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From Classical to Intuitionistic Probability

Brian Weatherson

Abstract We generalize the Kolmogorov axioms for probability calsuio ob-
tain conditions defining, for any given logic, a class of bitity functions rela-
tive to that logic, coinciding with the standard probaifiinctions in the special
case of classical logic but allowing consideration of ottlasses of “essentially
Kolmogorovian” probability functions relative to othergics. We take a broad
view of the Bayesian approach as dictatinger alia that from the perspective
of a given logic, rational degrees of belief are those rapresble by probabil-
ity functions from the class appropriate to that logic. Gleal Bayesianism,
which fixes the logic as classical logic, is only one versibrthis general ap-
proach. Another, which we call Intuitionistic Bayesianjsselects intuitionistic
logic as the preferred logic and the associated class ofapifity functions as
the right class of candidate representions of epistemies(eational allocations
of degrees of belief). Various objections to classical Bémism are, we ar-
gue, best met by passing to intuitionistic Bayesianism—iiicv the probability
functions are taken relative to intuitionistic logic—ratfthan by adopting a radi-
cally non-Kolmogorovian, for example, nonadditive, copten of (or substitute
for) probability functions, in spite of the popularity ofehatter response among
those who have raised these objections. The interest dfiontistic Bayesian-
ism is further enhanced by the availability of a Dutch Booguanent justifying
the selection of intuitionistic probability functions asides to rational betting
behavior when due consideration is paid to the fact that aedssettled only
when/if the outcome bet on becomes known.

1 Introduction

It is a standard claim of modern Bayesian epistemology teasanable epistemic
states should be representable by probability functioterd have been a number
of authors who have opposed this claim. For example, it has blimed that epis-
temic states should be representable by Zadeh'’s fuzzyBetapster and Shafer’s
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evidence functions, Shackle’s potential surprise fumstjcCohen’s inductive prob-
abilities, or Schmeidler’'s nonadditive probabilitiesA major motivation of these
theorists has been that in cases where we have little or dews for or againgp,

it should be reasonable to have low degrees of belief in eaptaad— p, something
apparently incompatible with the Bayesian approach. Thezd¢wo broad types of
response to this situation, the second of which shows thempatibility just men-
tioned is more apparentthan real. The first of these—muchideace in the work of
the writers just cited—is to replace or radically reconsttite notion of probability
taken by that approach to represent degrees of belief. Tdmde—to be defended
here—seeks to maintain the core of standard probabilityrthieut to generalize the
notion of a probability function to accommodate variatiorthe background logic
of the account; this allows us to respond to such issues dswhdegree of belief
in a proposition and its negation by simply weakening thekgemund logic from
classical to intuitionistic logic. Thus if Bayesianism isnstrued as in our opening
sentence, one way to respond to the objections of the hetermidters listed above
is to trade inclassicalBayesianism fointuitionistic Bayesianism. Since for many
theorists at least the motivation for their opposition toy8sianism is grounded in
either verificationism or antirealism, a move to an intuitgiic theory of probability
seems appropriate. Indeed, as Harm@mptes, the standard analysis of degrees of
belief as dispositions to bet leads naturally to an intaigtic theory of probability.
We give a Dutch Book argument in defense of constructive Biayésm in Sectior
below.

The appropriate generalization of the notion of a probghilinction makes ex-
plicit allowance for a sensitivity to the background logithe latter we identify
with a consequence relation, such as, in particular, theemurence relatiobc,
associated with classical logic or the consequence ralagjoassociated with intu-
itionistic logic. To keep things general, we assume only tha languages under
discussion have two binary connectivesand A. No assumptions are made about
how a consequence relation on such a language treats codgfoumed using these
connectives, though of course in the cases in which we aecesdly interested; ¢
andt., such compounds have the expected logical properties. kdha language
of these two consequences relations to be the same, assimpagicular that nega-
tion (—) is present for both. Finally, iA belongs to the language of a consequence
relationt, then we say thaf\ is at--thesisif - A and thatA is at--antithesisf for
all B in that languagé\ + B. (Thus thé--theses and antitheses represent the logical
truths and logical falsehoods as seen from the perspedtive)oWe are now in a
position to give the key definition.

