induction hypothesis, whence A U {{z,0a)} is L-
coherent.

(b) From (a) it follows that A U {{v,0a)} is L-coherent, for any v = w and
v € Supp(A). Now, A U {z, )} is not L-coherent iff for some finite subdiagram
I' of A such that Supp(I’) = V1, ..., Vk_15 Uky---,Un), =V and w < vj_,
T' U {(z,a)} is not L-coherent, i.e.,

PR [T (X)) = ... = OVE_ [Tho 1 (Rys - - - 5 Xpm1) = OVX [(TeA ) (X, . .o, Xk)
= o OVE T, (R, %)= L] 1) T,
where for each j, 1 <j < n, X; is substituted for the list ¢; of proper constants
of v; occurring in I'. So, by Lemma 1.1(d),
FvX [T =...—» OVX_ [T A Qa(Xy, ..., %)
- OVX [Ty —...—» OV, [T,—» L]...11...1,

contrary to the L-coherence of A U {(v,_;,Oa)}.

Lemma 2.8 Let A be an L-coherent diagram. For any w € Supp(A), and any
a € £,, such that all the constants occurring in o are proper constants of ele-

ments of the support of A, either AU {w,a)} or AU {{w, ~a)} is an L-coherent
diagram.

Proof: If neither AU {{w, o)} nor AU {{w, )} is L-coherent, then for some
finite subdiagram I" of A such that Supp(T") ={vy,...,Vk,...,0,) and w = vy,
FvX [T (%)) = ... OV [(TeAa) (X, ..., %)
= ... OV, [T (X,..., %) —>L1]...]1...],and
PV [T (%) = ... = OVE[(Te A na) (X, ..., X)
-, o OVE [T (X, .-, X)) > L]...1... 1,
where for each j, 1 < j < n, X; is substituted for the list ¢; of proper constants
of v; occurring in I'. Therefore, by classical logic,
v [T —...—> OVE% [Ty —»...» OvX,[T,—» L]...]...1],
contrary to the L-coherence of A.

Lemma 2.9 Let A be an L-coherent diagram.

(@) If {w,a Vv B) € A then either AU {{w,a)} or AU Kw,B)} is an L-coherent
diagram.

(b) If {w,a) € A, then AU {{w,a Vv B)} is an L-coherent diagram if all the con-
stants occurring in 3 are proper constants of elements of the support of A.

(©) AU {{w,a A B)} is L-coherent iff AU {{w,a)} U w,B3)} is L-coherent.

Proof: (a) If A U {{w,a)} is not L-coherent, then by Lemma 2.8, A U
{{w, 7a)} is L-coherent. Now, if A U Kw, 7« )} U {{w, 3)} is not L-coherent, then
by Lemma 2.8 again, A’ = A U {w, na)} U {{w,08)} is L-coherent, contrary
to the fact that A'(w) - L.

(b) and (c) Immediate.
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Lemma 2.10 Let T be a quasi-finite and L-coherent diagram. If {w,3ya(y)) €
L, thenT' U {w,a(y/d))} is an L-coherent diagram, for some constant d € C,,.

Proof: Since I is quasi-finite there is at least a constant of C,, that does not
occur in any wff of I'. Let d be any such constant. If I' U {{w,a(y/d))} is
not L-coherent, then for some finite subdiagram A of I' whose support is
ULy e s Upye e, Uy With w = vy,

'_V)?I[Al(-’-él) ... DVnyk[Ak()?I, e ,)_(:k) /\Ct(j(‘,'l, e ,)-ék,y)
== OVX,[A (%, .., %) > L]...]...],
where for each j, 1 < j < n, X; is substituted for the list ¢; of proper constants

of v; occurring in 4, y is substituted for d and is not among Xy, . . . ,X,. Then,
by classical logic,

FVE A = ... > OVE[Ac A Iya(Fy, . .., %))
> o OVE[A,—> L] 1.1,

contrary to the L-coherence of T'.

Lemma 2.11 Let T be a quasi-finite and L-coherent diagram whose support
IS V1. oy Viye s U If v;, Oy €T, then for some rational number s, v; < s,
I' U (s, a)} is an L-coherent diagram.

Proof: Case 1. Yk(i <k <n)(T' U {{vg, d-a))} is not L-coherent). Whence,
in particular, I' U {{v,, O0—a)} is not L-coherent and so, by Lemma 2.8, I' =
I' U (v,, Oa)} is L-coherent. Take any rational number s > v,, we claim that
A=TU (v,,Ca)} U {{s,a)} is L-coherent.

