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General Frames for Relevant Modal Logics

Takahiro Seki

Abstract General frames are often used in classical modal logic.eShey are
duals of modal algebras, completeness follows automatiaslith algebras but
the intuitiveness of Kripke frames is also retained. Thipgradevelops basics
of general frames for relevant modal logics by showing thaytshare many
important properties with general frames for classical ahtahic.

1 Introduction

General completeness results for relevant modal logice yweoved in Seki 10|
where the notion of general frames was also introduced biogpavith classical
modal logic. Although relational semantics for relevamiés has existed since the
1970s and algebraic semantics has also long been knowre(ged)unn []), gen-
eral frames for relevant logics have not been much discusblds duality theory
for relevant logics is rather underdeveloped with the nletekceptions of Brink7],
Celani [3], and Urquhart11].

In this paper we intend to fill this gap and discuss dualitytléor relevant modal
logics in some detail, making use of general frames as intred in [L0]. Some of
the results from the present paper have already been anedurnihout their proofs
in [10] in order to develop Sahlqvist-like theorems for relevamtdal logics. We
will give their detailed proofs here.

General frames occupy a prominent place in classical modai ivhere they are
often said to combine the intuitiveness of Kripke frameslite universal adequacy
of algebraic semantics. General frames are duals of mogebgds in a clear intu-
itive sense, and for a certain subclass of them, namelyakegcdescriptive frames,
this duality becomes precisely the duality in a categorpithaense. In particular,
each modal algebra can be represented as a descriptive(fiamagroof, see DoSen
[6] or Goldblatt B]). Thus it may be said that descriptive general frames(lae
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simply descriptive frames) are the most important. For nmrevarious classes of
frames see, for example, Blackburn et al.gr Chagrov and Zakharyasche{][

Whereas in classical modal logic duality theory is very wdieloped, in the
realm of relevant logic, relatively little has been donengldhese lines. Brink’s
Stone-style representation of the (nonmo&at}algebra in P] should be mentioned
here, as well as Urquhart’s Priestley-style duality betwesdevant algebras and rel-
evant spaces developed ihl] and extended by Celani to certain relevant modal
algebras in §]. This paper will follow in Brink’s footsteps and providedte-style
representation. One difference from Brink’s approach & tthereas he makes es-
sential use of subalgebras and subframes, we work diredthalgebras and general
frames without recourse to any substructures.

This paper is organized as follows. We give a brief surveyetéuwant modal log-
ics and their semantics in Sectid@rfollowed by the definition of general frames in
Section3. In Section4 we prove a representation theorem for relevant modal al-
gebras which yields completeness of relevant modal logits rgspect to general
frames defined in Sectioh We introduce descriptive frames in Sectioand dis-
cuss their properties in comparison to descriptive fraroeglassical modal logic.
Finally, Section6 proves duality between the category of relevant modal afgeb
and relevant descriptive frames.

2 Preliminaries

In this section we present basic notions of relevant modatto For more informa-
tion, see 1.0].

We use & =, <.V, and 3 to denote, respectively, conjunction, implication,
equivalence, and universal and existential quantifiereémtetalanguage. We omit
some parentheses by assuming tha bind more strongly than &, and that & binds
more strongly thags, <.

The language of relevant modal logics consists of

1. propositional variables,

2. the propositional constant

3. logical connectives>, A, Vv, o, and~,
4. modal operatorisl and.

Formulas are defined in the usual way and are denoted by chgtitas A, B, C.
Prop andwif will denote the set of all propositional variables and ofiofas, respec-
tively. When necessary, we user subscripts. Further, we introduce the following
abbreviations:

AsBEASBAB—=A, ODAE~0~A  oAZO~A
The relevant modal logiB.C, is defined as follows.

Axioms

(B1) A— A

(B2) AAB— A

(B3) AAB— B

(B4) (A—-BAA—-C —=(A—>BAC)
(B5) A— AVvB

(B6) B— AvB

(B7) (A-C)A(B—-C)— (AvB—->0C)
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(B8) AA(BVC)— (AAB)VC
(B9) ~~A— A

(B10) OAADB — O(AA B)
(B11) O(Av B) — OAV OB
(B12) t

Rules of inference

A—B A A B A— B A— B
B AAB B—-C —-(A—>0 (C— A —- (C— B)
A—~B AoB— C A— (B— C)
B—->~A A— (B—C) AoB— C
A— B A— B A

OJOA— OB OA — OB t— A

A B.Cp,-frameis a 7-tuple(O, W, R, S, &»,* , €) where
(a) W is a set of all worlds,
(b) O is a nonempty subset &Y,
(c) Ris aternary relation ok,
(d) SgandS, are binary relations oW,
(e) * is an unary operation oW,
() eis an element oW called thenull world.