If - is a consequence relation, then a functn mapping the language of
to the real intervalO, 1] is a F-probability function if and only if the following
conditions are satisfied:

(P0) Pr(A) =0if Ais al--antithesis;

(P1) Pr(A) =1if Ais al-thesis;

(P2) If A+ BthenPr(A) < Pr(B);

(P3) Pr(A)+Pr(B)=Pr(Av B)+ Pr(AAB).

If - istcL, then we call a-probability function eclassical probability functionif
 is . we call aF-probability function arintuitionistic probability function The
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position described above as intuitionistic Bayesianismldioeplace classical prob-
ability functions by intuitionistic probability functi®as candidate representations
of reasonable epistemic states. Note that classical pilaipdibnctions in this sense
are exactly those obeying the standard probability catcakioms. In particular, the
familiar negation axiom dictating th&r (—A) = 1— Pr(A) emerges as a byproduct
of the interaction between the general (i.e., logic-inecefmt) condition (P3) and,
via (P0) and (P1), the logic-specific facts thhet — A is al-¢c_-antithesis and\v — A

is ak-¢L-thesis for anyA.

Although it is these two kinds—intuitionistic and classieaf probability func-
tions we shall be dealing with specifically in what followse wmphasize the gen-
erality of the above definition of &-probability function and invite the reader to
consider what effect further varying the choicetothas on the behavior of such
functions. Our attention will be on the comparative merit$-g_ andt,_ in this
regard. (It may have occurred to the reader in connection (#8) above that we
might naturally have considered a generalized version®f @ ‘countable additiv-
ity’. Whether such a condition ought to be adopted will tumsome rather difficult
questions concerning the use of infinities in constructasoning; let us leave it as
a question for further research. We have stated (P3) in itsufynform so as not to
require that intuitionistic probability functions satishe more contentious general
condition.)

In the following section we shall review some of the motigas for intuition-
istic Bayesianism. The arguments are rather piecemea/;afedesigned to show
that given the philosophical commitments various writarthie field have expressed
they would be better off taking this route, that is, focusomgthe class of intu-
itionistic probability functions, than—as many of them bauggested—abandoning
Bayesianism in our broad sense. In particular, we shall tirgemoves in the latter
direction which involve abandoning (what we shall call) thenciple of Addition
are seriously undermotivated.

One aspect of the Bayesian perspective which we have noidewad concerns
the dynamics rather than the statics of epistemic statepaiiticular the idea that
changes in such states are governed for rational agentsebyriticiple of condi-
tionalizing on new information. This requires that we hawyadic functor avail-
able for expressing conditional probabilities. Accordingvhere Pr is for some
consequence relatior a F-probability function, we favor the standard account
and take the associated conditiohraprobability functionPr (-, -) to be given by
Pr(A, B) = Pr(A A B)/Pr(B) whenPr(B) # 0, with Pr (A, B) undefined when
Pr(B) = 0. The intention, of course, is th&tr (A, B) represents the conditional
probability of A given B. We defer further consideration of conditional probatilit
until AppendixA.

2 Motivating Intuitionistic Bayesianism

There are four main reasons for grounding preferring im@nistic over classical
probability functions as representing the range of redslerepistemic states. These
are: (1) a commitment to verificationism, (2) a commitmentatdirealism, (3)
preservation of the Principle of Addition, and (4) avoidaraf direct arguments
for the orthodox approach. Now some of these will be vieweddye people as
bad reasons for adopting the given position, a reaction wihich it is not hard
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to sympathize. In particular, the verificationist and adlist elements of the the-
ory might well be viewed as negatives. These arguments areipally directed at
showing that, by their own lights, various opponents ofsitzes Bayesianism would
do better to adopt the intuitionistic Bayesian positiomteame still more heterodox
non-Bayesian account.

2.1 A standard objection to classical Bayesianism is that ith@msvay of rep-
resenting complete uncertainty. Because of the failurelsaplace’s principle of
indifference, it can’t be said that uncertainty abpus best represented by assigning
credence 12 to p. Heterodox approaches usually allow the assignment ot

0 to bothp and—p when an agent has no evidence at all as to whether op ot
true. Because these approaches generally require an agasgign credence 1 to
classical tautologies, including v —p, these theories must give up the following
Principle of Addition

Addition For incompatibleA, B: Bel(A v B) = Bel(A) + Bel(B).