U, . Uy S
[ ] [ ] [
Qa Qa o

Suppose it is not, hence for some finite subdiagram A of T,
I'V)?l [Al()?l) ... DV)-C""[A”()—C:I, .o ,.i'n) AN 0(!()?1, o oo ,)?,')
_)D[a()?la'--y)?i)_) J-]] --']a

where for each j, 1 <j < n, X, is substituted for the list ¢; of proper constants
of v; occurring in A. Then

l'V)?l[Al ... DV)?,,[A,,AOa()"q,...,)?,-) - D"'a()?l,.. .,)‘Ci)] ], hence
Fvi (A —...—» OVE[A A Qa(Xy,. .., %) > L]... 1,

contrary to the L-coherence of I'. Whence A is L-coherent and so I' U {(s,a)}
is L-coherent too, by Lemma 2.5(a).

Case 2. k(i< k <=n) (I' U vg,O0-a)} is L-coherent). i
Let 4 be the smallest index among {i,...,n} such that ' U {{v,, O0-a)} is
L-coherent. Hence i + 1< h<nand T' U (v,_;,0a)} U vy, Oa)} is L-
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coherent. If I' U {(vp_1, Cad}U {(vy, O-a)} U vy, )} is L-coherent, then the
lemma is proved and s = vy,.

vy e Vi v Up_g vy cee Uy
[ [ ) [ ] [ ] [ ]
Qa Oa O«
o

If not, then IV =T' U (vp_(,Cad} U Koup, O-ad} U Koy, 7ad} is L-coherent.
Take any rational number s such that v,_; < s < vy, § exists because Q¥ is
dense. Notice that no constant of C occurs in I' and so in I'V, otherwise, by the
definition of a diagram, s € Supp(I'), which is not the case.
We now show that I'” =T U {(s, a)} is L-coherent.

Uy e U e Upq S vy e Uy
[ ) [ ] [ ] [ ] [ ) [ ]
Qa S O«

I
o

If not, then, for some finite subdiagram A of T,
I'V)_C"l [Al(xl) —>... DVJ?],_I [Ah—l()_él’ e ’Xh—l) A <>oz(5c'1, e ,)-é,')
-0 [a()?l9~ . ’)?i)
= OVX,[(Ap (X, ..., X)) A (O-a A na)(Zy, ..., %)

.o OvE [A (X, .., %)~ L], 010 T,

where for each j, 1 < j < n, X; is substituted for the list ¢; of proper constants
of v; occurring in A. Since all the constants in « are among ¢y,...,C, i < h,
X;, do not occur in o, and so by Lemma 1.1(h),

FVX [A) = .= OV [Ap_ 1 A Qa(Fy,. . ., %) = [Oa(Xy,. .., %)
- OVXR[ApA (O A o) (X,...,.%)
—...~> 0Ovx,[A,—» L]...]]]...1,
then
FvX [A) = ... = OV [An_1 A Qa(Fy,. .., %)
- OVX,[Ap A (O-a A ") (Xy,...,%)

...~ 0Ovx,[A,—» L]...1]...1,

contrary to the L-coherence of I'', Hence I'" U {(s, a )} is L-coherent and so, by
Lemma 2.5(a), I' U {¢s, «)} is L-coherent too.

Lemma 2.12 If A is an L-consistent set of closed formulas of £, then the dia-
gram {0,¢) : ¢ € A} is L-coherent.
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3 Completeness results

Definition 3.1 Let A be a diagram. For all v € Supp(A), £ is the sublan-
guage of £, that contains only those constants of £, occurring in formulas of
A(v).

Definition 3.2 Let A be an L-coherent diagram. A is complete iff for all
v, w € Supp(A)

(1) if v < w, then £5 < £4, and
() for any o € £5, (v,a) € A or {v,ma} €A,

A is rich iff for all v € Supp(4A),

(1) if 3xa (x) € A(v) then there is a constant d € £, such that « (x/d) € A(v),
and
(2) if (v, Oa) € A then there is a w € Supp(A) such that v < w and {(w, ) € A.

A is said to be L-saturated iff A is L-coherent, complete and rich.

Theorem 3.3 If A is an L-consistent set of closed formulas of £, then there
is an L-saturated diagram A such that Supp(A) € Q% and {{0,¢): 0 € A} S A.