To simplify the notation, we define a binary relatisron W and an element of O
as follows. Foralg, b € W,
1. a<b<&% 3cce0& Reab,
2. u%e
A B.Cp,-frame (O, W, R, 51, &,*, €) satisfies the following postulates. For all
a,b,c,deW,
(p1) a=<a
(p2) a<b& Rbcd= Racd
(p3) a < c& Rbcd= Rbad

(p4) d<a& Rbcd= Rbca
(p5) Ruab= a=eorb=u

(p6) Reue

(p7) a<b=b*<a*

(p8) a* =a

(p9) a<h& Sbc= Sqac
(p10) See

(p11) Sjua=a=u

(p12) a<b& Spac= Sbc
(p13) Sea=a=e

(p14) Spuu

(p15) a<b&aeO=beO
(p16) e#u.
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Furthermore, for a give.Cq,-frame (O, W, R, S, Sy,*, €), we define binary
relationsSs and S, on W as follows. For all, b € W,

1. Sqab iff Sya*b*,

2. Syab iff Sga*b*.
We call an 8-tuplgO, W, R, &1, &.*, e, V) aB.Cy,-modelon aB.Cpq,, -framesy
(we simply say é.C,-model) if § = (O, W, R, 57, &, , €) is aB.C, -frame
andV is a mapping fronProp to 2V called avaluationon &, which satisfies the

following hereditary condition(1), E-condition(2), andU-condition (3). For all
a,b e W andallp € Prop,

l.a<b&aeV(p)=beV(p),

2.e¢ V(p),
3.ueV(p).

Given aB.Cq,-model{(O, W, R, §7, &.*, e, V) fora € W andA e Wff, a relation
E betweenW andwit is defined inductively as follows:

0] foranype Prop,al=p iff ae V(p),

(ii) aEAAB iff aE A&akEB,

(i) aEAvB iff aE Aorak B,

(v aEA— B iff Ybe WVce W(Rabc& b= A= ck B),
(v) alE=AoB iff 3be W3ce W(Rbca& b= A& c = B),
(vi) apE~A iff a* £ A

(vi) apE0OA iff Vbe W(Sgab= b A),

(vii) akEOA iff Ibe W(Sab&bE A),

(ix) apEt iff aeO,

wherea [~ A means thaa = A does not hold. It is easy to see that

1.aE=0A iff YVbe W(Sgab= b E A),
2. akE=0A iff 3be W(Syab& b= A).

We putV (A) = {a e W |aE A}, forall A e wit.
Let ¢ = (O,W,R, &1, Sy.*, e V) be aB.Cy,-model on aB.Cp,-frame
& =(0,W, R, &, Sy,*, €) andA € wif. Then we say

1. A holds intif and only ifa = A for every worlda € O,
2. Aisvalidin aB.Cg,-frame (write ¥ = A) if and only if A holds in every
B.Cn,-modeld)t on .

LetL be any extension d.Cp,. Any B.Cq,-frame in which all theorems df are
valid is called arl_-frame L-modelg(onL-frames) are defined similarly 8.C,-
models.

In proving completeness &.Cp,,, we use the canonical model method. Below
we present the definition of the canonical model and refereader to 10] for the
detailed completeness proof.

1. X is anL-theoryiff ¥ satisfies the following:
(@) Ae X andB € X, thenAAB e %;
(b) A— Bisatheoremof andA € T, thenB € %.
2. For anL-theoryy,
(a) X isregulariff X contains all theorems df;
(b) X isprimeiff Av B € X implies eitherAe X orB € X.



Relevant Modal Logics 97

3. LetTh(L) be the set of alL-theories. Then a ternary relatidhon Th(L),
and binary relations o6 andSy onTh(L), are defined by

RXI'A iff forany A, B e wif, if A— B e X andA € I" thenB € A;
SErC iff forany A e wif, if JA € X thenA e T;
SEr iff forany A e wif, if AeI'thenQA e X.

ThecanonicalL-model{O¢, We, Re, Stc, Syc, O, Ve) is defined as follows:

(8) W is the set of all primé.-theories;

(b) O is the set of all regular prime-theories;

(c) Rcisthe ternary relatiofr restricted toAL;

(d) Scis the binary relatiors restricted toW;

() Sycis the binary relatior, restricted toAL;

(f) gc is the unary operation oW, defined byge(X) = {A| ~ A ¢ X},

(9) & = 2;

(h) V¢ is defined byx € Vc(p) iff p € X, forall p € prop andX € W.
Note that<. is the set-theoretic inclusiog and thatu; = wif. The following
proposition will be used in later sections. For the prooé E€)].

Proposition 2.1

1. If Ais notatheorem of , then there exists a regular primhetheoryIT such
that A ¢ I1.

2. Let (Oc, We, Re, Sc. Spe, O, €. Vc) be the canonical-model. For all
AcwifandX € W,

Y EcA iff AeX.