‘Bel(A)’ is here used to mean the degree of belief the agent h&s and ‘incom-
patible’ to apply toA andB in which for some favored consequence relatigrihe
conjunction ofA with B is al--antithesis. Such conditions as Addition are, of course,
taken not as descriptive theories about all agents, siratoinal agents would serve
as counterexamples. Rather they are proposed coherensteadots on all rational
agents.

The Principle of Addition is stated in terms of degrees ofdfelor credences.
Where no ambiguity results we also use the same term to refiaetcorrespond-
ing principle applied ta--probability functions, with incompatibility understoam
terms oft- (as just explained). Now in some writings (particularly f&ina) the rea-
son suggested for giving up Addition is openly verificatginShafer says that when
an agent has no evidence fpyrthey should assign degree of belief OgoDegrees
of belief, under this approach, must be proportional to eva? In recent philo-
sophical literature, this kind of verificationism is ofteccampanied by an insistence
that validity of arguments be judged by the lightd-gf rather than-¢, .

A similar line of thought is to be found ir{]. Harman notes that when we don’t
distinguish between the truth conditions for a sentenceitsnassertibility condi-
tions, the appropriate logic is intuitionistic. And when’meconsidering gambles,
something like this is correct. When betting prwe don't, in general, care ip is
true as opposed to whether it will be discovered thas true. A p-bet, wherep
asserts the occurrence of some event, for instance, be@wiegsing bet, not when
that event occurs, but whembecomes assertible. So perhaps not just verificationists
like Shafer, but all those who analyze degrees of belief apgsity to bet should
adopt constructivist approaches to probability.

To see the point Harman is making, consider this example.rédfmaited to quote
for p-bets and-p-bets, wherep is ‘O. J. Simpson murdered his wife’. If we are to
take the Californian legal system literally, the probabibtf that given the evidence
is strictly between one-half and one. To avoid one objectibase bets don't just
pay $1 if the bettor guesses correctly. Rather they pay $isbed at market rates of
interest at the time the bet is placed. The idea is that if wexpeents for the bet
now, when it is discovered that we have bet correctly we withive a sum of money
that is worth exactly as much as $1 now. Still, we claim, it htige worthwhile to
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guote less than 50 cents for each of the bets. Even if we vaélive $1 worth of
reward if we wager correctly, there is every possibilityttha’ll never find out. So

it might be that placing a bet would be a losing play either way allow for this,
the sum of our quotes for the-bet and the-p-bet may be less than $1. As Harman
points out, to reply by wielding a Dutch Book argument putimgyto show that this
betting practice is incoherent would be blatantly quesbegging. That argument
simply assumes that v —p is a logical truth, which is presumably part of what's
at issue. (In our terminology, this disjunction has theustaif a-¢c -thesis which is
not ak_-thesis.)

Harman'’s pointis not to argue for an intuitionistic approsxprobability. Rather,
he is arguing against using probabilistic semantics foppsitional logic. Such an
approach he claims would be bound to lead to intuitionigigid for the reasons
given above. He thinks that, since this would be an errorntbee to probabilistic
semantics is simply misguided. Whatever we think of thisobasion, we can press
into service his arguments for intuitionistic Bayesianism

2.2 The second argument for this approach turns on the antreai some
heterodox theorists. So Shackle, for example, arguesfthvatare antirealists about
the future, we will assign positive probability to no futdeected proposition. The
following summary is from a sympathetic interpreter of Stias writing.

[T]here is every reason to refuse additivity: [it] implidgt the certainty that
would be assigned to the set of possibilities should beribisted’ between
different events. Now this set of events is undeterminechaduture—that
exists only in imagination—is. (Ponsonnét7], p. 171)

Shackle’s antirealism is motivated by what most theoristsildl regard as a philo-
sophical howler: he regards realism about the future asmpedible with human
freedom and holds that human beings are free. The secondsgrérare seems
harmless enough, but the first is notoriously difficult to ivette. Nevertheless, there
are some better arguments than this for antirealism abeufutiure. If we adopt
these, it isn’t clear why we should “assign certainty” to flee of possibilities.

Shackle is here assuming that for any proposifipeven a proposition about the
future, p v —p is now true, although neither disjunct is true. Given higiasts
it seems better to follow Dummett here and say that if we atgeatists about a
subject, then for propositiong about that subjectp v —p fails to be true. Hence
we have no need to “assign certainty to the set of posséslitiOr perhaps more
accurately, assigning certainty to the set of possibditlees not mean assigning
probability 1 top v —p; in particular, condition (P1) or-probability functions does
not require this when we chookeast..

