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From Classical to Intuitionistic Probability

Brian Weatherson

Abstract We generalize the Kolmogorov axioms for probability calculus to ob-
tain conditions defining, for any given logic, a class of probability functions rela-
tive to that logic, coinciding with the standard probability functions in the special
case of classical logic but allowing consideration of otherclasses of “essentially
Kolmogorovian” probability functions relative to other logics. We take a broad
view of the Bayesian approach as dictatinginter alia that from the perspective
of a given logic, rational degrees of belief are those representable by probabil-
ity functions from the class appropriate to that logic. Classical Bayesianism,
which fixes the logic as classical logic, is only one version of this general ap-
proach. Another, which we call Intuitionistic Bayesianism, selects intuitionistic
logic as the preferred logic and the associated class of probability functions as
the right class of candidate representions of epistemic states (rational allocations
of degrees of belief). Various objections to classical Bayesianism are, we ar-
gue, best met by passing to intuitionistic Bayesianism—in which the probability
functions are taken relative to intuitionistic logic—rather than by adopting a radi-
cally non-Kolmogorovian, for example, nonadditive, conception of (or substitute
for) probability functions, in spite of the popularity of the latter response among
those who have raised these objections. The interest of intuitionistic Bayesian-
ism is further enhanced by the availability of a Dutch Book argument justifying
the selection of intuitionistic probability functions as guides to rational betting
behavior when due consideration is paid to the fact that betsare settled only
when/if the outcome bet on becomes known.

1 Introduction

It is a standard claim of modern Bayesian epistemology that reasonable epistemic
states should be representable by probability functions. There have been a number
of authors who have opposed this claim. For example, it has been claimed that epis-
temic states should be representable by Zadeh’s fuzzy sets,Dempster and Shafer’s
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evidence functions, Shackle’s potential surprise functions, Cohen’s inductive prob-
abilities, or Schmeidler’s nonadditive probabilities.1 A major motivation of these
theorists has been that in cases where we have little or no evidence for or againstp,
it should be reasonable to have low degrees of belief in each of p and¬p, something
apparently incompatible with the Bayesian approach. Thereare two broad types of
response to this situation, the second of which shows the incompatibility just men-
tioned is more apparent than real. The first of these—much in evidence in the work of
the writers just cited—is to replace or radically reconstrue the notion of probability
taken by that approach to represent degrees of belief. The second—to be defended
here—seeks to maintain the core of standard probability theory but to generalize the
notion of a probability function to accommodate variation in the background logic
of the account; this allows us to respond to such issues as thelow degree of belief
in a proposition and its negation by simply weakening the background logic from
classical to intuitionistic logic. Thus if Bayesianism is construed as in our opening
sentence, one way to respond to the objections of the heterodox writers listed above
is to trade inclassicalBayesianism forintuitionistic Bayesianism. Since for many
theorists at least the motivation for their opposition to Bayesianism is grounded in
either verificationism or antirealism, a move to an intuitionistic theory of probability
seems appropriate. Indeed, as Harman [4] notes, the standard analysis of degrees of
belief as dispositions to bet leads naturally to an intuitionistic theory of probability.
We give a Dutch Book argument in defense of constructive Bayesianism in Section4
below.

The appropriate generalization of the notion of a probability function makes ex-
plicit allowance for a sensitivity to the background logic.The latter we identify
with a consequence relation, such as, in particular, the consequence relation⊢CL

associated with classical logic or the consequence relation ⊢IL associated with intu-
itionistic logic. To keep things general, we assume only that the languages under
discussion have two binary connectives:∨ and∧. No assumptions are made about
how a consequence relation on such a language treats compounds formed using these
connectives, though of course in the cases in which we are especially interested,⊢CL

and⊢IL, such compounds have the expected logical properties. We take the language
of these two consequences relations to be the same, assumingin particular that nega-
tion (¬) is present for both. Finally, ifA belongs to the language of a consequence
relation⊢, then we say thatA is a⊢-thesisif ⊢ A and thatA is a⊢-antithesisif for
all B in that languageA ⊢ B. (Thus the⊢-theses and antitheses represent the logical
truths and logical falsehoods as seen from the perspective of ⊢.) We are now in a
position to give the key definition.

