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Minimal Doxastic Logic: Probabilistic
and Other Completeness Theorems
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Abstract The propositional doxastic logics investigated here are minimal
in the sense that they make very limited claims about what holds good of
rational or justified belief on the basis of the meaning of those terms. Indeed
some of the logics allow for the truth of total scepticism, the view that there
are no rational or justified beliefs. The logics are subject to constraints such
as that any doxastic logic must be believable in its own terms and that any
proposition which must, according to a doxastic logic, be believed (not be-
lieved) must itself be a theorem of (be refuted by) the logic. Two techniques
are used to establish completeness, one employing possible-worlds models in
which there may be several or no accessibility relations, the other using prob-
ability distributions and a maximal-probability conception of belief.

0 Introduction The “minimal” of the title signals a distrust of doxastic log-
ics, logics of belief, that generate what might better be thought of as substantial
theories of belief. There are two sources of this distrust. First, on an objectiv-
ist reading, the logic of justified belief, which ought to contain no more than the
uncontroversial beginnings of an analysis of justified belief, should not give rise
to theorems that run counter to coherent philosophical theses concerning the jus-
tifiability or otherwise of our beliefs. Second, on a subjectivist reading, the logic
of rationally held beliefs ought not to ascribe whole classes of at best implicit
beliefs to a rational agent, especially beliefs about beliefs that would in effect
impute a great deal of self-knowledge, for it is by no means clear that even an
ideally rational agent’s beliefs are or ought to be transparent to the agent. This
is especially so on the model of what it is to hold a belief that I shall adopt,
namely Robert Stalnaker’s ‘pragmatic’ conception of beliefs as conditional dis-
positions to action ([14], pp. 59-77). (It is a common-place that beliefs are related
to action.)

The logics — propositional logics —to be investigated below are, therefore,
weak. But weakness has its own strengths. One desideratum for weak doxastic
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logics is that, since they do present a minimal analysis of either justified belief
or the beliefs of an ideally rational agent, their theorems ought, other things
being equal, to be justifiedly/rationally believed on the grounds that they offer
little more than an explication or formalization of the concept of justified/ratio-
nal belief. Certainly, if there is such an animal as a doxastic logic that exists in
the common ground between rival epistemologies then there are theses concern-
ing justified/rational belief that, other things being equal, one is justified in
believing and/or which a rational individual rationally believes. The qualifica-
tion ‘other things being equal’ is necessary because we do not at this stage wish
to rule out the possibility of total scepticism, i.e., the thesis that no beliefs are
justified/rational.

On the technical plane one of the main novelties introduced is the use of
probability theory in supplying soundness and completeness theorems for dox-
astic logics, notably where higher-order beliefs are involved. Of prime concern
is the definition of belief in terms of maximal probability. This is the notion
that, in its simplest form, Wolfgang Lenzen calls both strong belief and con-
viction ([9], pp. 35-41). The idea of employing a probabilistic criterion for the
acceptance of the conclusions of inductive inferences or, more straightforwardly,
of defining unqualified belief in probabilistic terms, is hardly novel. A number
of authors, for diverse reasons, have discussed a high-probability criterion. I have
elsewhere given some reasons for preferring the maximal-probability definition
to its high-probability analogue (see [12]). Suffice it to say here that whatever
the merits, real or imagined, of the high-probability definition/criterion only
belief as maximal probability is considered in this paper.

Other completeness theorems are given using what I call weak standard mod-
els, possible-worlds models in which there may be several accessibility relations
or none at all. The weak standard models and the probabilistic models are to a
limited extent complementary, accommodating different weaknesses in the dox-
astic logics considered. Beyond a certain, still weak, logic, however, both types
of model can serve.

For reasons of convenience as much as doctrine, I shall take the objects of
belief to be propositions, not sentences of a language. For doctrinal support I
would call upon two authors who have researched the dynamics of belief (in con-
trast to the present topic which might be termed the statics of belief). Accord-
ing to Peter Forrest:

[A] person’s having a doxastic attitude is to be analyzed as a relation between
the person and the object of belief, which I call a proposition. I use the term
proposition here [...] in its Cambridge sense, that is, in the way that Moore,
Russell and Johnson used it. In this Cambridge sense a proposition just is the
object of the belief, whatever the object turns out to be. [...] [Plropositions
have sentence-/ike structure. ([3], p. 11)

While Peter Gardenfors affirms:

The proper objects of logic are not sentences but the contents of sentences, that
is, propositions. ([4), p. 131)

Throughout what follows, B = (B, &, v, ) is a boolean algebra of propo-
sitions formed from atomic propositions by means of the logical connectives
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&, v, 7; > and = are understood to be defined in the usual ways, namely,
a-b=g avbanda=b =4 (a— b) & (b— a). T is the tautologous prop-
osition, 1 the absurd proposition. A¢(B) designates the set of atomic proposi-
tions belonging to B. B contains, for every proposition a, a proposition Ba,
formed using the belief operator B. Propositions in B = (B, &, v, ) are iden-
tified under equivalence in classical propositional logic; propositions of the form
Ba are treated as atomic insofar as the structure of B is concerned (but they are
not elements of A¢(B)). Unsurprisingly given this foundation, all the logics con-
sidered below are extensions of classical propositional logic, designated PL.!

Whereas it is commonly assumed that the sentences of a modal propositional
language are countably infinite in number (see, e.g., Chellas [2], pp. 25-7; cf.
[31, pp. 23, 30), we can, at least some of the time and at the price of added com-
plexity, refrain from any assumption concerning the cardinality of the class of
propositions, thought by some authors to be very large — ‘beth-three, on the low-
est reasonable estimate’ (Lewis [11], p. 107). The added complexity enters because
some probabilistic results are not known to generalize to the uncountable case.
The completeness theorems of Sections 1 and 3 place no limit on the number of
propositions; in Section 4 we assume countability.

The second innovation comes with the deployment of two adequacy crite-
ria for doxastic logics —in addition to the desideratum stated above —whose com-
bined effect narrows the class of acceptable doxastic logics considerably. The first
is that any acceptable doxastic logic ought to be believable in its own terms. That
is, it should neither be the case that one cannot justifiedly believe all theorems
of an uncontroversial preliminary analysis of justified belief nor that an ideally
rational agent cannot rationally believe all theorems of an analysis of the prin-
ciples governing rational belief. For if we find such an analysis acceptable then
we provably cannot justifiedly believe the results of our enquiry and/or we are
provably not ideally rational. Formally, this requirement amounts to the ade-
quacy condition that a doxastic logic is acceptable only if the logic remains con-
sistent when augmented by the G6del rule of necessitation, denoted RN below:

if a is a theorem then so is Ba.

The second adequacy condition is, perhaps, more controversial. Associated
with any doxastic logic DL there is what I shall call the believed doxastic logic.
This is the set of propositions {a € B: Ba is a theorem of DL}. These are the
propositions that one is justified in believing and/or that a rational individual
must rationally believe purely on the basis of the analysis of justified/rational
belief presented by DL. The first clause of the second adequacy condition, the
condition of positive accuracy, is that the believed doxastic logic associated with
an acceptable doxastic logic must be contained in the logic, i.e.,

{a € B: bpy, Ba} < {a € B: Ipy, a}.

If this condition is not satisfied then even a supposedly minimal doxastic logic
yields justified beliefs that it does not justify and/or commits a rational indi-
vidual to believing propositions that are, in the logic’s own terms, at best acci-
dentally true, i.e., they are not a priori truths. Reflection on this fact, if it is
possible, would lead to the conclusion that the logic in question is lacking; it
would be regarded as incomplete. (And what does it say about our rationality
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if we knowingly endorse a positively inaccurate doxastic logic as the logic of
justified/rational belief?)
Analogous to positive accuracy there is negative accuracy:

{a € B: bp;, “Ba) S {a € B: bpp, —a}.

it is similarly justified. A doxastic logic that is both positively and negatively
accurate will be called accurate.

1 Total scepticism and a minimal doxastic logic On the view of beliefs as
conditional dispositions to action two elementary principles emerge immediately:
the rule RL and the axiom schema M.?

(RL) if a = b is a theorem of PL then Ba = Bb is a theorem;
(M) B(a&b)— (Ba & Bb).

One cannot be disposed to act as if a conjunction is true without being disposed
to act as if its conjuncts are true, and no distinction in dispositions to act can
be drawn between logically equivalent propositions (cf. [14], pp. 82-3). These
considerations give us the minimal doxastic logic that I shall denote by LM: the
extension of PL with rule RL and axiom schema M. Equivalently, LM can be
formalized by appending to PL just this rule:

if a — b is a theorem of PL then Ba — Bb is a theorem.

Algebraic soundness and completeness proofs for LM are readily produced
by means of an obvious generalization of Chellas’s algebraic models ([2],
pp. 212-3), which are in turn a generalization of Hughes and Cresswell’s
T-algebras ([8], p. 315-8).

Definition 1.1 The sextuple <B’, A, V,°, ¥, F) is an augmented boolean alge-
bra when B’ = {B’, A, v,®) is a boolean algebra, Fis a filter in B’, and the func-
tion *: B’ — B’ satisfies the condition:

when @ <’ b then (*a) °v *b € F,
<’ being the partial order on B’ defined by:
va,be B [aL' biffanb=a].

1p and 0p- are, respectively, the maximal and minimal elements of B’, under
this partial order. F is a filter in B’ just in case F is non-empty and:

0p & F;
va,beB [ae€Fanda<'b=beEF];
va,be B [a€Fandbe F=anb€F].

