
602

Notre Dame Journal of Formal Logic
Volume 34, Number 4, Fall 1993

BREAKUP: A Preprocessing Algorithm for

Satisfiability Testing of CNF Formulas

ROBERT COWEN and KATHERINE WYATT

Abstract An algorithm called BREAKUP, which processes CNF formulas
by separating them into "connected components," is introduced. BREAKUP
is then used to speed up the testing of some first-order formulas for satisfi-
ability using Iwama's IS Algorithm. The complexity of this algorithm is
shown to be on the order of O(nc-nv), where nc is the number of clauses
and nv is the number of variables.

1 Introduction Connectedness is an attribute of graphs that can be useful
in deciding the satisfiability of propositional formulas in conjunctive normal
form (CNF). Preprocessing to separate a formula into "connected components"
is generally fast and easy, and can significantly speed up testing of the formula
for satisfiability. BREAKUP, the algorithm introduced here, will be used in con-
junction with Iwama's IS Algorithm [4],[5] and will be shown to significantly
speed up (as compared to using IS alone) the processing of some formulas from
Gilmore [3] and Davis and Putnam [2].

A CNF formula is a conjunction of clauses where each clause is a disjunc-
tion of literals. A literal is a propositional variable or the negation of a propo-
sitional variable. Given a pair of literals {p9-*p}9 each will be called the mate of
the other (cf. Davis [1]). Clearly, we can assume that no clause contains both a
literal and its mate. There are two ways to think of clauses in a formula as con-
nected. First, two clauses c,d, are connected if there exists a chain of clauses
starting with c and ending with d such that for any two adjacent clauses x,y,
either y contains a literal that occurs in x or y contains the mate of a literal that
occurs in x. Alternatively, c and d can be said to be connected if there is a chain
of clauses starting with c and ending with d such that if x and y are adjacent then
y contains the mate of a literal that occurs in x. In either case, a set of clauses
is said to be connected if every pair in the set is connected and a component is
a maximally connected set of the clauses of the formula.

Received July 15, 1992; revised March 15, 1993

SATISFIABILITY TESTING 603

The two definitions of connectedness will yield different component struc-
tures of a formula S only if S contains one or more pure literals (a literal is pure
in S if its mate is absent from S). If each literal has a mate in S,S is called a
linked conjunct ([1], p. 326); in a linked conjunct all clauses containing the lit-
eral or its mate end up in the same component under either definition. However,
if a formula contains a pure literal, then all the clauses containing this pure lit-
eral will be in the same component under the first definition, but they may be
in different components under the second definition. The second definition shall
be adopted since it is slightly simpler; in fact, pure literals can easily be elimi-
nated (pure literal rule, see [2]), in which case both definitions yield the same
components.

Theorem 1 A CNF formula is satisflable if and only if each of its components
is satisfiable.

Proof: If a CNF formula is satisfiable, then certainly each component of the
formula is satisfiable, since any assignment satisfying the formula will satisfy
each component. Conversely, assume each component is satisfiable. Then clearly
a satisfying assignment for each component can be chosen which in addition
makes all the mateless literals in the component true. If there is a literal which
occurs in more than one component this must be because its mate is absent, hence
it will have been assigned the value T in each component in which it occurs.
Therefore the union of the assignments chosen for each component will be an
assignment satisfying the formula.

The algorithm BREAKUP, which finds the components, will be described
in more detail below. Satisfiability testing on each component "delivered" by
BREAKUP is done by Iwama's IS algorithm [4],[5]. The component testing is
done serially, but obviously could be done simultaneously (in parallel). For com-
parison, Iwama's algorithm is used alone on the entire formula.

The following two first-order formulas, found in [3] and [2], were tested for
validity using BREAKUP and the IS algorithm.

1. (ix)(iy)(Vz)((F(x,y) ^ (F(y9z) ΛF(Z,Z))) Λ ((F(x,y) ΛG(x,y))

^ (G U Z) Λ G (U))))

2. (3*)(Vj>)(Vz)((((F(.y,z)=* (G(y)=*H{x)))^F(x9x))Λ((F(z,x)
=* G(x)) => H(z))ΛF(x,y)) => F(z,z)).

The formulas were first negated to test them for validity; that is, their nega-
tions were tested for (un)satisfiability. As in Davis [1],[2], hand computation first
produced a set of ground clauses from the first-order formulas. Satisfiability test-
ing was then done by computer (a rather slow IBM PC clone) using BREAKUP,
followed by our implementation of Iwama's algorithm.

In case (1), 75 clauses were generated initially (the same set of clauses shown
to be unsatisfiable in [2]); after eliminating those with only pure literals, 24
clauses remained. There were 30 variables in the reduced set, and two connected
components: one with 18 clauses and one with 6 clauses. The first component
was unsatisfiable. In case (2), 114 clauses were needed. Fifty-eight remained after
eliminating clauses with only pure literals; there were 59 variables in the reduced

604 ROBERT CO WEN AND KATHERINE WYATT

set of clauses. The formula broke into 10 components and the second compo-
nent was unsatisfiable.

There was a dramatic decrease in the runtime of the IS algorithm on com-
ponents of a formula as compared to the whole formula. In the case of Formula
1, the two components were tested in 68 seconds, while checking the whole for-
mula took 1822 seconds. Testing the second formula in its entirety proved to be
too long a job for the PC. The program was aborted after 78 hours as it appeared
to be only midway through the search. However, testing the 10 components of
this formula was accomplished in 38 seconds. Therefore, it seems that includ-
ing an algorithm like BREAKUP in testing formulas for satisfiability with
Iwama's algorithm is well worthwhile. We feel other methods of testing of CNF
formulas could also benefit from preprocessing with BREAKUP.