If ⊢ is a consequence relation, then a functionPr mapping the language of⊢
to the real interval[0, 1] is a ⊢-probability function if and only if the following
conditions are satisfied:

(P0) Pr(A) = 0 if A is a⊢-antithesis;
(P1) Pr(A) = 1 if A is a⊢-thesis;
(P2) If A ⊢ B thenPr(A) ≤ Pr(B);
(P3) Pr(A) + Pr(B) = Pr(A ∨ B) + Pr(A ∧ B).

If ⊢ is ⊢CL, then we call a⊢-probability function aclassical probability function; if
⊢ is ⊢IL we call a⊢-probability function anintuitionistic probability function. The
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position described above as intuitionistic Bayesianism would replace classical prob-
ability functions by intuitionistic probability functions as candidate representations
of reasonable epistemic states. Note that classical probability functions in this sense
are exactly those obeying the standard probability calculus axioms. In particular, the
familiar negation axiom dictating thatPr(¬A) = 1− Pr(A) emerges as a byproduct
of the interaction between the general (i.e., logic-independent) condition (P3) and,
via (P0) and (P1), the logic-specific facts thatA∧¬A is a⊢CL-antithesis andA∨¬A
is a⊢CL-thesis for anyA.

Although it is these two kinds—intuitionistic and classical—of probability func-
tions we shall be dealing with specifically in what follows, we emphasize the gen-
erality of the above definition of a⊢-probability function and invite the reader to
consider what effect further varying the choice of⊢ has on the behavior of such
functions. Our attention will be on the comparative merits of ⊢CL and⊢IL in this
regard. (It may have occurred to the reader in connection with (P3) above that we
might naturally have considered a generalized version of (P3) for ‘countable additiv-
ity’. Whether such a condition ought to be adopted will turn on some rather difficult
questions concerning the use of infinities in constructive reasoning; let us leave it as
a question for further research. We have stated (P3) in its finitary form so as not to
require that intuitionistic probability functions satisfy the more contentious general
condition.)

In the following section we shall review some of the motivations for intuition-
istic Bayesianism. The arguments are rather piecemeal; they are designed to show
that given the philosophical commitments various writers in the field have expressed
they would be better off taking this route, that is, focusingon the class of intu-
itionistic probability functions, than—as many of them have suggested—abandoning
Bayesianism in our broad sense. In particular, we shall urgethat moves in the latter
direction which involve abandoning (what we shall call) thePrinciple of Addition
are seriously undermotivated.

One aspect of the Bayesian perspective which we have not considered concerns
the dynamics rather than the statics of epistemic states: inparticular the idea that
changes in such states are governed for rational agents by the principle of condi-
tionalizing on new information. This requires that we have adyadic functor avail-
able for expressing conditional probabilities. Accordingly, where Pr is for some
consequence relation⊢ a ⊢-probability function, we favor the standard account
and take the associated conditional⊢-probability functionPr(·, ·) to be given by
Pr(A, B) = Pr(A ∧ B)/Pr(B) whenPr(B) 6= 0, with Pr(A, B) undefined when
Pr(B) = 0. The intention, of course, is thatPr(A, B) represents the conditional
probability of A given B. We defer further consideration of conditional probability
until AppendixA.

2 Motivating Intuitionistic Bayesianism

There are four main reasons for grounding preferring intuitionistic over classical
probability functions as representing the range of reasonable epistemic states. These
are: (1) a commitment to verificationism, (2) a commitment toantirealism, (3)
preservation of the Principle of Addition, and (4) avoidance of direct arguments
for the orthodox approach. Now some of these will be viewed bysome people as
bad reasons for adopting the given position, a reaction withwhich it is not hard
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to sympathize. In particular, the verificationist and antirealist elements of the the-
ory might well be viewed as negatives. These arguments are principally directed at
showing that, by their own lights, various opponents of classical Bayesianism would
do better to adopt the intuitionistic Bayesian position than some still more heterodox
non-Bayesian account.