An algebravl = (M, N, U, —, -, —, [, O, 1) is called aB.C,-algebraif it satisfies
the following postulates. ForaX, y,z e M,
(A1) (M, N, U) is a distributive lattice,
(A2) x=y=x-z<Yy-Z
(A3) X<y=>z-X<2z-Y,
(A4) x-y<ziffx<y-— z
(AS)  XxUy=—(=xN-y),
(AB) OxNy) =0Oxn0Oy,
(A7) O(xUy) = 0xUOy,
(A8) 1-x=x,
where< denotes the lattice-order, thatis< y is defined byx Ny = x.
For anyB.Co,-algebraM = (M, N, U, —, -, —, [0, O, 1), a mapping from Prop
to M is called avaluationonM. Further, given a valuatiomonM, a mapping from
wif to M, called theinterpretation associated with, is defined as follows:

0} for p e Prop, 1 (p) = v(p),

(ii) [(AAB)=1(A)NI(B),
(iii) [(AV B) =1 (A UI(B),
(iv) I(A— B)=1(A) — | (B),
v) [(AoB)=1(A)-1(B),

(vi) I(~ A =-I(A),
iy (@A) =01 (A),
(viiy  1(OA) =01 (A),

(ix) I(t) = 1.
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LetM be aB.Cq,-algebray be a valuation oM, andl be the interpretation asso-
ciated withv. Then we say

1. Aisvalidinvifandonlyif 1 < I (A),

2. Aisvalidin M if and only if Ais valid in anyv.
A B.Cp-algebraM is called arlL-algebraif all theorems ofL are valid inM.

The Lindenbaum algebra far, defined as usual, can be used to show the follow-

ing.
Theorem 2.2 Any extensiol of B.C,, is characterized by a class af-algebras.

Filters, prime filters andidealsin a lattice (M, N, U) are defined as usual, except
that, for simplicity, we assume that bothand M are prime filters and ideals. We
state two properties required in later sections. For prades Davey and Priestley
[5], for example.

Proposition 2.3 Let(M, N, U) be a distributive lattice.
1. Suppose tha¥ is a filter andA is an ideal such thaV N A = @. Then there
exists a prime filteW’ © V such thatV’ N A = @.
2. If x,y € M satisfy x£ vy, then there exists a prime filt& such that xe V
andy¢ V.

3 General Frames

In this section, we define general frames for relevant mamtptt. Also, for a given
general framé&;, we define the dual gf, which is aB.Cq,-algebra. In particular, we
show that the Lindenbaum algebra toiis isomorphic to the dual of the canonical
L-frame.

For a giverL-frame(O, W, R, &7, &%, €), let

UpW)T =(XCW | X #£A20& X£AW&Vavb(aec X&a<b=be X)}.

Note that in the definition ofp(W) ™, conditionsX # @ andX # W are equivalent
to conditionsu € X ande ¢ X, respectively. AgeneralL-frameis an 8-tuple
&=(0,W, R, §7. S&.*. e P)where

1. (O,W, R, &3, S.", e) is anL-frame, later denoted by,

2. P, called aset of possible values %, is a nonempty subset afp(W)™,

containingO and closed unden, U and the operations>, - , — , [, and ¢,
which are defined as follows. For afl, Y € W,

@ X—>Y = {aeW]|Vbvc(Rabc& be X =ceY)},

(b) XY = {aeW]|3Ib3c(Rbca& be X & ceY)},

(© -X = faeW]|a*¢ X},

(d) OX = f{aeW|Vb(Sjab=be X)},

(e) OX = f{aeW|3Ib(Sab& b e X)}.

Note that any seP of possible values is closed under the operaticrsd® defined
as follows. ForallX € P,

1. X ={ae W |Vb(Sgab= b € X)},

2. OX ={ae W |3Ib(Syab& b € X)}.
Let ¥ = (O,W,R, &, &.*, e P) be a general-frame. We call a 9-tuple
(O,W, R, §1. Sy.", e, P, V) anL-modelon ¥, where
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1' (l\s; = (Oa Wa Ra Sja %a* ’ ea P)l
2. V is a mapping fronProp to P, called avaluationon ¥, that is,V (p) € P
for all p € Prop.

Further, a relatio= betweenw andwsf is defined as in Sectioh Thus a general
L-frame® with P = Up(W)™ is essentially equal to. Then we write} = A if
for any valuationV on a framey = (O, W, R, &3, &,*, e, P) and for alla € O,
akE A

The algebraP, N, U, —, -, —, [, O, O) is called thedual of ¥ and denoted by
¥+, For the duals of general frames, we easily see the following

Theorem 3.1
1. The dual of a generdB.C,,-frame is aB.C-algebra.
2. Letd be a generaB.Co,-frame. Then Ais valid i if and only if A is valid
in§T.
By Theorem3.1, we have the following.
Theorem 3.2 The dual of a generdl-frame is anL-algebra.

Given anL-model It = (O, W, R, &3, &.*, e, V), the generaL-frame § =
(O,W, R, &7, &%, e P) with P = {V(A) | A € wif} is called thegenerallL -
frame associated witfi:.

The general frame associated with the canorieaiodel

EIJEC = (OCa WCa RCa SjCa %Ca gCa eCa VC)

is denoted by Fc = (Oc, We, Re, Stc, Soc, Ge. €, Pe). We will call y ¥ the uni-
versallL -frame The following is Theorem 11 ofl[J]. We will give the proof.

Theorem 3.3  The Lindenbaum algebidl | for L is isomorphic to(y §¢)*, where
the mapping f defined by

f([A]) = Vc(A), forevery Ae wif
is an isomorphism.

Proof First of all, we will show thatf is bijective. It is clear thaf is surjective by
the definition ofP;. So we show thaf is injective. Suppose thaA] # [B]. Then
A < B is not a theorem of . By (1) of Proposition2.1, there existd1 € O¢ such
thatA < B ¢ I1. ThenIl j~; A < B by (2) of Proposition2.1. This implies that
Ve(A) # Ve(B), thatis, T ([A]) # f([B]).