Definition 1.2 A valuation V on B, the algebra of propositions, is a homo-
morphism of boolean algebras from B to an augmented boolean algebra B’ =
(B, A, V,¢, %, F) satisfying the additional constraint that

V(Ba) = *V(a).

It can be shown that LM is sound and complete relative to augmented bool-
ean algebras in the sense that under every valuation ¥ mapping B to an aug-
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mented boolean algebra B’ = (B’, A, V,°,*, F) the image of every theorem of
LM belongs to F and there is a characteristic augmented boolean algebra B’ =
(B, A, V,5,* F) and a valuation V such that V(a) € F just in case a is a theo-
rem of LM. This result, however, has no immediate intuitive significance. What
does it tell us about the logic LM as a logic of belief? Nothing, to all appearances.
But perhaps this is no great loss, for LM is manifestly too weak. Why? Because
it contains only part of the concept of justified/rational belief, and if what it
maintains has indeed this lowly status it ought to do no more than lay bare what
is implicit in the meaning of the terms justified and/or rational belief. Hence,
if, according to LM, the propositions a and b are equivalent, then this is so solely
in virtue of the concept of justified/rational belief and any two propositions
about belief that differ only in that one contains ¢ and the other b ought to be
shown to be equivalent in DL, our minimal doxastic logic. This would be accom-
plished by the rule:

if a = b is a theorem of LM then Ba = Bb is a theorem of DL.

However, the same can be said of any propositions shown to be equivalent in
this logic. Closing off the regress leads us to the rule:

(RE) if @ = b is a theorem then Ba = Bb is a theorem.

Following Chellas ([2]), the logic that extends PL by adding the rule RE and the
axiom schema M is called EM. Analogously to LM it can be formalized by add-
ing to PL the single rule:

(RM) if a— b is a theorem then Ba — Bb is a theorem.

We obtain a natural possible-worlds semantics for EM when we marry two
sets of ideas. Jaakko Hintikka proposed possible-worlds semantics for belief in
which, given a single accessibility relation, world w, is possible relative to/acces-
sible from world w, if and only if the propositions true in w; are jointly com-
patible with all beliefs held in w,, i.e., with the totality of propositions & such
that Ba is true in w,. Effectively, then, w, is a world that an agent who held the
beliefs of w, would consider doxastically possible, i.e., not contrary to her
beliefs. Viewed this way, what is remarkable about the construction is that the
agent deploys a// of her beliefs. It is precisely this feature that Stalnaker’s anal-
ysis of belief challenges; for, calling what Hintikka models a belief state, Stal-
naker maintains that in order to describe the totality of an agent’s beliefs we may
require not one but several belief states. In other words, the Hintikka-model
imposes an unargued unity on beliefs. As previously noted, beliefs are, Stalnaker
supposes, conditional dispositions to action; so viewed they depend on contexts
for their manifestation; according to Stalnaker, an individual agent may simul-
taneously be in incompatible belief states, the different belief states being used
to explain her behavior in different contexts. (For more details see [14], p. 83.)
The first step in providing models for EM —a natural generalization of the
Hintikka-model to encompass Stalnaker’s view of belief —is to allow a plural-
ity, 3R, of accessibility relations.

Transparently, EM does not entail any theorems of the form Ba; hence our
semantics for it must make provision for worlds in which no beliefs are held. This
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is the function of the ‘queer’ worlds (cf. [2], p. 75) in models for EM, worlds in
which

vs € TVR € R [not (Rs].

Definition 1.3 The ordered triple (7, R, u) is an EM-model if and only if T
is a non-empty set, R is a non-empty set of binary relations defined on 7 (i.e.,
VR € ® [R € T?]) and u is a function from elements of 7—worlds—and
atomic propositions to truth-values (i.e., u: T X At(B) — {0,1}). We define the
set Q=({te€ T:vs€ TVR € R [not tRs]}, where ¢Rs abbreviates {#,s) € R.

Given an EM-model (T, R, u), the function w: T X B— {0,1} is defined by
these conditions:
(i) va € At(B) [w:(a) = us(a)l;
i) w,(—a) =1— w(a);
(iii) w;(a & b) = min{w,(a),w,(b)};
(iv) w,(av b) = max{w,(a),w,(b)};
) w,(Ba)=1iff t¢ Qand IRE R Vs E T [{Rs = w,(a) = 1].

Lemma 1.4 (Soundness of EM) If a is a theorem of EM then w;(a) = 1 for
all t € T in the EM-model (T, R,u).

Proof: Proof proceeds by induction on formal derivations in EM. Obviously,
if a is a tautology then w,(a) = 1, and if w,(a;) = w,(a2) =...= wi(a,) =1
and b is a consequence of a;,a,,...,a, in PL then w, (b) = 1.

Ifvie Tw,(a— b)=1then vt € T [w,(a) < w,(b)]. Hence, when 3R €
R VsE T [tRs = ws(a) = 1] it follows that IR € R Vs € T [tRs = wy(b) =11,
and so, for all t € T — Q, w,(Ba) =1 only if w,(Bb) =1, i.e., w,(Ba— Bb) = 1.
On the other hand, v¢ € Q, w,(Ba) = 0 and so w,(Ba — Bb) = 1. Hence, Vi €
T w,(Ba — Bb) = 1.

Definition 1.5 Let F= {a € B: ais a theorem of EM}. Let T={U < B: Uis
an ultrafilter and FS U}, Q={U € T:BT & U}. For each a € B, define the
binary relation R, by:

U,R, U, iff U, ¢ Q and [Ba & U, or a € U,].
R ={R,:a € B}. We define u: T x At(B) — {0,1} by:
uy(a) =1iffae U.
The triple (T, %R, u) thus defined is called the canonical EM-model.>

In any boolean algebra B’ = (B, A, V,©), if Fis a filter in B’ and a & F then
there is an ultrafilter U in B’ such that F < U and a° € U. (See Bell and
Machover [1], Ch. 4, Problem 3.14.)

Lemma 1.6 (Canonical EM-Model Lemma) The canonical EM-model is an
EM-model. Furthermore, Va € B [wy(a) =1 iffa € U].

Proof: From the definition of R, it follows immediately that if U € Q then
vU’ € T Vva € B [not UR,U’]. Conversely, if U & Q then BT € U and so
UR, U, forall U’ € Tsince T € F.

By the definition of the canonical EM-model we have that when a is an
atomic proposition wy (a) = 1 iff @ € U. Proof for all propositions proceeds by
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induction on their complexity. The only interesting case is when a is of the form
Bb. Then we have:

@) UeQ:AsUEQ, wy(Bb) =0. As EM extends PL, b~ T € F; by RM,
Bbe Uonlyif BTeU;asUe Q,BT ¢ U.SoBb & U.

(i) U&€ Q: If Bbe Uthen vU’' € T [UR,U’ iff b€ U], i.e., by the induc-
tion hypothesis, VU’ € T [UR, U’ iff wy-(b) = 1]. But then 3R e R VU’ €
T [URU’ = wy(b) = 1], i.e., wy(Bb) = 1. If Bb & U and Bc € U then c —»
b & F and so, for some U’ € T, ¢ & —b € U". By the induction hypothesis, we
have UR.U’ and wy-(b) =0. AsBb ¢ U, T — b & F and so, for some U’ € T,
—b € U". By the induction hypothesis we have wy.(b) = 0; also UR.U’ and
wy-(b) = 0 when Bc ¢ U. Consequently, VR € % 3U’ € T [URU’ and
wy (b) =0], i.e., wy(Bb) = 0.

Theorem 1.7 (Completeness of EM) a is a theorem of EM if and only if
wi(a) =1 for all t € T in every EM-model (T, R, u).

Proof: This is immediate from Lemmas 1.4 and 1.6.

Consider again the queer worlds in an EM-model, the worlds in which no
beliefs are justifiedly/rationally held. They are, then, worlds in which total scep-
ticism is true. As far as EM-models are concerned, queer worlds are accessible
from worlds in which beliefs are held. It is, therefore, quite feasible in an EM-
model that an agent should justifiedly/rationally believe that there are no jus-
tified /rational beliefs, the state of affairs represented by the proposition B~ BT.
But what we should seek to model is not total scepticism as a thesis perhaps
believed by an agent and in any case no more than a doxastic possibility among
others, but rather justified/rational belief understood in such a way that no deci-
sion is made between two “global” views—namely, total scepticism (which
declares that there are no justified/rational beliefs) and its denial.

What I shall call weak standard models achieve this synthesis. The queer
worlds of EM-worlds in which total scepticism reigns become instead the spe-
cial case, added to EM-models, that allows %, the class of accessibility relations,
to be empty.

Definition 1.8 The ordered triple (T,%R, u) is a weak standard model, hence-
forth a w-model, if and only if T is a non-empty set, % is a set, possibly empty,
of binary relations defined on 7, and u is a function from worlds and atomic
propositions to truth-values, i.e., u: T x At(B) — {0,1}.