2.3 The third motivation for adopting an intuitionistic appobeto probability is
that it allows us to retain the Kolmogorov axioms for proli&piin particular, the
Principle of Addition. This principle has, to my mind at [asme intuitive motiva-
tion. And the counterexamples leveled against it by het@xaldeorists seem rather
weak from the intuitionistic Bayesian perspective. Foryth# are cases where we
might feel it appropriate to assign a low probability to agwsition and its nega-
tion.°Hence if we are committed to sayimy (A v —A) = 1 for all A, we must give

up the Principle of Addition. But the intuitionistic Bayesi simply denies that in
these caseBr (A v —A) = 1, so no counterexample to Addition arises. This denial
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is compatible with condition (P1) oRr’s being a-_-probability function since, as
already notedA v —Ais not in general & _-thesis.

2.4 The final argument for taking an intuitionistic approachhattit provides
a justification for rejecting the positive arguments forssiaal Bayesianism. These
provide a justification for requiring coherent degrees dfdbe¢o be representable
by the classical probability calculus. There are a dizzyagety of such argu-
ments which link probabilistic epistemology to decisioadhy, including: the tradi-
tional Dutch Book arguments found in Ramseé]| Teller [24], and Lewis [L(]; de-
pragmatized Dutch Book arguments which rely on consistefealuations, rather
than avoiding actual losses, as in Howson and Urbé@giChristensend], and Hell-
man []; and arguments from the plausibility of decision thearetonstraints to
constraints on partial beliefs, as in Sava@yd,[Maher [L1], and Kaplan §]. As well
as these, there are arguments for classical Bayesianisaohwlbinot rely on deci-
sion theory in any way, but which flow either directly from tihefinitions of degrees
of belief or from broader epistemological consideratiohsummary of traditional
arguments of this kind is in Parid@]. Joyce [/] provides an interesting modern
variation on this theme.

All such arguments assume that classical—rather than, isyitionistic—
reasoning is appropriate. The intuitionist has a simple puicipled reason for
rejecting those arguments. The theorist who enddtggswvhen considering ques-
tions of inference presumably lacks any such simple reagomd they need one
unless they think it appropriate to endorse one positiorwkmg there is an unre-
futed argument for an incompatible viewpoint.

We are not insisting that non-Bayesians will be unable tatestfhese arguments
while holding on ta-¢. . We are merely suggesting that the task will be Herculean. A
start on this project is made by Shaféf], which suggests some reasons for break-
ing the link between probabilistic epistemology and decigheory. Even if these
responses are successful, such a response is complefédgiive against arguments
which do not exploit such a link. As we think these are thergiest arguments for
classical Bayesianism, non-Bayesians have much workdefot And it is possible
that this task cannot be completed. That is, it is possitdéttie only questionable
step in some of these arguments for classical Bayesianisheisuse of noncon-
structive reasoning. If this is so only theorists who give-¢p can respond to such
arguments.

In sum, non-Bayesians need to be able to respond to the witiktwaf argu-
ments for Bayesianism. Non-Bayesians who hold om-¢p must do so without
questioning the implicit logical assumptions of such arguats. Given this restric-
tion, producing these responses will be a slow, time-comsgnask; the responses
will in all likelihood be piecemeal, providing little sensé the underlying flaw of
the arguments; and for some arguments it is possible thaffectiee response can
be made. Intuitionistic Bayesians have a quick, systenaatit; we think, effective
response to all these arguments.

3 More on Intuitionistic Probability Functions

Having explained the motivation for intuitionistic Bayasism, let us turn our at-
tention in greater detail to its main source of novelty: theiitionistic probability
functions. We concentrate on logical matters here, in theviing section justifying
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the singling out of this class of probability functions byoghing that an epistemic
state represented IBelis invulnerable to a kind of Dutch Book if and onlyBfelis
an intuitionistic probability function.

For the case of specificallglassical probability functions, the conditions
(PO)—(P4) of Sectiorni involve substantial redundancy. For example, we could
replace (P2) and (P3) by—what would in isolation be weakedd@ns—(P2) and
(P3).