Next we will prove thatf preserves operations bf_ . We will only show some
cases. Lek € W..

1. First, supposethat € f([A] — [B]). Toshowthat € f([A]) — f([B]),
suppose thaR:XI'A andI" € f([A]). ThenX =¢c A — B andl’ ¢ A, so
A [=c B. This means thah € f([B]), which is the desired result.

Next, suppose that ¢ f([A] — [B]). ThenX . A — B, so there
existI', A € W, such thatR:XT'A, ' ¢ AandA 4. B. Hence we have
' € Vc(A) andA ¢ V¢(B), which mean thal" € f([A]) andA ¢ f([B]).
Therefore X ¢ f([A]) — f([B]).

2.2 € f(—[A]) iff & Ec~ Aiff geo(D) Pe Aiff ge(X) ¢ Ve(A) iff
> e —f([A)].
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3. T e f(O[A]) iff X E=cOA
iff IN(SeeST & T ¢ A)
iff AM(SyeST & T € Ve(A))
iff ¥ eof(A].

4 Duality

In this section, we consider general frames as duals of edgebor a given algebra,
we will construct a general frame by using the set of primerSlt Further, we will
show that the duals of Lindenbaum algebras are isomorphinitersal frames.

LetM = (M,N,U, -, -, —, [, 0, 1) be anL-algebra. Letry be the set of all
filters in M. We define a ternary relatioR on Fy and binary relation§ and Sy
onFy as follows. For allVy, V2, V3 € Fy,

RV1VoVs iff forall x,y € M, if X - y € V1 andx € V2 theny € Vg;
SV1Vy iff forall x € M, if Ox € V1 thenx € Vy;
SyV1Vy iff forall x € M, if x € Va2 then{x € Vi.

Note thatRV1V2V3 above means that; - Vo C V3 in the notation of L 1].

The next lemma shows that relatioRs S, and S, on Fy can be restricted to
the class of prime filters. The following results &can be proved in the standard
way. See, for example, Routley et &l] pr Urquhart [L1].

Lemma 4.1

1. Suppose thatv; and V, are filters andV3 is a prime filter such that
RV1V2V3. Then there exists a prime filt&f; > V; such that R}V, V3.

2. Suppose thavy and V; are filters andVs is a prime filter such that
RV1V2Vs. Then there exists a prime filt&f, > V such that R/1V, V3.

3. Suppose thaV is a prime filter and bothvi and V, are filters such that
RVV1V2 and y ¢ V,. Then there exist prime filterg; and V, such that
RVV|V,, V1 C Viandy¢ V.

4. For a prime filterV such that x— y ¢ V, there exist prime filter¥; and Vv,
such that RF'V1Va, x € Vi and y ¢ V.

Lemma 4.2 For a prime filterV such that x- y € V, there exist prime filter§/;
andV; such that R71 VoV, x € V1, and ye Va.

Proof Let V1 andV; be the filters generated Hx} and{y}, respectively. Then
we see easily thaRV1V,2V. By (1) and @) of Lemma4.1, there exist prime filters
Vi 2 Vi andV, 2 V; such thatRV;V,V. Then it is obvious thak € V; and
y € V. O

Lemma 4.3

1. Suppose thaV is a prime filter andVs is a filter such that §vVv; and
X ¢ V1. Then there exists a prime filt&; such that §VV} and x ¢ V.

2. For a prime filterV such thatdx ¢ V, there exists a prime filtév1 such that
S7VViand x¢ Vi.
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Proof

1. Let A be the ideal generated ljx}. Then we see easily that; N A = &.
By (1) of Proposition2.3, there exists a prime filte¥; 2> Vi such that
ViN A = @. Itis obvious thatS7VV). Further, we havex ¢ V] since
X € A.

2. Letvy = {y | Oy € V}. Then we easily see that; is a filter such that
S3VVi andx ¢ Vi. By 1, there exists a prime filte?] 2 Vi such that
SVV; andx ¢ V; .

O

Lemma 4.4 For a prime filterV such thatOx € V, there exists a prime filtev
such that gVVy and xe V1.

Proof Let Vj be the filter generated bix} and letA = {y | Oy ¢ V}. Then we
see easily tha¥; is an ideal such tha¥1 N A = &. By (1) of Proposition2.3 there
exists a prime filtetv; 2 Vj such thatv; N A = @. Now suppose thay € V;.
Theny ¢ A, soQy e V. ThereforeS,VV;. Itis obvious thak € V. O

For anL-algebraM = (M, N, U, —, -, —, [, ¢, 1), the structure
M, = (Om, Wwm, Rv, Sam. Som. Oms ems Pu),

called thedual of M, is defined as follows:

(a) Wy is the set of all prime filters iV ;
(b) Om ={VeWn|leV}
(c) Rw isthe restriction oRto Wy ;
(d) Swm is the restriction 057 to Wy ;
() Sym is the restriction 05, to W;
) gu(V)={xe M| —x ¢V}, forV e Wy;
9) ev = 2;
(h) Py = {fu(X) | x € M}, wherefy : M — Up(Wy)" is defined by
fm(X) ={VeWy|XxeV}
Of course, the binary relatiory on Wy is defined by

Vi<mVe iff 3IV(V e Om & RuVV1V2),
anduy = M.