2.1 A standard objection to classical Bayesianism is that it hasno way of rep-
resenting complete uncertainty. Because of the failures ofLaplace’s principle of
indifference, it can’t be said that uncertainty aboutp is best represented by assigning
credence 1/2 to p. Heterodox approaches usually allow the assignment of credence
0 to bothp and¬p when an agent has no evidence at all as to whether or notp is
true. Because these approaches generally require an agent to assign credence 1 to
classical tautologies, includingp ∨ ¬p, these theories must give up the following
Principle of Addition.

Addition For incompatibleA, B: Bel(A ∨ B) = Bel(A) + Bel(B).

‘Bel(A)’ is here used to mean the degree of belief the agent has inA, and ‘incom-
patible’ to apply toA andB in which for some favored consequence relation⊢, the
conjunction ofA with B is a⊢-antithesis. Such conditions as Addition are, of course,
taken not as descriptive theories about all agents, since irrational agents would serve
as counterexamples. Rather they are proposed coherence constraints on all rational
agents.

The Principle of Addition is stated in terms of degrees of belief, or credences.
Where no ambiguity results we also use the same term to refer to the correspond-
ing principle applied to⊢-probability functions, with incompatibility understoodin
terms of⊢ (as just explained). Now in some writings (particularly Shafer’s) the rea-
son suggested for giving up Addition is openly verificationist. Shafer says that when
an agent has no evidence forp, they should assign degree of belief 0 top. Degrees
of belief, under this approach, must be proportional to evidence.2 In recent philo-
sophical literature, this kind of verificationism is often accompanied by an insistence
that validity of arguments be judged by the lights of⊢IL rather than⊢CL.

A similar line of thought is to be found in [4]. Harman notes that when we don’t
distinguish between the truth conditions for a sentence andits assertibility condi-
tions, the appropriate logic is intuitionistic. And when we’re considering gambles,
something like this is correct. When betting onp we don’t, in general, care ifp is
true as opposed to whether it will be discovered thatp is true. A p-bet, wherep
asserts the occurrence of some event, for instance, becomesa winning bet, not when
that event occurs, but whenp becomes assertible. So perhaps not just verificationists
like Shafer, but all those who analyze degrees of belief as propensity to bet should
adopt constructivist approaches to probability.

To see the point Harman is making, consider this example. We are invited to quote
for p-bets and¬p-bets, wherep is ‘O. J. Simpson murdered his wife’. If we are to
take the Californian legal system literally, the probability of that given the evidence
is strictly between one-half and one. To avoid one objection, these bets don’t just
pay $1 if the bettor guesses correctly. Rather they pay $1 invested at market rates of
interest at the time the bet is placed. The idea is that if we pay x cents for the bet
now, when it is discovered that we have bet correctly we will receive a sum of money
that is worth exactly as much as $1 now. Still, we claim, it might be worthwhile to
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quote less than 50 cents for each of the bets. Even if we will receive $1 worth of
reward if we wager correctly, there is every possibility that we’ll never find out. So
it might be that placing a bet would be a losing play either way. To allow for this,
the sum of our quotes for thep-bet and the¬p-bet may be less than $1. As Harman
points out, to reply by wielding a Dutch Book argument purporting to show that this
betting practice is incoherent would be blatantly question-begging. That argument
simply assumes thatp ∨ ¬p is a logical truth, which is presumably part of what’s
at issue. (In our terminology, this disjunction has the status of a⊢CL-thesis which is
not a⊢IL-thesis.)

Harman’s point is not to argue for an intuitionistic approach to probability. Rather,
he is arguing against using probabilistic semantics for propositional logic. Such an
approach he claims would be bound to lead to intuitionistic logic for the reasons
given above. He thinks that, since this would be an error, themove to probabilistic
semantics is simply misguided. Whatever we think of this conclusion, we can press
into service his arguments for intuitionistic Bayesianism.