Given a w-model (T,R,u) the function w: T X B — {0,1} is defined by these

conditions:
(i) va € At(B) [w:(a) = u,(a)l;

(i) w,(—a) =1— wi(a);

(ii)) w,(a & b) = min{w;,(a), w,(d)};

@iv) w,(av b) = max{w,(a),w,(b)};

(V) w,(Ba) =1iff IRER Vs T [tRs = wg(a) = 1].
The doxastic logic that is sound and complete with respect to weak standard
models is the logic EMV, the extension of EM obtained by adding the axiom
schema:

(V) Ba—>B(a& BT).
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This axiom schema has little intuitive motivation. Its significance will become
clearer in the light of the soundness and completeness theorems for EMV and
for some of the logics in Section 4.4

Definition 1.9 The ordered triple {7, N, u) is a minimal model if and only if
T is a non-empty set, N is a function that associates elements of 7 with sets of
subsets of 7, i.e., N: T— ®(®(T)), subject to the condition that if X € N, and
X € Ythen Y € N,, and u is as in the definition of w-models.

Given a minimal model {7, N, u) the map m: T x B — {0,1} is defined by
these conditions:
() va € At(B) [m,(a) = u,(a)l;
(i) m,(—na) =1—m(a);
(il m,(a & b) = min{m,(a),m,(b)};
(iv) m;(av b) = max{m,(a),m,(b)};
v) m,(Ba) =1iff {s€ T:my(a) =1} €EN,.

Lemma 1.10 (Correspondence Lemma) To every w-model (T,R,u) there cor-
responds a minimal model {T, N, u), point-wise equivalent throughout T, in which
either all the N,’s are empty or none are. And to every minimal model {T,N, u)
in which either all the N,’s are empty or none are there corresponds a w-model
(T,R,u) point-wise equivalent throughout T.

Proof: Given (T,R,u) define N by:
N,={X<ST:3IRe R [{s€ T:(Rs} < X1]}.

Notethatif R = D thenvt€ T[N, = F]andif R # D thenvi€ T [N, + J1],
for then T € N,. We show by induction on the complexity of propositions that
(T,R,u) and {T,N,u) are point-wise equivalent. The only interesting case is
when a is of the form Bb:

w,(Bb) =1iff IRER VsE T [tRs = w,(b) = 1]
iff IRER [{s€ T:tRs} S (se€ T:wy(b) =1}]
iff {s € T: w,(b) = 1} € N;, by definition of N,,
iff {s € T: my(b) = 1} € N,, by induction hypothesis,
iff m,(Bb) = 1.

Given (T, N, u) in which all N,’s are empty let ® = & and we are done.
Otherwise, when no », is empty, define Ry, for each X < T, by:

tRys iff [X& N,or s € X].

R = {Ry:X € T}. We show by induction on the complexity of propositions
that (7, N, u) and (T,R,u) are point-wise equivalent. Again, the only interesting
case is when a is of the form Bb. Assume, first, that m,(Bb) =1 and let X =
{s€ T:my(b)=1},s0 XEN,. As X € N,, we have, for any s € T, that {R x5 iff
s € X iff my(b) = 1 iff, by the induction hypothesis, w,(b) = 1. Hence 3R €
RvVse T[tRs= wy(b) =1],i.e., w,(Bb) = 1. Assume, next, that m,(Bb) =0, so
that vXEN,3s€ T [s€ Xand my(b) =0]. AsN,+ @,3XE€ N;andIse T
[my(b) =0]. AlsovX € N,3s€ T [tRys and my(b) = 0]. Now, suppose that
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Y& N,. As 3s € T [my(b) = 0] we have that 3s € T [tRys and m,(b) = 0].
Consequently, for every subset X of T, 3s € T [tRxs and m,(b) = 0]. By the
definition of % and the induction hypothesis this yields w,(Bb) =0, i.e., VR €
R 3s € T [tRs and w,(b) = 0].

Definition 1.11 A minimal model {7, NV, u) is a v-model if and only if vX ©
TvteT[XEN, = XN{seT:N,+ D} EN,].

The minimal models corresponding to weak standard models are all v-models.

Lemma 1.12 (Splitting Lemma) Given the v-model {T,N,u) let E={s€ T:
N,=0},u!=ul (T—E),u>=u'l E,N*=N 1| Eand let N! be defined by:
forallte T—E,X€ N} iff XUE€EN,. Then, provided T+ E,{T—E,N',u')
is @ minimal model in which all N}’s are non-empty, point-wise equivalent to
(T,N,u) in T — E; and, provided E + @, {E,N?,u?) is a minimal model, in
which all N?’s are empty, point-wise equivalent to {T,N,u) in E.

Proof: Again the proof is by induction on the complexity of propositions; again
the only interesting case is when « is of the form Bb. Obviously, for ¢ € E we
have that vb € B [m,Z(Bb) = m,(Bb) =0]. For t € T — E we have:

m/(Bb) = 1iff (s€ T— E:m}(b) =1} € N}
iff {s€ T — E:ml(b) = 1} U E € N,, by definition of N,
iff {s€ T — E:my(b) =1} U E € N,, by induction hypothesis,
iff {s€ T:my(b) =1} UE€EN,
iff {s € T: my(b) =1} — E € N,, by definition of v-model,
iff {s € T: my(b) = 1} € N,, by definition of v-model
iff m,(Bb) = 1.

Lemma 1.13 (Soundness of EMYV) If a is a theorem of EMV then m;(a) =1
for all t € T in the v-model {T,N,u).

Proof: Proof proceeds by induction on formal derivations in EMYV. Obviously,
if ¢ is a tautology then m, (a) = 1, and if m,(a;) = m;(a) =...=m(a,) =1
and b is a consequence of a;,4a,,...,a, in PL then m,(b) = 1.

Next we show m,(BT)=1iff N;# D. {s€T:my(T)=1}=T;ifaXcT
[X € N;] then T € N,, by the definition of minimal models, so m,(BT) =1;
but if Ny, = & then T & N;, and m,(BT) = 0. Suppose that m,(Ba) = 1; then
{s € T:ms(a) =1} € N;. As {(T,N,u) is a v-model, {s € T:ms(a) =1} N
{seT:N,+ D} EN,.

{seT:mg(a)=1}N{sE€ T:N; + I}
={se€T:my(a)=1}N{s€T:m,(BT) =1}
={s€ T:my(a) =1and m;(BT) = 1}
={seT:m(a& BT)=1].
Hence m,(B(a & BT)) = 1. Thus, vi€ T m;,(Ba— B(a & BT)) = 1.
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Lastly, suppose that vt € T m,(a— b) = 1. Then vt € T [m,(a) < m,(D)].
Hence {s € T:my(a) =1} € {s € T:my(b) = 1}, and so, for all t € T,
m;(Ba) = 1 only if m,(Bb) = 1. L.e., m,(Ba— Bb) =1 forallt € T.

Definition 1.14 Let F= {a € B: ais a theorem of EMV}. Let T= {U < B:
Uis an ultrafilter and F< U}. Foreacha€ B, let [a] ={UE T:a€ U}. We
define the function N: T — ®(®(T)) by:

VXCS T[X€E Nyiff 3a€ B ([a] € X and Ba € U)].

We define u: T X At(B) — {0,1} by: uy(a) =1 iff a € U. The triple (T, N, u)
thus defined is the canonical EMV-model.

Lemma 1.15 (Canonical EMV-Model Lemma) The canonical EMV-model
is a v-model. Furthermore, in the canonical EMV-model, Va € B [my(a) =1

iffac U].

Proof: Given the definition of Ny it follows immediately that if X € Ny and
X S Y then Y € Ny, so the canonical EMV-model is a minimal model. It
remains to show that it is a v-model. First, forall U€ T, BT € Uiff3la € B
[Ba € U] iff Ny # &. Hence [BT] = {U € T: Ny # ). Next, suppose that
X € Ny, for some X C T. Then, for somea € B, [a] S Xand Bac U. As FE U,
Ba—> B(a& BT)e U, whence [a & BT] €ENy. [a& BT] =[al N [BT] =
[elN{UET:Ny+ J},andso XN{UE T:Ny # D} € Ny.

By the definition of the canonical EMV-model we have that when a is an
atomic proposition my (a) = 1 iff a € U. Proof for all propositions proceeds by
induction on their complexity. As usual, the only interesting case is when a is of
the form Bb. Then we have:

my(Bb) = 1iff (U’ € T:my (b)) =1} € Ny
iff (U’ € T:b € U’} € Ny, by induction hypothesis,
ifficeB ([c]cs{U’'€T:be U’} and Bc € U)
iff 3c € B ([c] < [b] and Bc € U)
iff 3c€ B ([c - b] = T and Bc € U)
iff ace B [c— b € Fand Bc € U]
iff Bb € U, as RM holds in EMV.

Theorem 1.16 (Soundness and completeness of EMYV) a is a theorem of EMV
iff a is true in every world in every weak standard model.

Proof: If ais false in some world in a weak standard model then, by the Cor-
respondence Lemma (Lemma 1.10) and the Soundness Lemma (Lemma 1.13),
a is not a theorem of EMYV. On the other hand, if a is not a theorem of EMV
then, by the Ultrafilter Theorem and the fact that the theorems of EMV form
a filter in B, there is an ultrafilter U in B such that U contains all theorems of
EMY and a ¢ U. U belongs to the canonical EMV-model and, by Lemma 1.15,
my(a) =0. As, again by Lemma 1.15, the canonical EMV-model is a v-model,
we have, by the Soundness Lemma (Lemma 1.13), the Splitting Lemma (Lemma
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1.12), and the Correspondence Lemma (Lemma 1.10), in that order, that there
is a world in a weak standard model at which a is false.