Lemma 4.5 For eachB.Cn,-algebraM, (Om, Wv, Ruv, Saom. Som, Oum, em) is
aB.Cp,-frame.

Proof Before we check all postulates, we show tkaj is equal toC. First, take
any prime filtervy andV; such thatvy € V,. PutV = {x | 1 < x}. Thentis easy
to see thaV is a filter. Now suppose that— y € Vandx € V1. Then1l< x — v,
and sox < y. SinceVy is a filter, we havey € V1, which impliesy € V2. So we
haveRVV1 V2. By (1) of Lemma4.1, there exists a prime filtev¥’ O V such that
RV’V1V,. Therefore, there existe’ € Oy such thatRy V/'V1Va.

For the converse, suppose that there eXists Oy such thatRy VV1 V2. Further,
suppose that € V;. Then 1€ V, sox — x € V since 1< x — X. Hencex € Va.
ThereforeV, C Vo.

Other postulates frorfp1)to (p16) can be easily checked. O
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Since the relatiorc)y is the set-theoretic inclusiof, we easily see the following.

Lemma 4.6  Every set Xe Py is upward closed ifOwv, W, Rv, Som. Som,
oM, em), thatis, if V € X andV <y V’, thenV’ € X.

By Lemmas4.1through4.4, we obtain the following.

Lemma 4.7 Py is closed under—, -, — , 0, and9.

Proof Here we give proofs only for> andll. Let fy (x), fm(y) € Pm for some
X,y e M.

(—) First, suppose th&f € fy (X — y). To showthatv € fy(xX) — fm(y),
suppose thaRy VV1Vz andVvy € fiy(x). Thenx — y € Vandx € Vi, soy € V.
This is justVa € i (y), which is the desired result.

Next, suppose thaf ¢ fy(X — y). Thenx — y ¢ V. By (4) of Lemma4.1,
there existVy, Vo € Wy such thatRyVViVo, x € Vi andy ¢ Vo, Then
Vie fm(x)andVa ¢ fu(y). HenceV ¢ fy(x) — fum(y).

(O) First, suppose tha&Z € fy (Ox). To show thatv € Of v (x), suppose that
S3mVVi. ThenOx € V, sox € Vi. This means thaV; € fy(x), which is the
desired result.

Next, suppose thaf ¢ fy (Ox). Thenx ¢ V, so there exist¥; € W)y such
that Som VV1 andx ¢ Vi by (2) of Lemma4.3. Hence we hav&/1 ¢ fy(x), so
V ¢ Ofm(x).

O

By Lemmas4.5through4.7, we have the following.

Theorem 4.8 LetM be aB.Cy.-algebra. Then the dua, of M is a general
B.Cn,-frame.

Then we have the representation theorem.

Theorem 4.9  EveryB.C,-algebraM is isomorphic toM ;)™ under the isomor-
phism fy.

Proof First of all, we will show thatf y, is bijective. Itis clear thaf \, is surjective,
so we show thaf ; is injective. Suppose that # y. Then eithexx £ yory £ x.
Without loss of generality, we may assumet y. By (2) of Proposition2.3, there
exists a prime filtev such thatx € V andy ¢ V. So we havev € fy(x) and
V ¢ fm(y), and hencefu (xX) # fm(y).

It remains to show thaf \; preserves each operationMf. Since any element of
fm (X) must be a prime filter, it is easy to see tHat (xNy) = fy(x)N fu(y) and
fmxuy) = fm(X) U fm(y). For other operations, we have already proved those
in Lemma4.7.

Finally, we show thaDy, € Py. This is obtained from the following:

VeOy Iiff 1eVv iff Ve fy@. O
From Theoremt.9and @) of Theorem3.1, we have the following.

Corollary 4.10 LetM be aB.Cq,-algebra. Then A is valid iM if and only if A
is valid inM .
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Proof By Theorem4.8, M. is a generaB.Cp-frame. Further, byZ) of Theo-
rem3.1, Ais valid inM . if and only if Ais valid in (M )*. From Theoren.9, we
have the desired result. O

By Theorems!.8and4.9and Corollary4.10 we have the following.

Corollary 4.11  Let M be anL-algebra. Then the duafl. of M is a general
L-frame.

Thus, the following property on general frames (Theoremfl2.d]) holds.

Corollary 4.12  Any extensioih. of B.C,, is complete with respect to the class of
all generalL -frames.

Proof Suppose thah is not a theorem of . Then by Theoren?.2 there exists an
L-algebraM in which Ais not valid. By Corollaryt.10 Ais not valid inM 4, which
is a general -frame by Corollary4.11. Hence, there exists a genetafframe in
which Ais not valid. O

Further, we can easily see the following relationship betweuals of Lindenbaum
algebras and universal frames (Theorem 13L6)[

Theorem 4.13  The dual(M ), of the Lindenbaum algebra fdr is isomorphic to
the universal -framey .