Proof: Let {v;,a1),{Vz,a5) ... be an enumeration of all the elements of @
(see Definition 2.1). Let us define the following chain of quasi-finite diagrams.

A= {0,p):p € A}
Let k = 1. First define

(Br1) U Ko, o), if (Ag—1) U {(vg, i)} is L-coherent,

, ) (Ao UKok, )}, i (Ag—1) U K0, o)) is not L-coherent and
k= (Ag_1) U {(vg, 7o)} is L-coherent,

Ap_y otherwise.
Then let

(AU Qog, v (x/d)y},  if o = 3xy (x), vk, ax) € Ay, and d is a
constant of C,, such that A} U {(vy,y (x/d))}
is an L-coherent diagram;

Ay =1 AU {Ks,7)), if o = O, (v, ) € Al, s is some element
of Q% such that s > v, and A}, U (s,7))
is L-coherent;

[ A%» otherwise.
kEN

First, A is L-coherent. For, each A, is an L-coherent diagram by construc-
tion; moreover, if A is not L-coherent, then there is a finite diagram I', ' € A,
which is not L-coherent. Let k be the maximum index assigned to the formulas
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of I in the enumeration of ®. Now I' € A, ;, so by Lemma 2.5(a), Az, should
be L-incoherent, whereas it is not.

Second, A is complete.

(1) If v € Supp(A), then by Lemma 2.6 (v, 0 (a - a)) € A where a con-
tains constants of £2. By Lemma 2.7, {(w, (o = «)) € A for all w > v, and so
£ c £4.

(2) We have to show that if v € Supp(A) and o € £, then (v,a) € A or
{v,7a) € A. Let {v,a) = {vy, L) in the enumeration we started with and sup-
pose by reductio that neither (v, 8,) nor {v,, 8> can be L-coherently added
to A,_;. Therefore, by Lemma 2.5(a) neither of them can ever be L-coherently
added to any extension of A,_;. Since a € £2, there is a point k in the con-
struction of A when all the rational numbers, of which the constants of « are
proper constants, do belong to the support of A;. Therefore, by Lemma 2.8, for
any a > k, either A, U v, B,>} or A, U vy, —8,)} is L-coherent, contrary to
our supposition that neither of them can ever be L-coherently added to any exten-
sion of A,_;.

Because of Lemmas 2.10 and 2.11, A is also rich. So the theorem is proved.

Definition 3.4 Let A be an L-saturated diagram. A A-canonical model M* =
{W,R,D,I) is defined as follows:

W = Supp(A), R = <, Dis a function such that for all v € W, D, is the set of
constants of £4, Iis the interpretation function such that for allv € W, c€ £ and
predicate letter P”, I,(c) =cand I, (P") = {cy,...,cp) : P*(cy, . . . ,Cp) € A(V)).

M4, so defined, is a Kripke model with nested domains.

Lemma 3.5 If M? = (W,R,D,I) is a A-canonical model for some L-satu-
rated diagram A, then, for all closed wffs o € £5,

M2 E, o iff (v,a) € A.
Proof: Standard.

Theorem 3.6 If A is a QK4.3-consistent set of formulas, then there is a Kripke
model J\ with nested domains based on a strict linear frame, such that J\ E A.

Proof: Start with the diagram {0, ¢): ¢ € A} and extend it to a QK4.3-satu-
rated diagram A. The A-canonical model is the required model.

4 Completeness for QK4.3.D.X and 054.3 A feature of QK4.3 is that,
given a QK4.3-coherent diagram we cannot add, in general, a new point w (say,
for example, the pair {(w, T )) and still obtain a QK4.3-coherent diagram. Anal-
ogously, we cannot add to a diagram A the pair (w, a), if & contains constants
that are proper constants of rational numbers not belonging to the support
of A. This feature does not hold anymore for extensions of QK4.3.D.X, in the
sense that given a diagram A whose support is {vy,...,v,) we can always add
new points ‘after v,’; therefore, if the support contains the zero, we can add to
A all of the positive rational numbers. The proviso ‘after v;’ can be dropped for
extensions of QS4.3.
In this section we denote by L.D.X any logic extending QK4.3.D.X.
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Lemma 4.1 Let T' be an L.D.X-coherent diagram.

(a) For any z € Supp(T") and w = z, I' U {{w, T} is L.D.X-coherent.