2.2 The second argument for this approach turns on the antirealism of some
heterodox theorists. So Shackle, for example, argues that if we are antirealists about
the future, we will assign positive probability to no future-directed proposition. The
following summary is from a sympathetic interpreter of Shackle’s writing.

[T]here is every reason to refuse additivity: [it] implies that the certainty that
would be assigned to the set of possibilities should be ‘distributed’ between
different events. Now this set of events is undetermined as the future—that
exists only in imagination—is. (Ponsonnet [17], p. 171)

Shackle’s antirealism is motivated by what most theorists would regard as a philo-
sophical howler: he regards realism about the future as incompatible with human
freedom and holds that human beings are free. The second premise here seems
harmless enough, but the first is notoriously difficult to motivate. Nevertheless, there
are some better arguments than this for antirealism about the future. If we adopt
these, it isn’t clear why we should “assign certainty” to theset of possibilities.

Shackle is here assuming that for any propositionp, even a proposition about the
future, p ∨ ¬p is now true, although neither disjunct is true. Given his interests
it seems better to follow Dummett here and say that if we are antirealists about a
subject, then for propositionsp about that subject,p ∨ ¬p fails to be true. Hence
we have no need to “assign certainty to the set of possibilities.” Or perhaps more
accurately, assigning certainty to the set of possibilities does not mean assigning
probability 1 top∨¬p; in particular, condition (P1) on⊢-probability functions does
not require this when we choose⊢ as⊢IL.

2.3 The third motivation for adopting an intuitionistic approach to probability is
that it allows us to retain the Kolmogorov axioms for probability, in particular, the
Principle of Addition. This principle has, to my mind at least, some intuitive motiva-
tion. And the counterexamples leveled against it by heterodox theorists seem rather
weak from the intuitionistic Bayesian perspective. For they all are cases where we
might feel it appropriate to assign a low probability to a proposition and its nega-
tion.3Hence if we are committed to sayingPr(A∨ ¬A) = 1 for all A, we must give
up the Principle of Addition. But the intuitionistic Bayesian simply denies that in
these casesPr(A ∨ ¬A) = 1, so no counterexample to Addition arises. This denial
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is compatible with condition (P1) onPr ’s being a⊢IL-probability function since, as
already noted,A ∨ ¬A is not in general a⊢IL-thesis.

2.4 The final argument for taking an intuitionistic approach is that it provides
a justification for rejecting the positive arguments for classical Bayesianism. These
provide a justification for requiring coherent degrees of belief to be representable
by the classical probability calculus. There are a dizzyingvariety of such argu-
ments which link probabilistic epistemology to decision theory, including: the tradi-
tional Dutch Book arguments found in Ramsey [18], Teller [24], and Lewis [10]; de-
pragmatized Dutch Book arguments which rely on consistencyof valuations, rather
than avoiding actual losses, as in Howson and Urbach [6], Christensen [1], and Hell-
man [5]; and arguments from the plausibility of decision theoretic constraints to
constraints on partial beliefs, as in Savage [19], Maher [11], and Kaplan [8]. As well
as these, there are arguments for classical Bayesianism which do not rely on deci-
sion theory in any way, but which flow either directly from thedefinitions of degrees
of belief or from broader epistemological considerations.A summary of traditional
arguments of this kind is in Paris [16]. Joyce [7] provides an interesting modern
variation on this theme.

All such arguments assume that classical—rather than, say,intuitionistic—
reasoning is appropriate. The intuitionist has a simple andprincipled reason for
rejecting those arguments. The theorist who endorses⊢CL when considering ques-
tions of inference presumably lacks any such simple reason.And they need one
unless they think it appropriate to endorse one position knowing there is an unre-
futed argument for an incompatible viewpoint.