5 Descriptive Frames

In preceding sections, we have seen that the dual of a gdrearad is an algebra and
vice versa. It follows that the bidual (i.e., dual of a dudlameneral frame is also
a general frame. But general frames are not always isomotphheir biduals. In
this section we introduce descriptive frames, for whichhsisomorphism holds, as
in classical modal logic.

We first introduce some auxiliary notions. Given a gendrdtame § =
(O, W, R, &1, &.*, & P), we say that

(a) % is differentiatedf for anya, b € W,

a=">b iff YXeP@aeX &beX),
(b) Fisr-tightif foranya,b,ce W,
Rabc iff YX e PYY e P@aeX—->Y&beX=ceY),

(c) & is-tightif foranya,b e W, Sqab iff VX € P(a € OX = b e X),
(d) FisCl-tightif foranya,b e W, Sqab iff VX e P(ae DX = be X),
(e) Fis O-tightif foranya, b e W, Syab iff VX e P(be X =ae ¢X),

(f) {is ¢ -tightifforanya,b e W, Syab iff VX e P(be X = a e ¢X),
(9) & is compactf for any familiesX € P andy € P = {W — X | X € P},

ﬂ(xuy)={a|VXexvvey(ae X&aecY) o

wheneve( (X' U Y) # @ for all finite subfamiliesX’ € X andy’ C Y.
A generallL-frame % is called descriptiveif ¥ is differentiated, r-tight[J-tight,
[ -tight, ¢-tight,® -tight, compact, and, moreover, satisfies

0=ﬂ{XeP|0gX}.



104 Takahiro Seki

The definition of descriptive frames for relevant modal &zgialthough analogous to
the classical one, differs from it in that it introduces sev&inds of tightness and a
condition on the se®. Different kinds of tightness are due to differences betwee
relevant connectives and their classical counterparts.cohdition orO stems from
the fact that Routley-Meyer semantics uses so-callechdigished points (seé€]).

In the following, we will investigate the properties of tleasotions. For a general
L-framel = (O, W, R, &1, &,*, e, P) anda € W, define

Pa={XeP|ae X}
The following proposition is easy to prove.

Proposition 5.1  For every general-frame¥ = (O, W, R, &1, &,* , e, P) and
every ac W, Pa is a prime filter iy .

Compact general frames are characterized by the followioggsition which corre-
sponds to Proposition 8.48 of][(p. 255).

Proposition 5.2 A generalL-framel = (O, W, R, &3, &,*, e, P) is compact if
and only if every prime filte¥ in 3+ is of the form Pa for somea W.

The following theorem (Theorem 14 of(]) characterizes descriptive frames.

Theorem 5.3 A generalL-frame = (O, W, R, §7, &.", e, P) is descriptive if
and only if it is isomorphic t@g® ™) .

Proof The ‘if’ part is proved as follows. LeVy, Vo, Va € Wi+, that is, V1, Vp,
and V3 be prime filters inP. For proofs thai®), is differentiated[J-tight, [J
-tight, and compact, see Proposition 8.514f(p. 257). Here we will give proofs of

the other clauses.

Clause 1 (F1), is rtight. The ‘if’ part is proved as follows. Suppose that
Ry+V1V2V3 does not hold. Then there exi¥t Y e P such thatX — Y e Vy,

X € Vz, andY ¢ Vs Then we havefx+(X), fx+(Y) € Px+ satisfying
Vi € f‘1~\4+(X) — f‘RfF YY), Vo € fg+(X), andVs ¢ f‘RHr Y).

The ‘only if’ part is proved as follows. Suppose tHat+ V1V, V3. Further, take any
fxtr (X), f«RJr (Y) € Py+ satisfyingVy € f«RJr(X) — f«?ﬁ(Y) andVy € f«RJr(X).
Thenwe haveX — Y € Vi andX € Vz, soY € V3, and hencévz € fx+ (Y).

Clause 2 (¥1)y is ¢-tight. The ‘if’ part is proved as follows. Suppose that
x+V1V2 does not hold. Then there existse P such thatX € V; and¢X ¢ Vi.
Then we havef+ (X) € Py+ satisfyingVz e fx+ (X) andVy ¢ ¢ fx+(X).

The ‘only if’ part is proved as follows. Suppose tfg+ V1V2. Further, take any
fx+(X) € Px+ satisfyingV, e fx+(X). Then we haveX € Vz, so¢X € Vy, and
henceVy e ¢ fx+ (X).

Clause 3 (31), is ® -tight. Similar to clause 2.
Clause 4 Ox+ = ({f3+(X) € Py+ | Oy+ S fx+(X)}. First, suppose that

V € Ox+. Take anyfx+(X) € Px+ such thatOz+ C fx+(X). Then it is clear
thatVv e fg+(X). Therefore,V € [{ fyﬁ(X) € Py+ | O3+ C fR‘F(X)} Next,
suppose thaV ¢ Oz+. ThenO ¢ V,soV ¢ fx(0O). Itis easy to show that
O+ C fx+(0). SincefW(O) € Py+,V ¢ ﬂ{f«w(X) € Py+ | Ox+ C fatr (X))
Thus, we see thaf¥ ) is descriptive.
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The ‘only if’ part is proved as follows. By Propositicnl, for eacha € W, Pais a
prime filter in¥*. We define a mappindy : W — Wx.+ by

fx(@ = Pa, foraeW.