(b) If 0 € Supp(I'), then for any wff «, the diagram T, is L.D.X-coherent,
where ', =T U {z,T): there is a constant ¢ € C, that occurs in «}.

Proof:
(@) If T' = &, then T U {{w, T )} is not L.D.X-coherent iff L.D.X F T - L
iff L.D.X + 1, which is not the case because of the consistency of L.D.X.
LetI' # &. If w € Supp(T'), then I' U {{w, T)} is trivially L.D.X-coherent.
So let w & Supp(T'). ' U {{w, T)} is not L.D.X-coherent iff for some finite sub-
diagram A of T', AU {w, T)} is not L.D.X-coherent. Let Supp(A) ={vy,...,0,)
and v;_; < w < v;. Then

FvX (A (%) .. .= OVE_ [Aio (X, .- 25 Xim)
- D[T - DV)?,'[A,‘(.?[,. . .,55',')
—...—> 0Ovx,[4,(X,..., %)~ L]1...0011...1,

where for each j, 1 < j < n, X; is substituted for the list ¢; of proper constants
of v; occurring in A. Hence, by classical logic and Axiom X,

l'V)-C.'l[Al ... DV)?,'._I[A,‘_I—’DV)?,'[A,'—’.. . DV)?H[A,,—) J_] e ]] .. .],

contrary to the L.D.X-coherence of I
If v,, < w, then A U {{w, T)} is not L.D.X-coherent iff

Fvx, [A —...—» OVX,[A, - O[T-> 111...1,
whence

i [Ay —...— OVX,[A, - D0OL]...1.
Thus, by Axiom D,

Fvii[A; = ...~ OVX,[A,—> L]...1,

contrary to the L.D.X-coherence of I'.
(b) Immediate from (a).

Corollary 4.2 Let A be an L.D.X-coherent diagram such that 0 € Supp(A).

@) Foranywe QY a € L, if A(w) b a, then A’ = AU {w,a)} is L.D.X-
coherent.

(b) Forany we Q% and any o € £, either T'U {{w,a)} is L.D.X-coherent or
I'U «w, —a)} is L.D.X-coherent.

(©) AU w,a v B)} is L.D.X-coherent iff either AU {{w, )} is L.D.X-coherent
or AU {w, ()} is L.D.X-coherent.

Proof: By Lemma 4.1(b), A, is L.D.X-coherent, whence by Lemma 2.6, A, U
{{w, a)} is L.D.X-coherent; therefore by Lemma 2.5(a), A’ is L.D.X-coherent.
Analogously for (b) and (c).

As to the construction of Theorem 3.3 for logics extending QK4.3.D.X,
the third case in the definition of A% can never be the case; hence Supp(A) =
Q% and forany v € Q°F, £5 = £,.
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Theorem 4.3 If A is a QK4.3.D.X-consistent set of formulas, then there is
a Kripke model M based on the extended frame {Q*,<,D) with nested
domains, such that M E A.

If A is a QS4.3-consistent set of formulas, then there is a Kripke model )
based on the extended frame (Q™, <, D) with nested domains, such that M EA.

Notice that Axiom T is needed only in the proof of Lemma 3.4 in order to
show that M ¥, O only if Oa & A(v).!

5 The logics C,,.QK4.3.D.X and C,,.084.3, m = 1 Consider the propo-
sitional schema

Co:8vO(OB1 AR =By v...v O(OBRABm— 1).

It is well known that K4.3 + C5, (S4.3 + C;,) is characterized by the class of
connected, transitive (and reflexive) frames of rank at most m.
Given a transitive frame F = (W, R), for every v € W, the cluster of v is

Cl,={w€& W:(wRvAURW) or (w=0)}.

Clusters can be ordered by Cl, <g Cl,, iff URw. <p, is transitive and antisymmet-
ric; therefore, by putting

Cl,<gCl, iff Cl,=<iCl, and Cl,#Cl,

we get a transitive and irreflexive ordering of the clusters. If R is connected, <g
is connected too. A cluster is degenerate if it consists of one non-reflexive point.

A frame T is said to be of rank m iff F contains at most m clusters. A
(reflexive) tower of rank m is a frame (W, R) of rank m, where R is (reflexive)
transitive, connected, serial, and dense.

One could expect that, for example, Q.S4.3 + C;, would be characterized by
the class of Kripke models with nested domains based on reflexive towers of rank
at most m. On the contrary, in order to axiomatize that class of models, a
stronger version of Axiom Cy, is needed, one which says that certain exchanges
between universal quantifiers and box operators are admitted.