As the proof of the Correspondence Lemma (Lemma 1.10) shows, v-models in
which N, = &, for all ¢ € T, correspond to w-models in which ® = &; v-models
in which N, # @, for all f € T, correspond to w-models in which i # . As we
know from the proof of the soundness of EMV (Lemma 1.13), in any v-model
(T,N,u), w,(BT) = 1iff N, +# . Hence the logic EMN, obtained by adding
the axiom

(N) BT

to EM, is sound when ® # . And the logic EMN,, obtained by adding the
axiom

(No) BT

to EM, is sound when ® = @& In fact, these logics are not only sound but com-
plete in the relevant circumstances. If this is not obvious in the case of EMN see
Theorems 9.8, 9.10, and 9.13 of [2]. It is obvious in the case of EMN,.. EMN,
is the logic of total scepticism.® EMN is the doxastic logic that affirms the exis-
tence of justified/rational beliefs. The theorems of EMV are the propositions that
are theorems of both EMN and EMN,. EMYV allows that there may be no jus-
tified/rational beliefs but unlike EM it does not treat the issue of whether there
are or not as doxastically contingent. An argument in favor of this stance is that,
in the precise sense alluded to previously, EMN_, is not believable, i.e., the logic
obtained by adding RN to EMN, is inconsistent. Consequently, justified/ratio-
nal belief in total scepticism is self-defeating, for justified/rational belief in total
scepticism contradicts the thesis believed. Any rational agent whose powers of
reasoning encompass elementary logic and the meaning of justified/rational
belief should recognize the absurdity of justified/rational belief in total scepti-
cism. (Recall that in a bid for consistency Pyrrhonian sceptics asserted that they
knew nothing, not even that they knew nothing.)

While it is one thing for EMN, to be the logic of justified/rational belief and
another for that thesis to be justifiedly/rationally believed, EM does nothing to
bring out the oddity of the latter belief. On the other hand, EMV does, for it
yields a demonstration that anyone who justifiedly/rationally believes total scep-
ticism justifiedly/rationally believes anything:

1. B-BT - B(~BT & BT) \%
2. ("BT &BT)—>a PL
3. B(WBT & BT)— Ba 2 RM
4. B-BT - Ba 1,3PL

This is about as strong a condemnation of justified/rational belief in total scep-
ticism as we can hope for, for as yet we have done nothing to outlaw absurd
beliefs. (In LM, and hence in any extension, the absurd proposition is justifiedly/
rationally believed if and only if every proposition is.)

Stalnaker’s pragmatic picture of belief does give us good grounds to reject
the possibility of belief in absurdities (cf. [14], p. 83). Lenzen credits R. L. Putrill
with the observation:
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if ‘belief’ is [. . .] taken to imply that the person in question is “disposed to act
as if @ were true” then [. . .] [a] behaviour that could count as establishing some-
one’s disposition to act as if @ were both true and false hardly is imaginable. ([9],
p. 51).

This observation would license the addition of

P) -BT

as an axiom of minimal doxastic logic. It is not difficult to show — proofs are
omitted —that the logic EMVP is complete with respect to all w-models that sat-
isfy the further condition

for all R € R, R is serial, i.e., VI € T 3s € T [(Rs].

(The corresponding condition on v-models is that, forallt € T, & ¢ N,.) Pis
a theorem of EMN,. The theorems of EMVP are those propositions that are
theorems of EMNP and EMN..

Weak standard models in which % contains at most one element validate the
axiom schema:

(C) (Ba & Bb)— B(a&b).

When % is a singleton we get the logic EMNC, better known as K, and the mod-
els are standard. As standardly presented, K extends PL by adding the axiom
schema

(K) B(a—b)— (Ba— Bb)

and the Godel necessitation rule RN. EMNCP is better known as KD, a logic to
which we shall return. K and C are interderivable in LM, and hence in any of
its extensions; P and D are interderivable in any extension of LM that contains
C. D is the schema

(D) Ba- -B-a.

One point that is of methodological significance for Stalnaker’s conception
of belief is that although R’s being a singleton is sufficient for C to hold good
of an agent’s justified/rational beliefs it is by no means necessary: there are weak
standard models in which C holds and in which % is not a singleton. This is true
of the canonical weak standard model for EMNC.

Definition 1.17 Let F= {a € B: ais a theorem of EMNC]}. Let T= {U < B:
U is an ultrafilter and F € U}. For each a € B, let R, be the binary relation on
T? defined by:

U,R, U, iff [Ba & U, or a € Us].

Let ® = {R,:a € B} and define u: T X At(B) — {0,1} by: uy(a) =1iff a € U.
The triple (7, R, u) thus defined is the canonical EMNC-model.

Theorem 1.18 (Soundness and completeness of EMNC) a is a theorem of
EMNC if and only if vU € T [a € U] in the canonical EMNC-model {T,R,u).

Proof: The canonical EMNC-model is clearly a w-model and, as ® + &, every
theorem of EMN is true at every world in it. Proof that wy(a) = 1 iffa € U,
for all @ € B and all U € T follows the proof of the canonical EM-model lemma
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(Lemma 1.6). It follows immediately that C holds at every world in the canon-
ical EMNC-model, since every “world” U extends F, the set of theorems of
EMNC. This establishes soundness (‘only if’). For completeness (‘if’), when a is
not a theorem of EMNC there is, as in the proof of Theorem 1.16, an ultrafil-
ter Uin B such that FS Uand a & U.

In a weak standard model the elements of 9 correspond to distinct belief
states in Stalnaker’s sense. It is readily seen that in the canonical EMNC-model
(T,R,u), R is not a singleton. (The same holds good of the similarly defined
canonical EMNPC-model, so nothing hangs on the use of EMNC here.) From
this we may infer that there is no proposition nor set of propositions that
expresses the condition that the totality of an agent’s justified/rationally held
beliefs constitute a single belief state. On the other hand, when C is satisfied they
can be represented as forming a single belief state. The upshot is that while the
number of belief states required for the representation of an agent’s justi-
fied/rationally held beliefs may be bounded below, the latter impose no maxi-
mum. It is, therefore, appropriate to speak of their representation and not,
strictly speaking, their description, for nothing intrinsic to the body of beliefs
fixes the number of belief states the agent is in.

2 Probabilistic and algebraic preliminaries

Definition 2.1 A probability distribution is a function P: B— [0,1], where
B is the domain of a boolean algebra B = (B, A, v,°), that satisfies the condi-
tions:
(i) vaeB[0=<P(a)<1];
() P(1p) =1;
(iii) va,b € B[if anb =0gthen P(avb) = P(a)+ P(b)].

Definition 2.2 A distribution-pair, assigning upper and lower probabilities,
is understood to be a pair of functions (P*, P,) such that P*: B — [0,1] and
P,:B— [0,1], where B is the domain of a boolean algebra B = (B, A, V,°), and
P* and P, satisfy these conditions:

(iv) Va € B [0 < P,(a) < P*(a) < 1];

(v) P.(1p) = 1;

(vi) Va,b € B [if a A b = 0g then P,(a) + P,(b) < P,(av b) < P*(a) +

P, (b) = P*(av b) < P*(a) + P*(b)].
Corresponding to any (point-valued) probability distribution P there is the dis-
tribution-pair (P, P).
Definition 2.3 Where D € E S B, B the domain of a boolean algebra
B=(B,A,Vv,,and D # &, D is a disjoint subset of Eiff va,be D [a# b=
anb¢E].
Definition 2.4 A non-empty subset S of a boolean algebra B = (B, A, V,°)
is an n-block when
@) 0z & S;
(ii) ifa€ Sand a < b, then b € S;
(iii) no disjoint subset of S contains more than » elements.

A filter is a 1-block.
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Lemma 2.5 If S is an n-block in B and D = {a,,...,a,} is a disjoint subset
of S then:

() vbeB[beS=>3a€D (anbeSl);

Q@) vbceBvYaeD[lanb,anceES=>an(bnac)€ES].

Proof:

(1) Proof is immediate from the fact that no disjoint subset of S can con-
tain more than n elements.

(2) Suppose that a; Ab € Sand a;Ac € Sbut a; A (bAac) & S. Then
(a;Ab) A (a;ac) & S. When i > 1 then, by (ii) in the definition of an n-block,
(aiAb)Aa; €S, as a;Ana; & S. Similarly, (a; Ac) Aa; & S for i > 1. Conse-
quently, {a1 A b, ajAc, a,,. .. ,a,} is a disjoint subset of S containing 7 + 1 ele-
ments, contradicting the definition of an n-block.

Lemma 2.6 (n-Block Representation Lemma) Every n-block in a boolean
algebra can be represented as the union of n or fewer filters in that algebra.

Proof: Let S be an n-block in B = (B, A, Vv,°). By condition (iii) in the defini-
tion of an n-block, no disjoint subset of S contains more than # elements. Let
the disjoint subset D = {ay,...,a,} be maximal in that no disjoint subset of S
contains more members. Then S is an m-block. For each i, 1 < i < m, define G;
by: G; = (b € B:a; Ab € S}. G; is afilter, for (i) 15 € G; as g; € §; (ii) as
ainN0g=05¢& S, 05 & G;; (i) if bEG;and b <ctheng;aAbE Sand a; Ab £
a;nc, soa;ac € S and hence c € Gy, (iv) if b,c € G;thena;Ab € Sand a;AcE S,
and so, by (2) of Lemma 2.5, a;,A (bAc) €8S, i.e., bac € G;. If b € G, then
ainbe Ssobe S, sincea;Ab<b. If be Sthen, by (1) of Lemma 2.5, a;,AbE S
for some i, 1 =i < m. Hence S = G, U G, U G,, and so S is indeed the union
of no more than 7 filters.