By Proposition5.2, we haveWs+ = {Pa|a € W}. Then it is clear thatfy is
surjective. Takea, b € W such thata # b. Sincef is differentiated, there exists
X € P such thata € X andb ¢ X. So we haveX € PaandX ¢ Pb. Hence
fx(a) # fx(b). Therefore,fx is injective.

Further, as in Proposition 8.51 of][(p. 257), we show that

1. Sqab !ff S+ fx (@) fx(b),
2. Sqab iff  Sox+ fx (@) fx(b),
3. XeP ff fx(X) € Py+,

fora, b € W. It remains to show the following clauses. o, c € W:
Clause 1 Rabciff Rx+ fx(a) fx(b) fx(c).

Rabc iff ¥vXePVWeP@aeX—->Y&beX=ceY) (% is r-tight)
iff VXePVYeP(X—YePa& XePb=YePo
iff R?ﬁ PaPbPc
iff R+ fx(a) fx (b) fx(C).

Clause 2 Spabiff %?ﬁ fg(a) f?v (b).

Spab iff VX e Pbe X=aedX) (& is O-tight)
iff YXeP(XePb= 0XecPa)
iff S<><(\g+ f%(a) f;\g(b)
Clause 3 Syabiff Syx+ fx(a) fx(b). Similar to clause 2.
Clause 4 fx(a") = gx+(fx(a)).

Xe fy@) iff a*eX
iff a¢—X
iff —X¢ fx(a)
iff X e gx+(fx(@).

Clause 5 f3(0O) = Ogx+. First, suppose thaZ e f3(0O). Then there exists
a € O such thatv = fx(a). Sinceg is descriptivea € ({X € P| O € X}. It
means that¥X € P(O € X = X € Pa). SinceO € P, we haveO € Pa, that is,
O e V. Hence we hav& € Og+.

For the reverse inclusion, suppose tRat¢ O+ . SinceV is a prime filter ing*,
V = Pafor somea € W by Propositiorb.2. ThenO € Pa, soa € O. Therefore,
Ve fR(O) [l

Thus we have the following theorem (Theorem 151].

Theorem 5.4  Any extensioh of B.C,, is characterized by the class of descriptive
L-frames.

Proof Let ¥ be any descriptive -frame. By the definition of -frames, ifA is a
theorem ofL, then% = A. On the other hand, i is not a theorem of , thenA is
not valid in the Lindenbaum algebha| for L. By Corollary4.10 A is not valid in
(ML)+. By Theorem4.13 Ais not valid in the universdl-framey . Further, we
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see that ¢ is descriptive by Theorents3 4.13 and5.3 Therefore, there exists a
descriptivel -frame in whichA is not valid. O

6 The Categories of Descriptive Frames and Algebras

In Section5, we introduced descriptive frames. Considering dualitiveen de-
scriptive frames and algebras in detail, we have shown thelh @lgebra can be
represented by descriptive frames and vice versa. This#ache stated clearly with
the help of categorical notions. In this section, follow]iifyand [3], we will show
that descriptive frames and algebras are duals in the agtdwggnry sense.

Let 4 be the category df -algebras defined as follows:

1. objects aré -algebras;

2. morphisms are homomorphisms.
Now we will introduce frame morphisms, which will be the mbigms in the cate-
gory of descriptive frames that we are going to define.;¢.et (O, W, R, &7, &.*,
e, Py and® = (O, W', R, 3’:, S’<>, * €, P’y be general-frames. Then a map-
pingg : W — W' is aframe morphisnfrom & to & if the following conditions
hold. For alla, b,c € W anda’, b/, ¢’ ¢ W/,

(ml)  Rabc= Rq(a)q(b)q(c),

(m2) Ra’b/q(c) = Jda € Wab € W(Rabc& a’ <’ q(a) & b’ <’ q(b)),
(m3) Rg(a)b’'c’ = 3b € W3c € W(Rabc& b’ <’ q(b) & q(c) <’ ¢,
(md)  Sgab= Sq@aq(b),

(m5) SHa@b’ = 3b € W(Sgab& q(b) <’ b),

(m6)  Sab= Sya@aq(b),

(m7)  S,q@b’ = 3be W(Sab& b’ <" q(b)),

(m8)  q@) = (q@)*,

(m9) g %0)=0,

(m10) aq(e) =¢,

(mll) XeP =g iX) eP.

Then it is clear that the identity map on any frame is a framephism and that
the composition of frame morphisms is also a frame morphiSm.the collection
of all descriptive frames and frame morphisms between gese frames forms a
category. LetF be the category of descriptiteframes defined as follows:

1. objects are descriptite-frames; and

2. morphisms are frame morphisms.
We proceed to define functors between these categories. Y tpe showing that
every algebra homomorphism has its corresponding frameism. LetM andM’
beL-algebras. For a homomorphignfrom M to M’, a mappindh, : M/, — M
is defined by

hy (V) =h1(V),

for every prime filterv in M’. Then we have the following.

Lemma 6.1 If h is a homomorphism fromd to M’, then the mappinghis a frame
morphism from\l’, toM ..