Given the formulas o; (X9, %1), . . .0 (X0, X1« o3 Xi) s oo Qmy1 (Xos X15- - s
Xm+1), define

Y1 =
Yier = U0 A D0 Ay
and put:
Con = VE1 [71 = OV [y2 =+ . . = OVE [y = Oy [Ymss = L1111,
Notice that for a4y = T,
C,=VX [y = OVXi[y,—...» OV, (v, O[0-auA-a,— L]1]...]].

Lemma 5.1 The logics C,,.QK4.3.D.X (C,,.QS4.3.), m = 1, are correct with
respect to the (reflexive) towers of rank at most m and with nested domains.

In this section, by C,,.L.D.X we denote any logic which extends
C,,.QK4.3.D.X. Let ¢ be a closed wff of £ and suppose that C,,.L.D.X I ¢,



QUANTIFIED MODAL LOGICS 2717

m= 1. Let n = us(Cz.L.D.X ¥ ¢). Of course n < m. If n = 1, then, since
C;.LD.X | (08— 0O0B) A (B— OB) (see proof below), C;.L.D.X is equiva-
lent to QS5, and so ¢ can be falsified on a reflexive tower of rank 1, i.e., on one
nondegenerate cluster.

al—’D(D_'al/\—‘Olll\az_’ _L) Cl
OB - O(00B Vv OB) a1 /0B; ay/T
OB - 008 by Ax. 4
aEos—B) - (0208~ 0pR) Ax. K
Qs vE) - (00F v Op)

B-O(O-BA—B—> 1) from C,
B—DO(OBVB)

B— (008 v OP) by transitivity
B— (OB vDOR) by Ax. 4
B— 0B by Ax. D.

If n > 1, we show that ¢ can be falsified on a tower of rank n.
Let P{%), be the universal closure of the instance of C,_, obtained by
putting:

Y1="Pr(X1, 015 -5 Vk)
Yie1 = OPi(Xis Y15« 5 V) AP (X Y155 V) A P 1 (i1, Y15+ 5 Vi)
l<i=sn,
where Py,...,P, are k + 1-ary predicate letters not occurring in ¢. -

Now we show that
C,.L.D.X I o v OP,, for some k = 0.
For, C,_;.L.D.X | ¢ and so
(%) C,.LDXFOy, A...A Oy, — o,

where ¥, . ..,¥, are universal closures of instances of Axiom C,_;. Suppose,
by reductio, that

C,.L.D.X | o v OP¥,, for all k= 0.
Therefore, by uniform substitution we get

C,.LDX | ovVv Oy, and . . . and C,.LDX | v Oy,;
hence
C,.LDXFo v(dy; A...A0Y,),
and so by (*)
C,.LDX | o

contrary to the hypothesis.

Consider the rational interval [I,n + 1) = {we Qt:1 =w<n+1}. Let
C;,...,C, be n countable sets of constants pairwise disjoint and for every
welii+1),i=1,...,n,let

Ly=LUCU...UC(
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and
®={wa):we[l,bn+1)anda € £,}.
Define the diagram

A = {(1,0_'¢>s<1,o_‘P1(C19é»,
<2a DPI(cl9é)>a<2,<>_‘P2(C29é)>,

<n - 1’ DPn—Z(Cn—Z,é»’(n - 19<>_'Pn—l(cn—l9é»a
(n,DPn—l(cn—lyé))y<n’<>_'Pn(Cn1é)>}’

where ;€ C;, 1 <i<n,é=e,...,e, € C, and k is such that C,.L.D.X
o v OP ,(1’91 .

We will refer to A as the base diagram and to 1,. . ., n as the base points. We
can easily see that A is C,.L.D.X-coherent. For, if not, then C,.L.D.X } ¢ v
OP,, which is not the case.

In the remainder of this section, A will always denote the diagram we have
just defined and the index i will always vary on the set of natural numbers
{1,...,n}.

It is important to notice that since (i, 0= P;(¢;,€)) EAand {i+ 1,0P;(c;,€)) €
A, iand i+ 1 are not only distinct, but can never belong to the same cluster. This
leads to the following definition:

\
Definition 5.2 For any i < n, i and i + 1 are said to be strongly distinct if
there is a wff  such that

(*) AUy and AU Ki+ 1, Oy A y))

are both necessary extensions of A, where A U {{w, )} is said to be a necessary
extension of A iff AU {{w, o)} is not C,.L.D.X-coherent.
When (*) obtains, « is said to separate i from i + 1.