We are not insisting that non-Bayesians will be unable to refute these arguments
while holding on to⊢CL. We are merely suggesting that the task will be Herculean. A
start on this project is made by Shafer [23], which suggests some reasons for break-
ing the link between probabilistic epistemology and decision theory. Even if these
responses are successful, such a response is completely ineffective against arguments
which do not exploit such a link. As we think these are the strongest arguments for
classical Bayesianism, non-Bayesians have much work left to do. And it is possible
that this task cannot be completed. That is, it is possible that the only questionable
step in some of these arguments for classical Bayesianism istheir use of noncon-
structive reasoning. If this is so only theorists who give up⊢CL can respond to such
arguments.

In sum, non-Bayesians need to be able to respond to the wide variety of argu-
ments for Bayesianism. Non-Bayesians who hold on to⊢CL must do so without
questioning the implicit logical assumptions of such arguments. Given this restric-
tion, producing these responses will be a slow, time-consuming task; the responses
will in all likelihood be piecemeal, providing little senseof the underlying flaw of
the arguments; and for some arguments it is possible that no effective response can
be made. Intuitionistic Bayesians have a quick, systematicand, we think, effective
response to all these arguments.

3 More on Intuitionistic Probability Functions

Having explained the motivation for intuitionistic Bayesianism, let us turn our at-
tention in greater detail to its main source of novelty: the intuitionistic probability
functions. We concentrate on logical matters here, in the following section justifying
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the singling out of this class of probability functions by showing that an epistemic
state represented byBel is invulnerable to a kind of Dutch Book if and only ifBel is
an intuitionistic probability function.

For the case of specificallyclassical probability functions, the conditions
(P0) – (P4) of Section1 involve substantial redundancy. For example, we could
replace (P2) and (P3) by—what would in isolation be weaker conditions—(P2′) and
(P3′).

(P2′) If A ⊣⊢ B thenPr(A) = Pr(B).

(P3′) If ⊢ ¬(A ∧ B) thenPr(A ∨ B) = Pr(A) + Pr(B).

However, in the general case of arbitrary⊢-probability functions (or rather, those for
which¬ is among the connectives of the language of⊢), such a replacement would
result in a genuine weakening, as we may see from a consideration of the class of
⊢IL-probability functions. Whereas both (P2′) and (P3′) are satisfied for⊢ as⊢IL, the
class of functionsPr satisfying (P0), (P1), (P2′), and (P3′) is broader (for this choice
of ⊢) than the class of intuitionistic probability functions. To see this, first note that
the functionP, defined immediately below, satisfies (P0), (P1), (P2), and (P3′), but
not (P3).

P(A) = 1 if p ∨ q ⊢IL A;

= 0 otherwise.

(Here p andq are a pair of atomic sentences.) To see that (P3′) is satisfied, assume
P(A ∨ B) = 1 and⊢IL ¬(A ∧ B). Then p ∨ q ⊢IL A ∨ B, andB ⊢IL ¬A. Hence
p ∨ q ⊢IL A∨ ¬A, but this only holds if either (1)p ∨ q ⊢IL A or (2) p ∨ q ⊢IL ¬A.
(For if p ∨ q ⊢IL A ∨ ¬A, then p ⊢IL A ∨ ¬A andq ⊢IL A ∨ ¬A, whence by
a generalization, due to Harrop, of the Disjunction Property for intuitionistic logic,
either p ⊢IL A or p ⊢IL ¬A and similarly eitherq ⊢IL A or q ⊢IL ¬A. Thus one of
the following four combinations obtains:

(a) p ⊢IL A andq ⊢IL A,
(b) p ⊢IL A andq ⊢IL ¬A,
(c) p ⊢IL ¬A andq ⊢IL A,
(d) p ⊢IL ¬A andq ⊢IL ¬A.

But cases (b) and (c) can be ruled out since they would makep and q ⊢IL-
incompatible, contradicting their status as atomic sentences, and from (a) and
(d), (1) and (2) follow, respectively.) If (1) first holds then P(A) = 1, as required. If
(2) holds thenp ∨ q ⊢IL (A ∨ B) ∧ ¬A and(A ∨ B) ∧ ¬A ⊢IL B, so P(B) = 1.
The other cases are trivial to verify and are left to the reader.