Definition 2.7 The distribution-pair (P*, P,) assigning upper and lower
probabilities to the elements of the boolean algebra B = (B, A, v,€) represents
the filter F in B just in case:

P.(a) =1iffa e F.
The probability distribution P: B — [0,1] represents the filter F just in case:
P(a) =1iffa € F.

Lemma 2.8’ (First Probability Representation Lemma) Let F be a filter in
the boolean algebra B = (B, A,Vv,). Then there is a distribution-pair that rep-
resents F. If B is countable there is a probability distribution that represents F.

Proof. Define the functions P* and P, by:
for all @ € B, P*(a) = 1 unless a® € F, in which case P*(a) = 0;
for all @ € B, P.(a) = 0 unless @ € F, in which case P,(a) = 1.

That P* and P, satisfy the axioms (iv)-(vi) for upper and lower probabilities is
readily shown. The only interesting item is the super- and sub-additivity prop-
erty and it follows easily when it is noted that at most one of @ and b can belong
to any filter when a A b = 0 and that if ¢° and b both belong to a filter then
a v b does not.
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When U is an ultrafilter, so that @ € U just in case a© ¢ U, and the distri-
bution pair {(P*, P, ) represents U then P* = P,, i.e., there is a two-valued prob-
ability distribution that represents U.

If B is countable then so too is the quotient algebra B/F determined by the
equivalence relation

a=pbiff (a°vb)A(avb®) eF.

B/F is countable, hence separable (i.e., contains a countable dense subset) and
so, by Theorem 2.5 of Horn and Tarski [7], there is a strictly positive probabil-
ity distribution P: B/F — [0,1] such that P([a]) = 1 iff [a] = 1p/F, Where [a]
is the equivalence class containing @. Defining P’: B— [0,1] by P’(a) = P([a])
yields the required probability distribution: P’(a) = 1 iff P([a]) = 1 iff [a] =
IQ/F iff a =F 1[_; iffa e F.

Countability is sufficient but not necessary for separability which, in turn,
is sufficient but not necessary for the existence of a strictly positive distribution
([71, p. 484). A condition that is necessary for the existence of a strictly positive
measure is that B\ {0} should contain no uncountable disjoint subset. (See Bell
and Machover [1], p. 141.) Horn and Tarski, writing in 1947, observe that ‘no
workable criteria (conditions that are both necessary and sufficient) for the exis-
tence of a strictly positive measure in an arbitrary Boolean algebra are known’
([71, p. 480).

Lemma 2.9 (Second Probability Representation Lemma) Let S be an n-block
in B =B, A,V,%), a countable boolean algebra. Then there is a family P of n
or fewer ( point-valued) probability distributions such that

ac SiffiP€P [P(a) =1].

Proof: By Lemma 2.6, as S is an n-block it can be represented as the union
G,U G, U...U G, of m filters in B, for some m, 1 < m < n. Since B is count-
able there is, by Lemma 2.8, a probability distribution P; representing G;,
l<i=m.LetPbetheset {P;:1<i<m}.Foralla€ B,ae Siff a € G, for
some i, | <i=<m,iff Pj(a) =1, forsomei, 1 <i=<m.

Definition 2.10 For each n > 1, the modal axiom schema C,, is a weak ana-
logue of C. It is:

(Cn) [(Bal &...& Ba,, & Bb) & &lsi<jsn —|B(a,‘ & aj)]
- (B(a; &b) v...v B(a, &D)).

Obviously, C can be thought of as C;.

Lemma 2.11 (Generic Completeness Lemma) Let F be the set of theorems of
DL, where DL is any consistent doxastic logic that contains LMNPC,, includ-
ing LMNPC, itself. F is a filter since DL extends classical propositional logic
and L & F. Let U be any ultrafilter in B that contains F and let S be the set
{a€ B:Bac U}. Then S is an n-block. If DL contains C then S is a filter.

Proof: S is an n-block, for (i) BT € U as LMNPC, contains N, so S # J;
(ii) as =B is a theorem of LMNPC,, BL ¢ U and L ¢ S; (iii) if a € S and
a<b,i.e.,a— bis atheorem of PL, then b € S as LMNPC, contains M and RL;
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(iv) C, ensures that no disjoint subset of S contains more than » members.
When n =1, i.e., when C, = C, Sis a 1-block, i.e., a filter.

3 Probabilistic completeness theorems The probabilistic result at the heart
of this section concerns the logic LMNPC. This is the logic with rule RL, axi-
oms N and P, and axiom schemas M and C. LMNPC is, of course, weaker than
EMNPC which we met briefly in Section 1.

Definition 3.1 A probability model, henceforth a p-model, comprises a pair
{u,P), where u is a function from atomic propositions to truth-values, i.e.,
u:At(B) - {0,1}, and P: B— [0,1] is a probability distribution.

Given a p-model {u, P) the function 7: B — {0,1} is defined by these conditions:

(i) vae At(B) [7(a) = u(a)l;

(i) 7(na)=1-1(a);

(iii) 7(a & b) = min{7(a),7(b)};

@iv) 7(av b) = max{r(a),7(b)};

) 7 (Ba) =1iff P(a) =1.
Definition 3.2 A weak probability model, henceforth a p*-model, comprises
a triple (u, P* P,), where u is a function from atomic propositions to truth-
values, i.e., u: At(B) — {0,1}, and the pair {(P*, P.), containing the functions
P*:B—[0,1] and P*: B — [0,1], is a distribution-pair.

Every probability model is a weak probability model.

Given a p*-model {u, P*, P,) the function 7: B — {0,1} is defined by these
conditions:

(i) va € At(B)[7(a) = u(a)l;

(i) 7(na) =1-1(a);

(iii) 7(a & b) = min{7(a),7(b)};

@iv) 7(av b) = max{r(a),7(b)};

(v) 7(Ba) = 1iff P,(a) = 1.
Lemma 3.3 (Soundness of LMNPC) If a is a theorem of LMNPC then
7(a) = 1 in every p*-model (u,P* P,).

Proof: Obviously, if a is a theorem of PL then 7(a¢) =1 and if 7(a;) =...=
7(a,) = 1 and b is entailed by a,,...,a, in PL then 7(b) = 1.

Let (P*, P,) be any distribution-pair assigning upper and lower probabili-
ties to the elements of a boolean algebra B = (B, A, v,°). Then:

P.(1g) = 1; P*(0p) = 0;
when P, (a) = P.(b) =1,
0<P*(a®vb®) < P*a) + P*(anb®)

< P*(a®) + P*(a A b®) + Py(a° A b) < P*(a®) + P*(b°) =0,
hence P,(aAb) =1 —P*(a°vb®)=1;
if a < b then P,(a°vb) = P,(1g) = 1,50 1 < P*(a®) + P.(aAb),
and hence P,(a) < P,(aAnb) < P, (anb) + P, (a°Ab) < P, (D).
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Consequently, when we turn our attention to the algebra of propositions B =
{(B,&,v,~),wehavethat forany u, 7(BT)=7(~Bl)=1;if r(Ba)=7(Bb) =1
then 7(B(a & b)) = 1, so 7((Ba & Bb) - B(a & b)) = 1, for all a,b € B; if
a — b is a theorem of PL then 7(Ba) < 7(Bb), so 7(Ba— Bb) = 1.

Theorem 3.4% (Completeness of LMNPC) If a is not a theorem of LMNPC
then there is a p*-model {u, P* P,) in which 7(a) = 0. Furthermore, if the alge-
bra of propositions is countable we may assume that upper and lower probabil-
ities coincide for all propositions, i.e., that the p*-model is a p-model.

Proof: Suppose that a is not a theorem of LMNPC and let F be the filter
{b € B: bis a theorem of LMNPC]}. As a €& F, there is an ultrafilter U such that
Fc Uand a & U. Defining the set S = {b € B: Bb € U} we know, by Lemma
2.11, that Sis a filter. By Lemma 2.8, there is a distribution-pair {P*, P, ) that
represents S. Also by Lemma 2.8, when B is countable we may assume that
P*=P,.

Let u: AT(B) — {0,1} be the function defined by the condition

ub)=1iffbe U.

{u,P* P,y is a p*-model. We need to show that, for all b € B, 7(b) = 1 iff
b € U. Proof is by induction on the complexity of propositions. As usual the only
interesting case arises when b is of the form Bc:

7(Bc) = 1iff P,(c) = 1iff c € Siff Bc € U.
Consequently, 7(a) = 0 in the p*-model {u, P*, P,).

The probabilistic argument in the Soundness Lemma (Lemma 3.3) is carried
out for an arbitrary distribution-pair, not merely for distributions of upper and
lower probabilities to propositions. This makes clear the sense in which LMNPC
is not (just) the logic of belief-defined-as-maximal-probability but rather the logic
of maximal probability itself. The bracketing of ‘just’ foreshadows the sugges-
tion that LMNPC is in fact too weak to be appropriate even as a minimal dox-
astic logic. That this is so will be clearer in the light of the following corollary
to Theorem 3.4.

Corollary 3.5 (Trivialization Result for LMNPC) (1) If Ba is a theorem of
LMNPC then a is tautologous. (2) If ~Ba is a theorem of LMNPC then a is
absurd.

Proof:

(2) If a # L then there is an ultrafilter U in B = (B, &, v, ) and a represent-
ing probability distribution P such that @ € U and P(a) = 1. But then, for arbi-
trary u: At(B) — {0,1}, 7(Ba) = 1 in the p-model {u, P). By Lemma 3.3, = Ba
is not a theorem of LMNPC. Hence, if —Ba is a theorem of LMNPC then —a
is a theorem of PL.