Given that the following is a theorem of C,.L.D.X:
VX [0=81(x) = OVxa[(O0;(x1) A ©702(x2)) — ... = OV, [(0d,-1 (X4—1)
A 0710,(x,)) » O[08,(x,) > L] 11,

any diagram containing a subdiagram of this kind:

1 oo 2 - n—1 n n+1
[ ] [ ] [ ] [} [ ]
¢=0, 0o, --- 00,-, 008,_; 09,
00y -+ 070,; OO0,

is not C,.L.D.X-coherent. In general, any diagram containing at least n + 1
strongly distinct points is not C,.L.D.X-coherent.

The formulas ¢—P;(c¢(,&), OP;(¢1,8) A O Py(¢y,8),...,0P,_1(Cr1,8) A
O P,(cn, €) we started with serve the purpose of labelling the points 1,...,n
and guarantee that the support of A cannot contain further strongly distinct
points. In the following we will write simply P; instead of P;(c;,€). It is easily
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seen that in any C,.L.D.X-coherent extension I" of the base diagram A, for all
wffs 3,

(n,0B) e’ iff (w,08) €T, where n < w.

Now we want to show that we can build a C,.L.D.X-saturated diagram I'" based
on [1,n + 1) which is an extension of A and in which the above property holds
for any w, v such that i < w, v < i+ 1. This obtains from the following lemmas.

Lemma 5.3 Let T be a finite and C,,.L..D.X-coherent diagram such thatT 2 A

and for all w € Supp(T'), ifi=s w<i+ 1 then {w,0P;) €T. Then

(1) if there is at least a point z between i and i + 1, then for all w € Supp(T),
ifisw<i+1and{wB) €T thenT U {{w, OB)} is a necessary extension
of T.

Q) ifw,OBY€eT,isw<i+1,thenthereisak=1,...,nandan s such that
wssandk<s<k+1andT U {(s,8)} is C,.L.D.X-coherent. Moreover
T'U (s,8)} U Ks,0Py)} is a necessary extension of T' U {(s,3)}.

() if i, OB) €T, then forany w,i<=w<i+ 1, T U {w,OB)} is a necessary
extension of T';

4) if for somew,i=w<i+1,{w,0B) € L thenT'U {i,dB)} is a necessary
extension of T'.

Proof:

(1) w#i. ThenI' U {i,OB)} is a necessary extension of I'. ' U (i, 03>} U
{{w,0-B)} is L-incoherent, since it contains n + 1 strongly distinct points,
hence I' U {{w, 03)} is L-coherent.

w = i. Suppose by reductio that I' U {i, 0B3)} is not a necessary extension
of T', then I' U {(i,d0-8)} is C,.L.D.X-coherent, so also I' U {{z,0-3)} is
C,.L.D.X-coherent, for some z,i < z < i + 1. Moreover, I' U {{(z,0-3)} U
{(z, =8>} contains n + 1 strongly distinct points and soI' U {{z, 0=} U z,83)}
is a necessary extension of I' U {{z, 0—3)}; therefore I' U {i, OB)} is a necessary
extension of I'. So we get a contradiction.

(2) Subcase 1. For all base elements i of ', I' U {{(i, 0—3)} is not C,.L.D.X-
coherent. Then I' U {{n, OB)} is C,.L.D.X-coherent and by Lemma 2.11, for
somes>n, I"=TU {{n, OB U (s,B8)} is C,.L.D.X-coherent. But then also
I U (s,0P,)} is C,.L.D.X-coherent, since I'’ U (s, 0P,)} contains # + 1
strongly distinct points (O —P, separates n from s) and consequently is not
C,.L.D.X-coherent.

Subcase 2. There is a base element i/ of I', w < i, such that I' U {{i, 0—8)}
is C,.L.D.X-coherent. Let £ + 1 be the least of them (i is obviously greater
than 1). If ' U Kk + 1,8)} is C,.L.D.X-coherent, then the lemma is proved.
Otherwise, by Lemma 2.11, forsomes>wand k<ss<k+1,I"=TU {(k, 0B} U
{s,8)) U Kk + 1,008 A 18)} is C,.L.D.X-coherent. Moreover I'” =T U
s, O Py} is C,.L.D.X-coherent, since I U {(s, 0 P;)} contains n + 1 strongly
distinct points (O — P, separates k from s and (8 separates s from k + 1) and
consequently is not C,.L.D.X-coherent. Thus I' U {(s,8)} U 5,0 P)} is
C,.L.D.X-coherent.