To see that (P2) is needed (for the current choice of⊢), as opposed to just (P2′),
consider the following Kripke tree.
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We introduce a “weighting” functionw by settingw(1) = 0.2, w(2) = 0.3,
w(3) = −0.1, andw(4) = 0.6. For anyA, let P(A) =

∑
w(i ), where the sum-

mation is across all pointsi that forceA. So P(p) = 0.6 and P(¬¬p) = 0.5,
contradicting (P2). But (P0), (P1), (P2′), and (P3) are all satisfied, showing that (P2)
is in the general case not derivable from these three conditions.

4 Bets and Intuitionistic Probability Functions

Say that anA-bet is a bet that pays $1 ifA and nothing otherwise. These will some-
times be called bets onA. In this theory, as in real life, it is possible that neither
A-bets nor¬A-bets will ever be collected, so holding anA-bet and a¬A-bet is not
necessarily as good as holding $1. AnA-bet becomes a winning bet, that is, worth
$1, just when it becomes known thatA. We will assume that bookmakers and pun-
ters are both logically proficient and honest, so that when aB-bet becomes a winning
bet andB ⊢IL A, then anA-bet is a winning bet. The picture underlying this story is
the Kripke tree semantics for intuitionistic logic. Bettors are thought of as being at
some node of a Kripke tree, anA-bet wins at that stage if and only ifA is forced by
that node. Bettors do not know that any future nodes will be reached, so they cannot
be confident that all bets on classical tautologies (⊢CL-theses) will be winning. And
more importantly, we take it that an(A∨ B)-bet wins if and only if anA-bet wins or
a B-bet wins. Again this mirrors the fact thatA∨ B is forced at a node if and only if
A is forced orB is forced.

Finally, to get the Dutch Book style argument going, assume that for any sequence
of bets onA1, A2, . . . , Ak, the bettor values the sequence at $(Bel(A1) + Bel(A2) +

· · · + Bel(Ak)). This is obviously unrealistic and economically suspect,4 but is per-
haps a useful analogy. ThenBel leads to coherent valuations in all circumstances
if and only if Bel is an intuitionistic probability function. That is, ifBel is not an
intuitionistic probability function (henceforth, IPF) then there will be two finite se-
quences of betsS1 andS2 such thatS1 is guaranteed to pay at least as much asS2 in
all circumstances, butS2 is given higher value by the agent. For simplicityBel will
be called incoherent if this happens, and coherent otherwise. If Bel is an IPF there
are no two such sequences, so it is coherent.

If Bel is not an IPF then we just need to look at which axiom is breached in order
to construct the sequences. For example, if (P3) is breachedthen let the sequences be
〈A, B〉 and〈A ∨ B, A ∧ B〉. The same number of propositions from each sequence
are forced at every node of every Kripke tree, so the coherence requirement is that
the two sequences receive the same value. But ex hypothesi they do not, soBel is in-
coherent. Similar proofs suffice for the remaining axioms (the remaining conditions
on⊢-probability functions, that is, as they apply in the special case of⊢ = ⊢IL).

To show that ifBel is an IPF it is coherent, we need some more notation.
Let 〈A1, . . . , Ak〉 be a sequence of propositions. Then saycn,k is the proposi-
tion true if and only if at leastn of these are true. Soc2,3 is the proposition
(A1 ∧ A2)∨ (A1 ∧ A3)∨ (A2∧ A3). AssumingBel is an IPF, we prove the following
lemma holds for allk.

Lemma 4.1
k∑

i=1

Bel(Ai ) =

k∑

i=1

Bel(ci,k)
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Proof The proof is by induction onk. Fork = 1 andk = 2, the proof is given by
the axioms. So it remains only to complete the inductive step. For ease of reading in
the proof we writeA for Bel(A) where no ambiguity would result.