(P2) If A- BthenPr(A) = Pr(B).
(P3) If = —=(AAB)thenPr(Av B) = Pr(A) + Pr(B).

However, in the general case of arbitrarprobability functions (or rather, those for
which — is among the connectives of the languagé-hfsuch a replacement would
result in a genuine weakening, as we may see from a condmeitthe class of
FL-probability functions. Whereas both (Pand (P3) are satisfied for- ast_, the
class of function®r satisfying (P0), (P1), (PR and (P3) is broader (for this choice
of ) than the class of intuitionistic probability functionso $ee this, first note that
the functionP, defined immediately below, satisfies (P0), (P1), (P2), &&),(but
not (P3).

P(A) 1 ifpvghkyl A

0 otherwise.

(Here p andq are a pair of atomic sentences.) To see that)(BZatisfied, assume
P(Av B) = 1and+. —=(AA B). Thenpv gt Av B,andB . —A. Hence
pVv gtk Av—A, butthis only holds if either (1pv q L Aor (2) pvg L —A.
(Forif pvq bk Av —=A thenp L Av —Aandq . AV —A, whence by
a generalization, due to Harrop, of the Disjunction Propat intuitionistic logic,
eitherp L Aor p b —A and similarly eitheq . Aorq . —A. Thus one of
the following four combinations obtains:

(@) pFw Aandg i A,

(b) pFiL Aandg L —A,

(c) pFi—Aandqg i A,

(d) p i —A andq FiL —A.
But cases (b) and (c) can be ruled out since they would malend q +-
incompatible, contradicting their status as atomic sesgenand from (a) and
(d), (1) and (2) follow, respectively.) If (1) first holds th& (A) = 1, as required. If
(2) holds thenpv q . (Av By A—=Aand(Av B) A=A+, B,soP(B) = 1.
The other cases are trivial to verify and are left to the reade

To see that (P2) is needed (for the current choice)pfis opposed to just (A2
consider the following Kripke tree.
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We introduce a “weighting” functionw by settingw(l) = 0.2, w(2) = 0.3,
w(3) = —0.1, andw(4) = 0.6. For anyA, let P(A) = Y w(i), where the sum-
mation is across all pointsthat forceA. So P(p) = 0.6 andP(——p) = 0.5,
contradicting (P2). But (P0), (P1), (A2and (P3) are all satisfied, showing that (P2)
is in the general case not derivable from these three conditi

4 Bets and Intuitionistic Probability Functions

Say that amA-bet is a bet that pays $1 A and nothing otherwise. These will some-
times be called bets oA. In this theory, as in real life, it is possible that neither
A-bets nor—A-bets will ever be collected, so holding #abet and a-~A-bet is not
necessarily as good as holding $1. Arbet becomes a winning bet, that is, worth
$1, just when it becomes known that We will assume that bookmakers and pun-
ters are both logically proficient and honest, so that whBrxet becomes a winning
bet andB . A, then anA-bet is a winning bet. The picture underlying this story is
the Kripke tree semantics for intuitionistic logic. Betare thought of as being at
some node of a Kripke tree, atbet wins at that stage if and only X is forced by
that node. Bettors do not know that any future nodes will laehed, so they cannot
be confident that all bets on classical tautologieg ftheses) will be winning. And
more importantly, we take it that g\ v B)-bet wins if and only if anA-bet wins or

a B-bet wins. Again this mirrors the fact thatv B is forced at a node if and only if
A'is forced orB is forced.

Finally, to get the Dutch Book style argument going, assumagfor any sequence
of bets onA, Ao, ..., Ay, the bettor values the sequence &&(A1) + Bel(A2) +
... 4 Bel(Ay)). This is obviously unrealistic and economically susgelott is per-
haps a useful analogy. Thdel leads to coherent valuations in all circumstances
if and only if Belis an intuitionistic probability function. That is, Belis not an
intuitionistic probability function (henceforth, IPF)eh there will be two finite se-
quences of bet§; andS such thatS; is guaranteed to pay at least as muclsam
all circumstances, bug, is given higher value by the agent. For simplidgeg! will
be called incoherent if this happens, and coherent otherliBel is an IPF there
are no two such sequences, so it is coherent.

