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A Parity-Based Frege Proof for the
Symmetric Pigeonhole Principle
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Abstract Sam Buss produced the first polynomial size Frege proof of the
pigeonhole principle. We introduce a variation of that problem and produce
a simpler proof based on parity. The proof appearing here has an upper
bound that is quadratic in the size of the input formula.

1 Introduction The proof complexity of the pigeonhole principle is a well
studied problem. In 1985, Haken [6] proved that any resolution proof for it must
have exponential size. In 1987, Buss [4] produced a polynomial size Frege proof.
Ajtai [1] first showed that any polynomial Frege proof must have greater than
constant depth. Most recently, Beame, Impagliazzo, Kraji¢ek, Pitassi, Pudlak,
and Woods [3] showed an 2(log log n) lower bound on the depth of any poly-
nomial Frege proof.

Buss’s Frege proof proceeds by building up predicates to count the number
of atoms set to true, i.e., a propositional multiplexer. With the binary results,
the proof then introduces predicates to compute “less than.” Starting with the
constraints that each pigeon must be placed in some hole, the proof derives that
n is less than the number of holes filled by the first #» + 1 pigeons. Using the con-
straints that each hole may contain at most one pigeon, the proof derives that
the number of holes filled by the first n + 1 pigeons is less than or equal to 7.
In this way, Buss produces a contradiction. He estimates the size of the proof
to be O(n?°).

The main result of this paper is a proof similar in structure to Buss’s proof.
We introduce a variation of the pigeonhole principle which is referred to as the
symmetric pigeonhole principle. With this variation it is possible to get a sim-
pler Frege proof that is based on parity rather than less than.

The symmetric pigeonhole principle is formalized as follows. For both prob-
lems, begin with the same variable space P;j, 1 <i< (n+ 1), 1 <j<n, where
Py is true iff pigeon i is placed in hole j. The traditional pigeonhole principle,
abbreviated PHP,, is the conjunction of the following two constraints.
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For every pigeon, there exists some hole it is placed in.

( V Pij) .

1=i=(n+1) \l=j=n

For every hole, for every pair of two pigeons, one of those pigeons is not placed
in the hole.

A A (2Pjv-Py).
1=sj=n l=<i<z=(n+1)
In order to get the symmetric pigeonhole principle, abbreviated SPHP,,, we
add the following additional two constraints.
For every hole, there exists some pigeon that is placed in it.

A v R
1<j=n \l=i=(n+1)

For every pigeon, for every pair of two holes, one of those holes does not con-
tain the pigeon.

/\ ( _'PU v - P, iz) .
l=is(n+1) 1=sj<z=n

The PHP, formula represents the truth value of the existence of a 1-1 rela-
tion from (n + 1) to n. By adding the first set of new clauses, the relation is
forced to be onto. By adding the second set, it is forced to be a function. Thus
the main proof in this paper that ~SPHP, shows that there is no 1-1 onto func-
tion from (n + 1) to n.

The variables P;; may be thought of as the edges in a complete bipartite
graph with the pigeon vertices on one side and the hole vertices on the other. This
new problem is termed “symmetric” because the constraint clauses are now the
same for both sets of vertices. Ajtai [2] defines a closely related problem, PAR,,,
which is based, in a similar fashion, on a completely connected graph. PAR,
represents the truth value of the existence of a perfect matching on a set with an
odd number of elements. Ajtai shows that this formulation of the parity prin-
ciple is, in some sense, stronger than the pigeonhole principle. The proof which
follows of ~SPHP, works equally as well to show - PAR,,.

2 Lemmas In 1979, Cook and Reckhow [5] showed that any Frege system
is polynomial equivalent to any other. With this in mind, the Frege system cho-
sen for this proof provides a rich set of connectives, namely — (not), A (and),
v (or), — (implication), and @ (parity). The total number of symbols appearing
in the proof provides the measure of the size.

For the sake of readability, the proof is presented here in extended Frege
form. We allow the introduction of new variables to represent formulas over
existing variables. However, the substitution is allowed only a constant number
of levels deep, namely two. The size analysis for the proof is done with the intro-
duced variables replaced by the formulas they represent.

The definition of SPHP, is derived by representing each edge in the bipar-
tite graph with a variable. The proof proceeds by considering the edges of the
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graph one at a time. For this reason, it is helpful to have an ordering on the
edges. The pairing function i, /) is defined to be (i — 1) * n + j, and the con-
vention is that the result is represented by /. Projection of the two constituents
out of the result is represented by subscripting, i.e., {i,jY =/and [, =i, [, = .
L is defined to be the maximum value for /, L = (n + 1) *n, and X is defined
to be the maximum number of vertices, X = 2n + 1. The abbreviation m,
m= (n+ 1), is introduced because the holes are typically labeled starting at 1;
however, they are labeled starting at m + 1 when they are used as vertices in the
bipartite graph since the pigeon vertices occupy the labels 1... (n + 1).

The first new variables introduced match one for one the vertices from the
graph. The truth value of the introduced variable indicates whether that vertex
has been “included” after considering a certain number of edges. (A pigeon is
included if it is placed in a hole; a hole is included if it has a pigeon placed in
it)Forl=x<XandO=</<L,

le = V P,:/'.