(1) The schema D—Ba — ~B—a—is derivable in LMNPC, hence if Ba is a
theorem of LMNPC then = B—a is also a theorem. By (2), = —a is then a theo-
rem of PL and so a is a theorem of PL.

Since LMNPC contains N, M and RL we have, as a consequence of Corol-
lary 3.5, that Ba is a theorem of LMNPC just in case a is a theorem of PL and
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that = Ba is a theorem of LMNPC just in case —a is a theorem of PL. Because
LMNPC extends PL it is therefore both positively and negatively accurate.

According to LMNPC an ideally rational individual rationally believes all
tautologous propositions and these are the only propositions that she must
believe. Similarly, one is justified in believing them and they are the only prop-
ositions one is justified in believing a priori. There are then no propositions, as
one might say, properly concerning belief that must be believed by rational indi-
viduals belief in which is justified a priori. Put another way, the believed dox-
astic logic associated with LMNPC is just PL itself. Like LM, LMNPC appears
to be too weak. And notice that here we do not have the excuse that we should
not rule out the possibility of total scepticism: LMNPC is incompatible with total
scepticism.

The next step is to follow up the thought that perhaps not all probability dis-
tributions on the algebra of propositions can represent belief states, not when
we allow for the explicit expression of belief. With the exception of tautologous
and absurd propositions, LMNPC does nothing to fix the degree of belief in a,
even when ¢ is a truth of doxastic logic, i.e., a conceptual truth about justi-
fied/rational belief. Notice that only two degrees of belief /upper and lower prob-
abilities are expressible “in the object language”, i.e., in terms of the propositions
belonging to B, P(+)(a) =1 and P(*)(a) = 0 — Ba and B-a, respectively. Per-
haps, then, we should confine attention to a subclass of the distributions/distri-
bution-pairs that assign (upper and lower) probabilities to the elements of the
algebra of propositions, a subclass P closed under the condition:

if a is an expressible constraint on degrees of belief determined
by the members of P then VP(,) € P [P(s)(a) =1].

This corresponds to closure under the rule RN.

When we add the rule RN to LMNPC we obtain the logic EMNPC, i.c., KD.
(RE and RN are interderivable in LMNC.) Let us therefore take the class P of
distribution-pairs:

P = ((P* P,): if a is a theorem of KD then P, (a) = 1}.

As LMNPC is sound with respect to all probability distributions/distribution-
pairs, P is the largest class satisfying the closure condition above.

Definition 3.6 The p*-model {u, P*, P,) is an augmented p*-model when
(P*,P,) EP.

Lemma 3.7 (Soundness of KD) If a is a theorem of KD then 7(a) = 1 in every
augmented p*-model {u, P*,P,).

Proof: Proof proceeds by induction on formal derivations in KD. In view of
the fact that KD is LMNPC augmented by RN and of the Soundness Lemma
for LMNPC (Lemma 3.3), we need only show that RN is sound in augmented
p*-models. Suppose, then, that a is of the form Bb, where b is a theorem of
KD. Then P,(b) =1 and so 7(a) = 7(Bb) = 1.

Theorem 3.8 (Completeness of KD) If a is not a theorem of KD then there
is an augmented p*-model {u, P*,P.) in which 7(a) = 0. Furthermore, if the
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algebra of propositions is countable we may assume that the p*-model is a
p-model.

Proof: Proof is analogous to that of Theorem 3.4 but takes F to be the set
{b € B:bis a theorem of KD}. Where {(P*, P,) is the representing distribution-
pair we must show that P,(b) = 1 when b € F. Now, with U, S, and P, as in
the proofs of Lemma 2.11 and Theorem 3.4, if b € Fthen b € S: for KD con-
tains RN and so Bb € F when b € F; as F < U, Bb € U and, consequently,
b € S. Thus P,(b) =1 when b is a theorem of KD and (P*,P,) € P. By Lemma
2.8, when B is countable we may assume that P* = P,.

Corollary 3.9 (Accuracy of KD) (1) If Ba is a theorem of KD then a is also
a theorem. (2) If —~Ba is a theorem of KD then —a is a theorem.

Proof: Suppose that —a is not a theorem of KD. Then, by Theorem 3.8, there
is a function 7: B— {0,1} such that (i) 7(a) = 1; (ii) if b is a theorem of KD then
7(b) = 1; and (iii) 7 is a probability distribution on B. The third clause holds good
since every assignment of truth-values is a two-valued probability distribution.
By (ii), (7,7) € P. Let u be any function from atomic propositions to truth-
values. Then {u, 7) is an augmented p-model in which 7'(Ba) = 1, where 7’ is
the truth-value assignment associated with (u,7). By the soundness of KD
(Lemma 3.7), ~Ba is not a theorem of KD. As in the proof of Corollary 3.5,
in any logic that contains D (2), which we have just proved, is sufficient for (1).

The logic KD has been thought suitable for deontic logic, although, as its
positive accuracy shows:

[R]oughly speaking, there are no logically true statements of obligation with
non-trivial content. ([2], p. 195).

While this may render its appropriateness to deontic concerns doubtful, it is
exactly this “triviality” that makes it appealing, from the minimalist perspective,
as a doxastic logic. And not only is it positively accurate, it is both negatively
accurate and believed (not just believable) —the believed doxastic logic generated
by KD is KD itself. KD assumes, in the Hintikka style, that an agent’s justi-
fied/rational beliefs are representable, in Stalnaker’s terms, by just one belief
state. It is not the only accurate, believed, doxastic logic that does this, although
it is perhaps the strongest one that does so “sensibly”. Probabilistic soundness
and completeness proofs are readily forthcoming for the strengthening of KD
that replaces the axiom schema D with:

(D!) Ba=-B-a.

This schema is most implausible as a constraint on any sort of belief, let alone
justified or rational belief.

Definition 3.10 A p-model {u, P) is two-valued if the probability distribu-
tion P is two-valued.

As is readily shown, a is a theorem of KD! just in case 7(a) = 1 in every two-
valued augmented p-model {u, P). Moreover, KD! is accurate and, because ultra-
filters are associated with two-valued probability distributions no matter the
cardinality of the algebra in which they exist, the completeness theorem for KD!
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requires no cardinality qualification on the algebra of propositions. The latter
fact may be regarded as a virtue of KD!, but it is a virtue gained at a high price,
two-valued probability distributions representing an extreme of opinionatedness
that would normally be thought incompatible with justified/rational belief.

We shall next look at another extension of KD that Lenzen has suggested is
the logic of strong belief/conviction ({9], p. 83). This is the logic obtained by add-
ing to LMNPC the two axiom schemas:

(4) Ba— BBa
(5) - Ba— B-Ba.

These correspond to the constraints on probability distributions/distribution-
pairs:
(i) if P(+)(a) =1 then P()(Ba) =1

(ii) if P(+)(a) # 1 then P(.)(—Ba) =1,
which, in the case of probability distributions, in turn correspond to the express-
ible instances of the more general requirements:

(iii) if P(a) = rthen P(P(a)=r) =1

(iv) if P(a) # r then P(~[P(a) =r]) = 1.

Dutch book arguments can be given in support of these last two.’

Before proceeding to soundness and completeness theorems we must first
show that the logics LMNPC45 and KD45 are identical. The only non-trivial item
arises in showing that the rule RN is derivable when the schemas 4 and 5 are
added to LMNPC.

Definition 3.11 For any proposition a, let + Ba denote Ba and —Ba denote
= Ba, so that +Ba ambiguously denotes one or other of Ba and ~Ba. ¥Ba
stands for ~Ba when +Ba is Ba and for Ba when + B is - Ba: briefly, ¥Ba is
the contrary of +Ba.

Definition 3.12 For any propositions a;,a,, . .. ,a,, &a=a,&a, &. . . & a,.

Lemma 3.13 In any logic that includes the axiom schemas 4, 5, and M, and
the rule RL,

(&; + Ba; —> +Bb) - B(&; + Ba; » +Bb)
is a theorem.

Proof: +Bb— (&; + Ba;,— +Bb) is tautologous, so, by RL and M, B + Bb —
B(&; + Ba; » +Bb). By either 4 or 5, whichever is appropriate to the sign of
+Bb, +Bb — B + Bb. And so, by PL, +Bb —» B(&; + Ba; > +Bb). Likewise
FBa;— (&; + Ba; —~ +Bb) is tautologous, for each i, and so B ¥ Ba; » B(&; +
Ba;— +Bb), by RL and M, for each i. By either 4 or 5, whichever is appropri-
ate to the sign of ¥Ba;, FBa; > B ¥ Ba;. Whence, by PL, FBa; —» B(&; + Ba,—
+Bb). Combining the ¢; theorems, using PL alone, gives - (&; + Ba;) > B(&; +
Ba; — +Bb). By PL, this in conjunction with + Bb —» B(&; + Ba; — +Bb) yields
the sought for theorem (&; + Ba; > +Bb) —» B(&; = Ba; > +Bb).

Theorem 3.14 If a is a theorem of LMNPC45 then so is Ba.

Proof: Proof is by induction on formal proofs in LMNPC45, a formal proof
being a finite sequence of propositions a,,a;, . . . ,a,, such that a; is either BT,
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- B L, an instance of M, C, 4, or 5, or tautologous, and for each i,1 <i < n,q;
is either (a) BT, B, or an instance of M, C, 4, or 5, or (b) tautologous, a
theorem of PL, or (c) obtained by an application of RL to some proposition g;
that occurs earlier in the proof, or (d) entailed in PL by one or more proposi-
tions that occur earlier in the proof. We show that when a;,a,,...,a,is a for-
mal proof in LMNPC45 the propositions Ba,,Ba,, . . ., Ba, are all theorems of
LMNPC45.