(3) Suppose, by reductio, that for some w, i=w<i+ 1,TU {{(w,0B)} is
not C,.L.D.X-coherent. Then IV =T' U {{w,0-8)} is C,.L.D.X-coherent. But
then we have the following situation: O3 separates i from w and ¢ —P; separates
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w from i + 1, because (v, 0 P;) €T and (i + 1,0P;) € I". Hence I'V contains
n + 1 strongly distinct points and so is not C,.L.D.X-coherent. Consequently
T'U {{w, OB)} is a necessary extension of T'.

(4) Suppose, by reductio, that I' U {{i, 08)} is not a necessary extension of I'.
Then I' U {i,0—8)} is C,.L.D.X-coherent. Hence by (3), ' U {i,08)} U
{Kw, 08} is C,.L.D.X-coherent, contrary to the fact that {(w,(03) € T.

Lemma 5.4 Let T be a finite and C,, .L.D.X-coherent diagram such thatT 2 A,

and for all w € Supp(I), ifi= w< i+ 1 then (w,0P;) €T.

Q) If wi and wyyy, i < wy, Wiy < i+ 1 are two consecutive points, then the
diagram I obtained by exchanging the order of w; and wy,, is C,.L.D.X-
coherent.

Q) If {w, Ay (y)y €T, thenT' U Kw,a(y/d))} is C,.L.D.X-coherent, for some
constant d € £,,.

Proof:

(1) Let{wi,..., Wk, Wis1,- .., W) bethe support of I', where i < wy < wy | <
i + 1. The conjunction of the formulas of T'(wy) is of the form (O—P; A ¥y)
and the conjunction of the formulas of T (wy.) is of the form (O -P; A d). By
Lemma 5.3(1), T' U{wg, 0 (OP;AY))} is C,.L.D.X-coherent. Moreover, I' U
{{Wks1, 0 (O P Ay))} is C,.L.D.X-coherent, for T' U w1, O (OPAYN)
contains n + 1 strongly distinct points and so is not C,.L.D.X-coherent
(O(O—P; A v) separates wy from wy,;). By Lemma 5.3(2), I'* =T U
Wi 1, O (O P, AYN U ({5, (O P; Ay )} is Cp.L.D.X-coherent, where wy,| <
s < i+ 1. But I'V (with wy instead of s) is a subdiagram of I'* and consequently
is C,.L.D.X-coherent.

W - Wi Wit S Wy
[ [ ) [ ) [ ) [ ]
O P;AYy O-P;Ad

(O P Ay) O(OPAy) O PiAy

2) If w=1,...,n, then the lemma is proved as for QK4.3. Let i < w <
i+1,forsomei=1,...,nand vy,...,v, be all the points of the support of '
such that i < v; <...< v, < w. Let I'* be the diagram which differs from I" only
in that the relation < is replaced by <* which coincides with < except that the
points i, vy,...,v,, w are ordered as follows: w <* i <* v; <*...<*v,. Then
by r + 1 applications of Lemma 5.4(1), we get the result that the diagram I'* is
C,.L.D.X-coherent. So by Lemma 2.10, I'* U {w, a(y/d)y} is C,.L.D.X-coher-
ent and by applying Lemma 5.4(1) again r + 1 times, we get the result that
I' U Kw,a(y/d))} is C,.L.D.X-coherent.

We can now extend our base diagram A to a C,.L.D.X-saturated one, as we
did for QK4.3, being careful to add {w, ¢ P;) to any new point. We can do this
in virtue of Lemma 5.3(2).

Let MT = (Supp(T"), <, D, I) be the I'-canonical model as in Definition 3.4.
By Lemma 3.5, M F,, o iff (w,a) €T.

Consider now the model M = (Supp(T'), R, D, I) which is like MT except
that wRuv iff either w<vor w, v € [i,i + 1). JM is based on a tower of rank n.
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Lemma 5.5 For any sentence v of £,,,
M Fw')’ lffCMF FW'Y'

Proof: By induction on . Consider the case of v = [Ja.

If M I, 009, then there is a v, wRv, such that M F, d and so by the induc-
tion hypothesis there is a v, wRv, such that MT ¥, 3. Hence MT k, 4.