By the inductive hypothesis we have

k
k+1∑

i=1

Ai = k
k∑

i=1

ci,k + k Ak+1

= (k − 1)

k∑

i=1

ci,k +

k∑

i=1

ci,k + k Ak+1

= (k − 1)

k∑

i=1

ci,k +

k∑

i=1

(ci,k ∨ Ak+1) + (ci,k ∧ Ak+1)

by k applications of (P3). Since

k+1∑

i=1

Ai =

k∑

i=1

Ai + Ak+1 =

k∑

i=1

ci,k + Ak+1,

this equation simplifies to

k+1∑

i=1

Ai + (k − 1)Ak+1 =

k∑

i=1

(ci,k ∨ Ak+1) + (ci,k ∧ Ak+1).

Sinceci,k ∨ Ak+1 ⊣⊢ ci,k+1 ∨ Ak+1 andci,k ∧ Ak+1 ⊣⊢ ci+1,k+1 ∧ Ak+1, we have

k∑

i=1

(ci,k+1 ∨ Ak+1) +

k∑

i=1

(ci+1,k+1 ∧ Ak+1).

Now, c1,k+1 ∨ Ak+1 ⊣⊢ c1,k+1 andck+1,k+1 ∧ Ak+1 ⊣⊢ ck+1,k+1, from the defini-
tions ofc. So substituting in these equivalences and slightly renumbering we get

= c1,k+1 + ck+1,k+1 +

k−1∑

i=1

(ci+1,k+1 ∨ Ak+1) +

k−1∑

i=1

(ci+1,k+1 ∧ Ak+1).

Regrouping the last two summations and applying (P3),

= c1,k+1 + ck+1,k+1 +

k−1∑

i=1

ci+1,k+1 + Ak+1

=

k+1∑

i=1

ci+1,k+1 + (k − 1)Ak+1.

And canceling out the second term on each side gives us the result we want. From
this it follows immediately thatBel is coherent. LetS1 andS2 be any two sequences
such thatS1 is guaranteed to pay as much asS2. That is, thatS2 pays $n entails
S1 pays at least $n for all n. Now the lemma shows that for each sequence of bets,
their value equals the sum of the probability that they’ll pay at leastn for all values
of n, up to the length of the sequence. So by as many appeals to (P2)as there are
bets inS1, we have that the value ofS2 is less than or equal to the value ofS1, as
required. �
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Given the well-known problems with Dutch Book arguments,5 it might be wondered
if we can give a different justification for the axioms. Indeed it may be considered
helpful to have a semantics for the logic which does not referto betting practices.
One possibility is to say that IPFs are normalized measures on Kripke trees. The
idea is that the probability of a proposition is the measure of the set of points at
which the proposition is forced. It is straightforward to give a nonconstructive proof
that the axioms are sound with respect to these semantics, but making this proof
constructive and providing any proof that the axioms are complete is a harder task.
So for now this Dutch Book justification for the axioms is the best available.

Appendix A The Morgan-Leblanc-Mares Calculus

In a series of papers (Morgan and Leblanc [13; 15], Morgan and Mares [14]) an
approach to probability grounded in intuitionistic logic has been developed. The
motivation is as follows. A machine contains an unknown set of propositionsS,
which need not be consistent.Pr(A, B) is the maximal price we’d pay for a bet
that S and B intuitionistically entail A (S, A ⊢IL B, that is). By standard Dutch
Book arguments, we obtain axioms for a probability calculuswhich has some claim
to being constructivist. The point of this section is to register the shortcomings of
this approach as a theory of uncertain reasoning from evidence—to point out, that is,
the implausibility of interpreting the axioms they derive as normative constraints on
degrees of belief. (It should be noted from the start that this was not the advertised
purpose of their theory, and at least one of the authors (Mares) has said (in personal
conversation) that the primary purpose of constructing these theories was to general-
ize the triviality results proved in Lewis [9]. So the purpose of this appendix may be
to argue for something that isn’t in dispute: that these theories can’t be pushed into
double duty as theories of reasoning under uncertainty.)

The axiomatizations given in the Morgan and Leblanc papers differ a little from
that given in the Morgan and Mares paper, but the criticisms leveled here apply to
their common elements. In particular, the following four axioms are in both sets.