By N and 4, BBT is a theorem; by P and 5, B—B 1 is a theorem. By Lemma
3.13, if g; is an instance of M, C, 4, or 5, then Ba; is a theorem of LMNPC45.
If q; is tautologous then T = g; is a theorem of PL, and hence, by RL, BT =
Ba;, is a theorem of LMNPCA45, as, consequently, is Ba;. This takes care of
cases (a) and (b) and the possibilities for a,. Case (c): if a; is obtained by an
application of RL to some proposition a;, j < i, then a; must be a PL theorem
of the form a = b; hence B(a — b) is a theorem of LMNPC45; as K is a theo-
rem of LMNPC45, Ba — Bb is a theorem; by Lemma 3.13, B(Ba — Bb) is a the-
orem; similarly, B(Bb — Ba) is a theorem; by C, B(Ba = Bb), i.e., Ba;, is a
theorem. Case (d): suppose that Bb,,Bb,, . ..,Bb,, are theorems of LMNPC45
and that by, b,,...,b,, jointly entail ¢ in PL; by repeated applications of C,
B(bi &by &...&b,) is a theorem; also, (b; & b, &...& b,,) — c is a theorem
of PL, hence, by RL and M, B(b; & b, &...& b,;,) — Bc is a theorem of
LMNPC45; finally, then, so is Bc.

Definition 3.15 Let Q be the class of distribution-pairs assigning upper and
lower probabilities to the propositions in B constrained by the conditions

(i) if P.(a) =1 then P, (Ba) = 1

@ii) if Py(a) # 1 then P,(—Ba) = 1.

Lemma 3.15 (Soundness of KD45) If a is a theorem of KD45 then 7(a) = 1
in every p*-model {u, P*, P, in which {P*,P,) € Q.

Proof: In view of the fact that KD45 in LMNPC45 (Theorem 3.14) and of the
Soundness Lemma for LMNPC (Lemma 3.3), we need only show that 4 and 5
hold in the p*-models under consideration. If 7(Ba) = 1 then P, (a) = 1, hence
P.(Ba) =1 and 7(BBa) = 1; if 7(—Ba) = 1 then P, (a) # 1, hence P,(—Ba) =
1 and 7(B—Ba) = 1.

Theorem 3.16 (Completeness of KD45) If a is not a theorem of KD then
there is a p*-model (u,P*,P,) in which 7(a) = 0 and in which (P*,P,) € Q.
Furthermore, if the algebra of propositions is countable we may assume that the
p*-model is a p-model.

Proof: Proof is analogous to that of Theorem 3.4 but takes F to be the set
{b € B: bis a theorem of KD45}. Where (P*, P, ) is the representing distribu-
tion-pair we must show that if P,(a) = 1 then P, (Ba) =1 and if P,(a) # 1 then
P,(—Ba) = 1. P.(b) =1 when b € F. Now, with U, S, and P, as in the proofs
of Lemma 2.11 and Theorem 3.4, this is readily established:

Pi.(a)=1iffae Siff Ba€ Uonly if BBa€ U, as Fc U,
iff Ba € S iff P.(Ba) = 1;
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P.(a) # 1iff a & Siff Ba & U iff -Ba € U only if
B-Baec U,as Fc U, iff "Ba € S iff P,(~Ba) = 1.

By Lemma 2.8, when B is countable we may assume that P* = P,.
Theorem 3.17 KDM4S5 is neither positively nor negatively accurate.

Proof: B(Ba— a) is derivable in any extension of LM that contains the axiom
schema 5 but the schema

(T) Ba—a

is not derivable in KD45.
- B(a & —Ba) is derivable in any extension of LM that contains the axiom
schemas D and 4 but the schema

(T.) a— Ba
is not derivable in KD45.

In view of Theorem 3.17, KD45 — deontic S5, as Chellas calls it ([2], p. 193)—
is seen to be much too strong. It would commit the rational individual to accept-
ing and rejecting propositions that are, in its own terms, at most contingently
true and false, respectively.

The weakest positively accurate extension of KD45 is S5 (KT5), which entails
that justified/rational beliefs are infallible. The weakest accurate extension of
KD45 is S5 + T, (KT!), which entails omniscience: all and only true propositions
are justified/rational beliefs. The p*-models of KT! bring out this feature. KT!
is consistent, a fact most easily seen by striking out all occurrences of B in the
propositions forming a proof in KT!, an operation which converts every line
of a proof into a theorem of PL (cf., [8], pp. 41, 267). Any KT!-consistent set
of propositions is KD45 consistent, and therefore, by Theorem 3.16, has a
p*-model (u, P*,P,). As Bav B—a is a theorem of KT!, P*=P,;asBa=a s
atheorem, 7(a) = 7(Ba) = P,(a), i.e., the p*-model is a p-model and P (= P,)
and 7 coincide. Conversely, KT! is clearly sound with respect to all p-models
{u, P) in which P and 7 coincide. KT! is hence sound and complete with respect
to all “omniscient” p*-models.

4 More probabilistic completeness theorems KD is the logic that results
from weak standard models in which $ is a singleton. It is also the logic that
results from the class P of probability distributions and distribution-pairs defined
in the previous section. In view of Dutch book arguments and other consider-
ations epistemologists most commonly represent the belief state of a rational
individual by a single probability distribution. Also, those who treat objective
probabilities as measures of confirmation and/or justified belief most often
appeal to a single probability distribution. On either approach the maximal-
probability definition of belief yields:

Ba is true iff P(a) =1,

where P is the probability distribution in question.
For a variety of reasons a number of authors have suggested that an agent’s
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belief state is best represented by a family of probability distributions. (See, for
example, Levi [10] and Gérdenfors and Sahlin [5].) In view of Stalnaker’s model
of belief this is an entirely natural generalization in the present context (and is
implicit in much of [4], although not exploited).

For the rest of this paper we shall concentrate on cases in which the beliefs
that an agent justifiedly or rationally holds are represented by a family of prob-
ability distributions over an at most countably infinite algebra of propositions
B =(B,&,v,). In such a setting it makes sense to define belief relative to the
family P of distributions as follows:

Ba is true iff P(a) =1 for some P € P.

When P is finite, but not necessarily otherwise, it also makes sense to define a
distribution-pair by the equations:

P*(a) = max{P(a): P € P};
P,(a) = min{P(a): P € P}.

It then follows that a proposition is justifiedly/rationally believed just in case it
receives maximal upper probability.!°

Definition 4.1 A multiple probability model, henceforth an mp-model, com-
prises a pair («,P), where u is a function from atomic propositions to truth-
values, i.e., u:At(B) — {0,1}, and P is a (non-empty) family of probability
distributions assigning probabilities to propositions.

Given an mp-model (u,P) the function 7: B— {0,1} is defined by these con-
ditions:

() va € At(B)[7(a) = u(a)l;

(i) 7(—a) =1~—7(a);

(iii) 7(a¢ & b) = min{7(a),7(b)};

(iv) 7(av b) = max{r(a),7(b)};

) 7(Ba) =1iff aP€P [P(a) =1].

Lemma 4.2 (Soundness of LMNP) If a is a theorem of LMNP then 7(a) =1
in every mp-model {u,P).

Proof: This follows immediately from the proof of soundness of LMNPC
(Lemma 3.3), for there only the soundness of C relied on P being a singleton.

Theorem 4.3 (Completeness of LMNP) If ais not a theorem of LMNP then
there is an mp-model {u,P) in which 7(a) = 0.

Proof: Suppose that a is not a theorem of LMNP and let F be the filter {b € B:
b is a theorem of LMNP}. As a ¢ F, there is, by a Lindenbaum’s Lemma
construction, an ultrafilter U such that F € U and a & U. Let S be the set
{be B: Bb e U}. For each b € S, the set F}, = {c € B: b — c is a theorem of
PL} is a filter and a subset of S. S = Upes Fp. As B is countable, there is, by
Lemma 2.8, a probability distribution P, that represents F;. Let P be the set
{P,:b€E S}.
Let u:At(B) — {0,1} be the function defined by the condition

ub)=1iff be U.
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{u,P) is an mp-model. We need to show that, forallb € B, 7(b) =1iff be U.
Proof is by induction on the complexity of propositions. The only interesting case
arises when b is of the form Bc:

7(Bc) =1iffaPeP [P(c) =1]iff ad € S [c € F,]
iff 3d € B [Bd € U and d — c is a theorem of PL]
iff Bce U,as FS U.
Consequently, 7(a) = 0 in the mp-model (u,P).

Clearly, it makes no difference to the logic if we insist that the family P be
convex (as Isaac Levi does when he uses sets of probability distributions to rep-
resent credal states ([10])).

In the definition of mp-models it is stipulated that P is non-empty. If we relax
that requirement we obtain models in which there are no justified/rational
beliefs, i.e., total scepticism is again a possibility. It is obvious that the logic that
is sound and complete with respect to such models is LMP, the logic whose the-
orems are all propositions that are theorems of both LMNP and EMN..

In the representation of an agent’s justified/rational beliefs in an explana-
tion of the agent’s behavior it would be natural although by no means necessary
to suppose that only some finite number 7 of probability distributions are needed
for the task.