If w< v, then MT ¥, 0. If w,v € [i,i + 1) for some base point i, then
MT ¥; 09, hence by Lemmas 5.3(4), MT ¥,, (3. The other direction is trivial.
Consequently JM ¥ ¢, where ¢ is the wff we started with. It follows that

Theorem 5.6 If ¥c,,.0ka.3.0.x @, then there is a Kripke model M\ with nested
domains based on a tower of rank at most m, such that M ¥ ¢.

If ¥c,,.0s4.3 @, then there is a Kripke model with nested domains J\ based
on a reflexive tower of rank at most m, such that M ¥ o.

6 Other extensions We recall that

BF = vxOa —» OVxa
ML* = Ovx¢Oa —» OOVxe
ML = vx0 o —» O0Vxa

1=00a - ¢0a.

It is clear that if L is any logic that extends QS4.3 and ¢ is a wff not provable
in L, then there is a model JM for L, based on the frame (Q*, <) with nested
domains, such that M F ¢. Let us call the frame {Q™, <) the rational frame.

Using the constructions of Corsi and Ghilardi [2], it can be shown that
ML*.QS4.3 is characterized by {Q* U N, <) with nested domains and
ML*.Q84.3.1 is characterized by {(Q% U {0}, <) with nested domains, where
(Q* U N, <) is the rational frame with maximum cluster and (Q* U {0}, <)
is the rational frame with maximum element.

As is well known, BF.QS4.3 (BF.QK4.3.D.X) is characterized by the extended
frame (Q*,<,D) Q% <,D)), where the domain function D is constant. The
proof of this result by the method of diagrams is very simple. With each ratio-
nal number the same set C of new constants is associated and the notion of
coherence for a finite diagram A is so modified:

Definition 6.1 Let A be a finite diagram whose support is {vy,...,0,>. Ais
said to be coherent iff

FvX[A,(¢/X) > O[A(E/X) —»...—» O[A(é/X)—> L]...1],
where € is the list of all the constants occurring in A.

Lemmas 2.6-2.11 are proved in the same way as for QK4.3. In the proof of
Lemma 2.10 Axiom BF is needed because of the new definition of coherence.
In the presence of Axiom BF, Axiom C,, is equivalent to

VX1VX . VX, [B1 () v O [(OB (x1) — B2(x2))
v...v DO [(Dﬁm(xm) —’Bm+1(xm+l)] N

and so we easily get
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Theorem 6.2 The logics BF.C,,.QS84.3, m = 1, are characterized by the class
of reflexive towers of rank at most m and with constant domains.

Following [2], we easily see that ML.BF.QS4.3 is characterized by the rational
frame with maximum cluster and constant domains and that ML.BF.QS4.3.1 is
characterized by the rational frame with maximum point and constant domains.

Acknowledgment I would like to thank the anonymous referee for helpful comments.

NOTE

1. It is worthwhile to notice that in the case of QS4.3 a different definition of support
and coherence could be given, see [1], i.e.:

Definition Supp(A) =4¢ {W:{w,a) € A, for some Wff «}.
If A is a finite diagram whose support is vy, ...,0,), A is QS4.3-coherent iff
Fosas OVE[A[ (€1 /%)) > OVE, [A(Ci /%, Cal%s)
= ... OVX,[A,(C1/%,C2/%py ..., Cn/Xp) = L]... 11,

where for all k, 1 < k < n, ¢ is the list ¢4y, . . ., Cgj,, 0 < ji < w, of all the constants
of (£ — £4_1) occurring in wffs of A and A, (¢,/%X,,...,C/X;) is the wff obtained
by uniformly substituting for all 4, 1 < h < k, X), for ¢, in A;,. When k =1, £;_,
denotes the language £ we started with.

These definitions lead to some simplifications. For example, we do not need to
take into consideration the diagram A,, once A and « are given, but at the same
time the proof of Lemma 4.1(a) depends on the fact that OvxOa (x) - OVxa (x) is
a theorem of QS4.3 and so Lemma 4.1(a) does not hold anymore for QK4.3.D.X.

Moreover in the proof of Lemma 2.11, the world s has to be chosen in such
a way that C N £, = &, where C is the set of constants {c,,...,c,} occurring in
A(vy),...,A(v,) and not belonging to £,, ,. To this aim it is enough to choose an
s such that v,_; < s < min(z,v,), where z is the least rational number of which
Cis...,Cp Are proper constants.
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