If Belis not an IPF then we just need to look at which axiom is brecamerder
to construct the sequences. For example, if (P3) is breablkedet the sequences be
(A, B) and(A v B, A A B). The same number of propositions from each sequence
are forced at every node of every Kripke tree, so the cohersgquirement is that
the two sequences receive the same value. But ex hypotleggithnot, sdelis in-
coherent. Similar proofs suffice for the remaining axiorhg (emaining conditions
onk-probability functions, that is, as they apply in the spkecése o = ).

To show that ifBel is an IPF it is coherent, we need some more notation.
Let (A1,..., Ac) be a sequence of propositions. Then say is the proposi-
tion true if and only if at leash of these are true. S0y 3 is the proposition
(A1 A A2) vV (AL A A3) Vv (A2 A Az). AssumingBelis an IPF, we prove the following
lemma holds for alk.

Lemma 4.1

k k
> "Bel(A) = > "Bel(ci k)
i=1 i=1
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Proof The proof is by induction oRk. Fork = 1 andk = 2, the proof is given by
the axioms. So it remains only to complete the inductive.dtep ease of reading in
the proof we writeA for Bel(A) where no ambiguity would result.

By the inductive hypothesis we have

k+1

k
kKD A = k) GktkAgs

i=1

K K
= k-D) ck+y Ck+kAy

i=1 i=1
k k
= (k-1 Zci,k + Z(Ci,k V Aks1) + (Cik A Arg)
i=1 i=1
by k applications of (P3). Since
k+1 k k
DA =Y A+AGLI= Y Ck+ At
i=1 i=1 i=1
this equation simplifies to
k+1 k
DA+ K—DAG1 =Y (GikV A1) + Gk A Akr).
i=1 i=1
Sinceci k vV Akt1 I Cikt1 V Akg1 andcik A Akt A Cigprke1 A Ak, We have
k k
D (Ciki1V Ak + Y (Gipnkd A Akra).
i=1 i=1

Now, C1 k+1 V Akt1 - Crk1 andCiug1 k+1 A Akt b Cky1k+1, from the defini-
tions ofc. So substituting in these equivalences and slightly rerarimg we get

k—1 k—1

= Cy k41 + Ck+1k+1 + Z(Ci+1,k+1 V Akt1) + Z(Ci+1,k+1 A At1)-

i=1 i=1

Regrouping the last two summations and applying (P3),
k-1
= Crk41 + Ck1k+1 + Z Citlkt1 + Aktl
i=1
k+1
= Girakir+ k= DAk

i=1
And canceling out the second term on each side gives us thk ves want. From
this it follows immediately thaBelis coherent. Lef and$; be any two sequences
such thatS is guaranteed to pay as much s That is, that$ pays $ entails
S pays at leasti$for all n. Now the lemma shows that for each sequence of bets,
their value equals the sum of the probability that they’l g leastn for all values
of n, up to the length of the sequence. So by as many appeals t@$RBgre are
bets inS;, we have that the value & is less than or equal to the value §f, as
required. O
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Given the well-known problems with Dutch Book argumehitsmight be wondered

if we can give a different justification for the axioms. Indéemay be considered
helpful to have a semantics for the logic which does not refdyetting practices.
One possibility is to say that IPFs are normalized measundsripke trees. The

idea is that the probability of a proposition is the measuréhe set of points at
which the proposition is forced. It is straightforward te@ia nonconstructive proof
that the axioms are sound with respect to these semantitsndking this proof

constructive and providing any proof that the axioms aregeta is a harder task.
So for now this Dutch Book justification for the axioms is thesbavailable.

Appendix A The Morgan-Leblanc-Mares Calculus

In a series of papers (Morgan and Leblafg;[15], Morgan and Mares1[4]) an
approach to probability grounded in intuitionistic logiashbeen developed. The
motivation is as follows. A machine contains an unknown ggbropositionss,
which need not be consistenPr (A, B) is the maximal price we'd pay for a bet
that S and B intuitionistically entail A (S, A . B, that is). By standard Dutch
Book arguments, we obtain axioms for a probability calcubhich has some claim
to being constructivist. The point of this section is to stgi the shortcomings of
this approach as a theory of uncertain reasoning from eeesto point out, that is,
the implausibility of interpreting the axioms they deriv@r@ormative constraints on
degrees of belief. (It should be noted from the start that Was not the advertised
purpose of their theory, and at least one of the authors (§)é&@s said (in personal
conversation) that the primary purpose of constructingettheories was to general-
ize the triviality results proved in Lewi$]. So the purpose of this appendix may be
to argue for something that isn’t in dispute: that these filesaan’t be pushed into
double duty as theories of reasoning under uncertainty.)