Lemma 4.4 (Soundness of LMNPC,) If a is a theorem of LMNPC, then
7(a) = 1 in every mp-model {u,P) in which P contains at most n probability dis-
tributions.

Proof: In view of the soundness proof for LMNP (Lemma 4.2) we need only
show that C,, obtains. Suppose that 7(Ba,) =7(Ba,) =...=7(Ba,) =17(Bb) =1
and 7(B(a; & a;)) =0,1<i<j=<n. As7(Bc) = 1 if and only if for some PEP,
P(c) =1 and P contains at most »n distributions, it must be that P contains
exactly n distributions and that if P(a;) =1 then P(a;) # 1, 1 =i <j < n. But
then it must be that, for some i, 1 <i <n, and some Pin P, P(q;) = P(b) =1,
and so P(a; & b) = 1, i.e., 7(B(a; & b)) = 1.

Theorem 4.5 (Completeness of LMNPC,,) If a is not a theorem of LMNPC,
then there is an mp-model {u,P) in which P contains at most n probability dis-
tributions and 1(a) = 0.

Proof: Suppose that a is not a theorem of LMNPC, and let F be the filter
{b € B: b is a theorem of LMNPC,_}. As a & F, there is, by a Lindenbaum’s
Lemma construction, an ultrafilter U such that F € U and a &€ U. The set
S={be B:Bbec U}, we know by Lemma 2.11, is an n-block. By Lemma 2.9,
there is a family P of n or fewer probability distributions such that b € § iff
3PP [P(b)=1]. Let u: At(B) - {0,1} be the function defined by the con-
dition

ub)=1iff be U.
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{u,P) is an mp-model. We need to show that, forallb € B, 7(b) =1iff be U.
Proof is by induction on the complexity of propositions. Again, the only inter-
esting case arises when b is of the form Bc:

7(Bc) =1iff aPeP [P(c)=1]iff ce Siff Bce U.

Consequently, 7(a) = 0 in the mp-model (u,P).

Because LMNP and LMNPC,, are contained in LMNPC and because they
contain N, M, and RL, the triviality result for LMNPC (Corollary 3.5) tells us
that LMNP and LMNPC, are likewise accurate but trivial. Ba is a theorem of
LMNP/LMNPC, just in case a is a theorem of PL; —Ba is a theorem of
LMNP/LMNPC,, just in case —a is a theorem of PL.

Just as we were led to strengthen LMNPC by considering a subclass of prob-
ability distributions/distribution-pairs closed under a condition equivalent to RN
holding in the related doxastic logic, so too we now consider restricting the prob-
ability distributions from which the members of P in mp-models may be taken.

This time we look for a class P’ closed under the condition:

if a is an expressible constraint on degrees of belief determined by all finite non-
empty subsets containing » or fewer members of P’ then VPE P’ [P(a) =1].

Again this represents closure under RN but just as RN generates different the-
orems in different logics so the class we seek is broader than before. Moreover,
in adding RN to LMNPC, we do not get RE as a bonus (unless # = 1). On the
other hand, if we add RE we do get RN. And we can argue for the incorpora-
tion of RE as in Section 1, when we argued for its addition to LM.

When we add the rule RE to LMNPC, we obtain the logic EMNPC,, in which
RN is a derived rule. We shall take as the class of probability distribution:

P’ = {P: if a is a theorem of EMNPC, then P(a) = 1}.

Definition 4.6 The mp-model {u,P) is an augmented mp-model iff VP €
P[PeP'].

Lemma 4.7 (Soundness of EMNPC,,) If a is a theorem of EMNPC, then
7(a) = 1 in every augmented mp-model {u,P) in which P contains at most n
probability distributions.

Proof: In view of the soundness proof for LMNPC, (Lemma 4.4) we need only
show that RE is sound in all augmented mp-models. Suppose, then, that a is a
theorem of EMNPC, of the form b = c¢. Then, forall Pe P, P(b=c) = 1.
Consequently, for any P € P, P(b) = 1 iff P(c) = 1, which establishes that
7(Bb) = 1iff 7(Bc) =1, i.e., 7(Bb = Bc) = 1.

Theorem 4.8 (Completeness of EMNPC,) If a is not a theorem of EMNPC,
then there is an augmented mp-model {u,P) in which P contains at most n prob-
ability distributions and 7(a) = 0.

Proof: The proof follows that of Theorem 4.5 but with F taken to be the set
{a € B: a is a theorem of EMNPC,}. It remains to show only that vP € P
[Pe€ P’]: as EMNPC, contains RN, Ba € Fwhena€ F;as FS U, Bac U
and, consequently, a € S.
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Corollary 4.9 (Accuracy of EMNPC,) (1) If Ba is a theorem of EMNPC,
then a is also a theorem. (2) If —~Ba is a theorem of EMNPC, then —a is a
theorem.

Proof:

(1) Suppose that a is not a theorem of EMNPC,. Then, by Theorem 4.8
and in analogy with the proof of the accuracy of KD (Corollary 3.9), there is a
function 7: B — {0,1} such that (i) 7(a) = 0; (ii) if b is a theorem of EMNPC,
then 7(b) = 1; and (iii) 7 is a probability distribution over B. But then, for arbi-
trary u : At(B) — {0,1}, {u,{7}) is an augmented mp-model in which 7'(Ba) = 0,
7’ being the assignment of truth-values derived from {u,{7}).

(2) is proved analogously.

By restricting the probability distributions in mp-models we can produce
soundness and completeness theorems for a variety of logics. The general method
has been sufficiently demonstrated here. I shall mention some special cases of
interest. First, soundness and completeness of EMNP relative to probability dis-
tributions belonging to the class

P” = {P: if a is a theorem of EMNP then P(a) = 1}.

Second, by substituting P of Section 3 for P’ above soundness and completeness
of a logic whose theorems are those of EMNPC, together with the doxastic
necessitations of theorems of KD. This gives rise to a positively inaccurate logic
whose associated believed doxastic logic is KD. This logic might be motivated
by Stalnaker’s model because, even if the agent is in a multiplicity of belief states,
what she believes about belief will be determined in any context relative to the
belief state associated with that context, plausibly leading the agent to believe
that KD is the logic of belief.

Third, by relaxing the condition that P be non-empty, soundness and com-
pleteness theorems are forthcoming for EMVP and EMVPC,,. In the first case
P must be a subset of P”, in the second a subset of P’. These results emphasize
the connection between the family R of weak standard models and the family
P of multiple probability models. Weak standard models allow a logic as weak
as EMV. Multiple probability models allow a logic as weak as LMP. EMVP is
the meeting point, suggesting itself as a prime contender for the title Minimal
Doxastic Logic. If the possibility of total scepticism is to be disallowed we move
to EMNP. The logics EMNPC, are descriptive as much as normative, since
there is nothing in the concept of justified/rational belief that fixes a specific
value of n. The next natural stopping point after EMNP is, therefore, KD, a logic
which may be thought to disqualify itself from any pretension to minimality
because it rules out the possibility that justified or rationally held beliefs may be
contradictory.

As a final observation, I have, following Stalnaker’s model of belief, taken
these weak doxastic logics to furnish norms governing the justified/rationally
held beliefs of a single agent. They might equally well be regarded as governing
the beliefs of a collective, for formally the plurality of belief states could belong
to a plurality of individuals, each individual being in one belief state as in Hin-
tikka’s models. Rather than human agents, the individuals in question might be
databases storing possibly jointly inconsistent bodies of information.
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NOTES

. Gardenfors uses a definition of proposition derived from the dynamics of belief

states as a means to proving the completeness of intuitionist logic ([4], pp. 132-41).
As the representation considers only expansions of belief states it is no surprise that
the most natural logic is intuitionist. However, when he considers probabilistic mod-
els of belief states the propositional logic is effectively classical since P(a v —a) =
P(a) + P(—a) =1 (see, e.g., [4], pp. 37-40).

. Where possible I follow the nomenclature of [2] but RL is already a point of

departure.

. In this setting an ultrafilter is just a maximal consistent set of propositions, consis-

tency being determined in EM. When the algebra of propositions is countable we
can use the standard Lindenbaum’s Lemma method to construct maximal consis-
tent sets rather than appeal to the Ultrafilter Theorem (see, e.g., [2], pp. 55-7). The
standard proof of the theorem invokes Zorn’s Lemma (see [1], pp. 136-7).

. The proof of Theorem 1.16 owes some to [2], Chapters 7-9. My minimal models

are Chellas’s supplemented minimal models.

. The use of N, fits Chellas’s pattern (see, e.g., [2], p. 71) since BT is logically equiv-

alent in PLto "BT - BT, "BT toBT - BT, and -BT - BT and BT —» BT
are converses.

. We have the means at our disposal for a completely general description of total scep-

ticism: a doxastic logic is compatible with total scepticism if and only if the believed
doxastic logic associated with it is empty. This characterization holds good even for
doxastic logics that do not contain the rule RL. Without RL and M the axiom N,
is not sufficient for total scepticism.

. Cf. Walley [15], §2.9.8.
. Cf. [4], p. 39, Lemma 2.3.
. See, e.g., Milne [13], pp. 307-8. The exact standing of these arguments is called into

question below. In [13], pp. 310, 313, it is hinted that they might best be regarded
as artefacts of the betting situation rather than constraints on rational belief.

In the context of neither of the two mentioned sources for the representation of
beliefs by families of probability distributions —those of Levi ([9]) and of Gérden-
fors and Sahlin ([5]) —is this stipulation remotely acceptable.
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