(C1) 0≤ Pr(A, B) ≤ 1.
(C2) Pr(A, A ∧ B) = 1.
(C3) Pr(A, B ∧ C) · Pr(B, C) = Pr(B, A ∧ C) · Pr(A, C).
(C4) Pr(A ⊃ B, C) = Pr(B, A ∧ C).

These four are enough to get both the unwanted consequences.In particular, from
these we get the “no negative evidence” rule:Pr(A, B∧C) ≥ Pr(A, B). The proof
is in [14]. Now given the semantic interpretation they have adopted,this is perhaps
not so bad. After all, if we can proveA from B andS, we can certainly prove it from
B ∧ C andS, but the converse does not hold. However, from our perspective this
feature seems a little implausible. In particular, ifC is ¬A, it seems we should have
Pr(A, B ∧ ¬A) = 0 unlessB ⊢IL A, in which casePr(A, B ∧ ¬A) is undefined.

It shouldn’t be that surprising that we get odd results given(C4). Lewis [9] shows
that adopting it for a (primitive or defined) connective ‘→’ within the classical prob-
ability calculus leads to triviality. And neither the arguments he uses there nor the
arguments for some stronger conclusions in Lewis [10] rely heavily on classical prin-
ciples. The papers by Morgan and Leblanc don’t discuss this threat, but it is discussed
in detail in [14]. Morgan and Mares note that it’s possible to build a theory based
on (C1) to (C4) that isn’t trivial in the sense Lewis described. But these theories
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still have enough surprising features that they aren’t suitable for use as a theory of
reasoning under uncertainty.

In intuitionistic logic we often take the falsum⊥ as a primitive connective, func-
tioning as a⊢IL-antithesis. Hence a setS is intuitionistically consistent if and only if
we do not haveS ⊢IL ⊥. Now the following seems a plausible condition:

(C⊥) For consistentB, Pr(⊥, B) = 0.

Given consistent evidence, we have no evidence at all that the falsum is true. Hence
we should set the probability of the falsum to 0 (as required by our condition (P0)
from Section1). Given Morgan and Leblanc’s original semantic interpretation there
is less motivation for adopting (C⊥), sinceS might be inconsistent. The restriction
to consistentB in (C⊥) is imposed because we takePr(A, B) to be undefined for
inconsistentB, as explained at the end of Section1. (In more detail: ifB is a⊢IL-
antithesis thenPr(B) = 0 for any intuitionistic probability functionPr , whence
the undefinedness ofPr(A, B) by the remarks at the end of that section.) Morgan,
Leblanc, and Mares take it to be set at 1. The choice here is a little arbitrary, the only
decisive factor being apparently the easier statement of certain results. Now if we
take the falsum as a primitive the next move is usually to introduce¬ as a defined
connective as follows.

¬A =def A ⊃ ⊥.

AssumingA ∧ B is consistent, it follows from (C4) and (C⊥) that Pr(¬A, B) = 0.
Again, from our perspective this is an implausible result. The main purpose of this
appendix has been to show that the Morgan-Leblanc-Mares probability calculus can-
not do the work Bayesians want a probability calculus to do. That is, it is implausible
to regard theirPr(A, B) as the reasonable degree of belief inA givenB. Hence the
account of conditional probability these authors offer diverges from the intuitionistic
Bayesianism that we have been urging heterodox theorists toendorse.

Notes

1. For more details, see Zadeh [25], Dempster [3], Shafer [22], Shackle [21], Cohen [2],
Schmeidler [20].

2. This assumption was shared by many of the participants in thesymposium on probability
in legal reasoning, reported in the Boston University Law Review 66 (1986).

3. Again the discussion in [22] (ch. 2) is the most obvious example of this, but similar
examples abound in the literature.

4. It is economically suspect because, in simplified terms,Bel(A) gives at best the use-
value of anA-bet, but this is distinct from the exchange-value the agentplaces on the
bet. And it is the exchange-value that determines her patterns of buying and selling.

5. See Maher [12] for criticisms of the most recent attempts at successful Dutch Book
arguments and references to criticisms of earlier attempts.
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