The axiomatizations given in the Morgan and Leblanc papifier é little from
that given in the Morgan and Mares paper, but the criticissnsled here apply to
their common elements. In particular, the following fouicams are in both sets.

(C1) 0<Pr(A B)<1.

(C2) Pr(A,AAB)=1.

(C3) Pr(A,BAC)-Pr(B,C)=Pr(B,AAC)-Pr(A, C).
(C4) Pr(A>B,C)=Pr(B,ArC).

These four are enough to get both the unwanted consequenceatrticular, from
these we get the “no negative evidence” ride:(A, BAC) > Pr(A, B). The proof
is in [14]. Now given the semantic interpretation they have adoyited,is perhaps
not so bad. After all, if we can prové& from B andS, we can certainly prove it from
B A C andS, but the converse does not hold. However, from our perspethis
feature seems a little implausible. In particulaCifs — A, it seems we should have
Pr(A, B A—=A) =0unlessB I A, in which casePr(A, B A —A) is undefined.

It shouldn’t be that surprising that we get odd results gi@#h). Lewis P] shows
that adopting it for a (primitive or defined) connective * within the classical prob-
ability calculus leads to triviality. And neither the argants he uses there nor the
arguments for some stronger conclusions in Lewi$ fely heavily on classical prin-
ciples. The papers by Morgan and Leblanc don’t discusstingst, but it is discussed
in detall in [L4]. Morgan and Mares note that it's possible to build a thecagdul
on (C1) to (C4) that isn't trivial in the sense Lewis descdbeBut these theories
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still have enough surprising features that they aren’alét for use as a theory of
reasoning under uncertainty.

In intuitionistic logic we often take the falsurh as a primitive connective, func-
tioning as a-_-antithesis. Hence a s8tis intuitionistically consistent if and only if
we do not haveés . L. Now the following seems a plausible condition:

(CL) ForconsistenB, Pr(L, B) =0.

Given consistent evidence, we have no evidence at all tegatbum is true. Hence
we should set the probability of the falsum to O (as requing@dir condition (PO)
from Sectionl). Given Morgan and Leblanc’s original semantic interpiietathere
is less motivation for adopting (C), sinceS might be inconsistent. The restriction
to consistenB in (CL) is imposed because we taka (A, B) to be undefined for
inconsistentB, as explained at the end of Sectibn(In more detail: ifB is at.-
antithesis therPr(B) = 0 for any intuitionistic probability functiorPr, whence
the undefinedness &r (A, B) by the remarks at the end of that section.) Morgan,
Leblanc, and Mares take it to be set at 1. The choice heretitesdibitrary, the only
decisive factor being apparently the easier statementredineresults. Now if we
take the falsum as a primitive the next move is usually toouhtice— as a defined
connective as follows.

—A=gef AD L.

AssumingA A B is consistent, it follows from (C4) and (Q thatPr(—A, B) = 0.
Again, from our perspective this is an implausible resulte Thain purpose of this
appendix has been to show that the Morgan-Leblanc-Maréapitity calculus can-
not do the work Bayesians want a probability calculus to dmtTs, it is implausible
to regard theilPr (A, B) as the reasonable degree of beliefigiven B. Hence the
account of conditional probability these authors offeedges from the intuitionistic
Bayesianism that we have been urging heterodox theoristsdorse.

Notes

1. For more details, see Zadehd, Dempster B], Shafer P2], Shackle P1], Cohen ],
Schmeidler 20].

2. This assumption was shared by many of the participants isytmposium on probability
in legal reasoning, reported in the Boston University LawiB& 66 (1986).

3. Again the discussion in2] (ch. 2) is the most obvious example of this, but similar
examples abound in the literature.

4. It is economically suspect because, in simplified terBel(A) gives at best the use-
value of anA-bet, but this is distinct from the exchange-value the agéates on the
bet. And it is the exchange-value that determines her patiafrbuying and selling.

5. See Maher 2] for criticisms of the most recent attempts at successfuicBuBook
arguments and references to criticisms of earlier attempts
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