2 Description of Routine BREAKUP

2.1 Structures The algorithm used by BREAKUP to separate CNF formu-
las into components is an adaptation of a breadth-first search, as used to find
components of a graph, or strongly connected components of a digraph. The
CNF formula is read in from a disk file. It has nc clauses and nυ variables. The
clauses are indexed C\, c2,..., cnc, and the variables are indexed V\, v2,..., υnv.

The CNF is read in as a packed string, and the program builds the follow-
ing data arrays.

PUR: a 2 x « y array, where PUR(1,/) and PUR(2,/) count the number of
positive and negative occurrences of v, . If y, occurs only negated or
unnegated (i.e., as a pure literal), then one of PUR(1,/) or PUR(2,/)
will be zero.

IM: a nc x nυ incidence matrix, with

IM(/,y) = +1, if Vj is not negated in c,
= — 1, if Vj is negated in c,
= 0, if Vj does not appear in c, .

VIN: a nυ x (nc +1) array, in which the /-th row is a list of the clauses in
which Vj occurs, followed by at least one zero to indicate the end of
the list and fill out the row. The extra column of VIN can be elimi-
nated by minor changes in the program, but it seemed convenient and
has little effect on the complexity.

COMP: the list of component indices of the clauses.

CQ: a queue of the clauses in a particular component. A clause is not
added to CQ unless the corresponding index in COMP is zero; this
eliminates unnecessary repetition. The search uses two queue point-
ers, bot and top. Bot points to the cell in the queue that holds the
number of the row in the incidence matrix that is currently being
scanned; top points to the last clause added to the queue.

2.2 Outline of Algorithm Initially put m = 1 and component index ci = 1.
Clause cm is chosen as the root of the first component and is entered in CQ. Bot

SATISFIABILITY TESTING 605

and top point to cm and row 1 of the incidence matrix IM is scanned. Each υk

which occurs as a nonpure literal in cm is selected in turn: the nonzero entries of
row k in VIN (other than cm) are added to the queue, and the value of ci is
stored in COMP for each new queue member. The pointer to the top of the
queue is incremented by one after each addition. Moreover, when Cj is added to
the queue, IM(j,k) is changed to zero to avoid examining row k of VIN more
than once. Variables which appear as pure literals are ignored, except that
IM(j,k) is changed to zero.

The pointer to the bottom of the queue moves to the second cell in the queue,
which contains some Cj, and theyth row of IM is scanned as above. This pointer
continues to move from cell to cell in the queue; when the bottom pointer reaches
the cell top is pointing to, the connected component is complete and ci is incre-
mented. A search for a new connected component is begun, using as root cm the
next clause in the sequence of clauses which still has a zero in COMP. When these
have been exhausted, all components have been found.

2.3 Analysis of Complexity Initializing array entries to zero in IM, VIN,
PUR, COMP, and CQ accounts for (nc x nv) + ((nc + 1) x nv) + 2nυ + 2nc
operations. Let p(i) denote the number of occurrences of Vj and let S = Σp(i).
S is at most nc x nv, and unpacking the CNF and recording it in IM, VIN, and
PUR involve 4S steps.

COMP is checked once for every clause in the outer loop of the algorithm,
and again for every occurrence of a nonpure literal, or at most nc + S times. The
bottom pointer on CQ is compared with the top pointer nc times. Every row of
IM is scanned once, for a total of nc x nv steps; and checking PUR for pure lit-
erals adds nv steps. At most S nonzero entries of VIN are checked for addition
to the queue, since pure literals are not considered. One zero in each row of VIN,
or nc in all, is also scanned. Entries (ci9vj) in IM are changed to zero when
clause c, is added to the queue and when variable Vj is a pure literal, or in less
than S instances. Therefore, running BREAKUP involves at most T operations:

T = 2(nc X nv) 4- ((nc + 1) X nv) + 3nv + 5nc + ΊS

< lθ((nc + 1) x nv) + 3nv + Snc < 10(nc + \)(nv + 1).

Even though not all operations take the same time, the complexity is on the order
of O(nc nv).

REFERENCES

[1] Davis, M., "Eliminating the irrelevant from mechanical proofs," Proceedings, Sym-
posia of Applied Mathematics, vol. 15 (1963), pp. 15-30. Reprinted in [6], pp.
315-330.

[2] Davis, M. and H. Putnam, "A computing procedure for quantification theory,"
Journal of the Association for Computing Machinery, vol. 7 (1960), pp. 201-215.

[3] Gilmore, P., "A proof method for quantification theory: its justification and real-
ization," IBM Journal of Research and Development, vol. 4 (1960), pp. 28-35.
Reprinted in [6], pp. 151-158.

606 ROBERT COWEN AND KATHERINE WYATT

[4] Iwama, K., "Complementary approaches to CNF Boolean equations," pp. 223-236
in Discrete Algorithms and Complexity, edited by D. Johnson, Academic Press, New
York, 1987.

[5] Iwama, K., "CNF satisfiability test by counting and polynomial average time,"
SIAM Journal of Computing, vol. 18 (1989), pp. 385-391.

[6] Siekmann, J. and G. Wrightson, editors, The Automation of Reasoning, Volume I,
Springer-Verlag, New York, 1983.

Department of Mathematics
Queens College
The City University of New York
Flushing, New York 11367

Department of Mathematics
Graduate Center
The City University of New York
New York, New York 10036