((x=i)or(x=j+m))and (i,jy=<l)

This may be thought of inductively as

FALSE 1=0
Vii=< V¥, 10, L #x, L+ m+*x
Vieiv Py, 1#0, (1=x)or (L, + m=X).

As this definition indicates, most of the V’s are unchanged as / is increased
by one. Only two of the variables are different: the two which represent verti-
ces on the ends of edge /.

The second set of new variables is introduced to represent the parity of the
vertices that are included. For0< /<L,

P= @ Vi
I=sx<X
P, is the parity of all of the vertices which have been included after having con-
sidered the first / edges.

Lemma 1 =1P,.

Proof: By definition, Po= Vi @ V3@ --- @ V§. Also by definition, V§ =
FALSE for all x. Therefore, if the Frege rule (FALSE @ FALSE @ A4) |4 is
applied [%J times, the string from the formal system representing P, is reduced
to FALSE and therefore = P,.

Lemma 2 SPHP, — P; .

Proof: Assume SPHP,. It is easy to derive (v;P;;) for any j or (v;P;) for
any i/ from SPHP, by using Frege rules for commutativity and the Frege rule
(A A B)| A. Depending on the value of x, the formula (v;P;;) or the formula
(vjPy) is exactly Vi. Thus SPHP, — Vf, 1 <= x < X. Now, the formulas which
have been derived are combined by using the Frege rule (4,B,C) |A @ B® C.
This is repeated |% | times until the formula V; @ Vi@ V; ® --- ® V{is
obtained. This is exactly the definition of P;. Therefore SPHP, — P; .
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Lemma3  Foranyl, 1<I!<L,SPHP,~ (=P, v -V{.,) and SPHP, -
(~ Py, v V™).
Proof: Assume SPHP,. It is easy to derive
(2P, v PL) A (P L,V OP) A A (PP, v P, yy)
from SPHP,. Restructuring this by using distributive Frege rules produces
(0P, v (0P APy AL A Py, y)
Using Frege rules for DeMorgan’s laws produces
(2P, v (P VP, v v P, yy)).
The second half of this disjunction inside the negation is exactly V/.,, thus
(=P, v VL)),

The proof of (=P, v — V,’EI"’) is exactly the same.

3 Theorem and Analysis
Theorem 1 - SPHP,,.
Proof: Assume SPHP,. By Lemma 2, P; is true. P; is by definition
Vievie - o v
By the inductive definition of V7, this is
Vi@V ® - @(VELVPLL)® - @ (VI VPLL).

In this case, L, + m = X; however, the steps that follow will work for any /.
By using commutative Frege rules for @, the two complicated terms may be
moved to the right. By Lemma 3 and distributive Frege rules for ® and A,
(mPr,p, V = V{L,) can be derived for one of these terms and (mPr,1, Vv
= VE2{™) for the other.

VIia@ Vi ® -+ @ (VELV Pr,) A (SPL, v VL))
® (VER™ v Pr,1,) A (AP, v V™).
By Frege rule (AvB)A (—Av B))|A® B,
Via®@ Vi ® - @ (VI @ Pryp,) @ (VLA™ @ Pr,1,).
B); Frege rule (A @ B@® B® C) | A @ C and by reusing the commutative Frege
rules,

Vi@V @ --@Vi,® - ®VE,

which is the definition of P;_,. These steps are repeated L more times to pro-
duce P;_,,P;_3,..., and eventually P,. However, by Lemma 1, P, is false.

SPHP, is O(n3). Writing out P, has 2n + 1 V§’s, each of which has n or
n + 1 variables. The widest line includes P,,SPHP, written twice, (= Pr,., v
=ViL), and (P, v 7 VE21™). Thus the widest line is only O(n?).
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The application of Lemma 3 in each stage of the main proof required O(n)
lines. This is repeated for each of the edges, or O(n?) times. Thus the proof has
O(n?) lines. The final size is O(n®). Since the representation of the problem,
SPHP,, is O(n?), the proof is actually quadratic as a function of the size of the
input formula.

4 Conclusions By adding clauses to the pigeonhole principle, we produce a
formula which expresses the fact that there is no 1-1 onto function from (n + 1)
to n. Because there are more constraints, this new formula is theoretically easier
to prove. However, it is interesting that we are able to do away with all of the
complications incurred by using “less than” in a propositional proof. Instead,
we use “parity” to get a simpler proof which is of size O(n°), which is quadratic
in the size of the input.

Unlike the pigeonhole principle and Ajtai’s parity principle [2], the symmet-
ric pigeonhole principle is not “minimally inconsistent.” It is possible to prove
- SPHP, without using every original clause (use Buss’s proof in [4]). However,
for the proof presented here, every original clause is required. In order to adapt
this proof to the standard pigeonhole principle, it would be necessary to first
derive the additional two sets of constraint clauses. Although this is possible, it
is not obviously easier than simply proving - PHP,. The lower bound result on
the depth of any polynomial Frege proof of the pigeonhole principle found in
[3] will work for the symmetric pigeonhole principle.
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