Proof It suffices to check the conditior{sn1) through (m11). Here we give the
proof for the condition$m?2) and(m5).
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(m2) Suppose thatRy ViVzh,(V3) for Vi,V € Wy and V3 € Wy
Puting V, = {y e M | 3x e Vithx) =< y)} and
Ve ={y € M"|3x € Va(h(x) <y}, itis easy to see that, andVg are fil-
ters inM’. Further, suppose thgt — 7' € V, andy’ € V. Then there exist
X1 € V1 andxz € Va2 such thah(x1) <y’ — Z andh(x2) < y'. Sinceh is
a homomorphism, we hav&Xx; - X2) = h(x1) - h(x2) < (y > 2) -y < Z,
andxy - X2 € hy (Vj), thatis,h(xy - x2) € V; by the assumption. Sincé, is
afilter,z’ € V3. Thus, we havRV, V. V..

Then, by () and @) of Lemma4.1, there exist prime filter§’] and V,
such thatvy c Vi, Vi € V,, and Ry V;V,V3. Here, takingx € Vi,
we haveh(x) € Vv, € V] sinceh(x) < h(x), and hencex € h(V}).
So we haveVy < hi(V)) and, similarly, V2 € h,(V,). Therefore,
there existvy, V, € Wy such thatRy,/V1V,Vs, Vi <y hy(V)), and
V2 < h4(V5).

(m5)  Suppose thatwh, (V) Ve for Vi € Wy and V2 € Wy. Putting
Vi ={x' e M| Ox" € V}}, itis easy to see thaf; is a filter inM’ satis-
fying S7V} V3. Let A be the ideal generated Bli(x) | x ¢ Vz}. Assuming
thatx’ € V3N A, we havellx’ € Vi, X' < h(x), andx ¢ V2. SinceV; is
a filter andh is a homomorphisnh(Cx) € Vi, thatis,[x € h(V}), and
X ¢ V. This is a contradiction, s¥; N A = @. By (1) of Proposition?.3,
there exists a prime filtev, 2 V3 such thatv, N A = @. Itis obvious that
Sow V4 V5. Further, suppose thate h, (V5). Thenh(x) € V,, and hence
h(x) ¢ A. So, we havex € V2. Thus,h(V5) C Va. 0

Then we show that every frame morphism has its corresporadggpra homomor-
phism. Let§ and®’ be descriptivé -frames. For a frame morphisgirom § to &%,
amappingy™ : 't — J* is defined by

qt o0 =g 71X,
for everyX € P’. Then we have the following.

Lemma 6.2 If g is a frame morphism fror¥ to &, then the mapping 4 is a
homomorphism froriy’™ to F*.

Proof Here we only show that (1" (X — Y) = g™ (X) — g™ (Y) and (2)
at(OX) = 0qt(X), for X, Y € P

(1) First, suppose that € g™ (X — Y). To show thaia € g™ (X) — g™ (Y),
suppose thaRabcandb € g™ (X). Then we havg(a) € X — Y andq(b) € X.
By (m1), Rq(a)q(b)q(c), soq(c) € Y. This means that € q*(Y), which is the
desired result.

For the converse, suppose that g+ (X) — q*(Y). Toshowthat € g™ (X — Y),

suppose thaR'q(a)b’c’ andb’ € X. By (m3), there exisb, c € W such thatRabc
andb’ <’ q(b) andq(c) <’ ¢/. SinceX is upward closedg(b) € X, so we have
b € g™ (X). Hencec € g7 (Y), soc’ € Y. This is the desired result.

(2) First, suppose tha € g™ (0X). Thenqg(a) € OX, so there existy/ € X
such thatS’oq(a)b/. By (m7), there existd € W such thatSyab andb’ <’ q(b).
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Since X is upward closed, we hawgb) € X, sob € q*(X). Therefore, we have
a e Oqt(X).

For the converse, suppose tlat ¢q*(X). Then there exists € g*(X) such
that Spab. Thenq(b) € X, andS’Oq(a)q(b) by (m6). So we havey(a) € ¢ X, and

hencea € g+ (OX). O

By Lemmas5.1and6.2, we obtain the following facts:

1. if hiis a homomorphism frorvl to M’, then(h, )™ is a homomorphism from
(Mp)Tto(M/)¥;
2. if g is a frame morphism fror¥ to ¥, then(q™) .. is a frame morphism from
(FH4 to (F ).
SinceM and (M )*, M" and (M/,)* are respectively isomorphic, it is natural to
consider the relation betwe@nand(h..)™.

Theorem 6.3 For anL-algebraM, let fy, be the isomorphism froiM to (M )™ of
Theorem?.9. Then for any homomorphism h fravhto M’, (h;)* o fy = fy o h.

Proof Foranyx € M andV € Wy, V € (hp)T(fu(x)) iff hp (V) € fu(x) iff
x € h=1(V) iff h(x) € Viff V e fy,/(h(x)). O

We can associate a descriptiveframeM , and a frame morphisin, from M/, to
M, with anL-algebraM and a homomorphisim from M to M’, respectively. It is
easy to check that

1. (idy)+ = idg+, where ‘id’ denotes identity maps,
2. (h1oh2); = (h2)4 o (h1)4.
Thus( - ) defines a contravariant functor fromto .
The analogous result for frame morphisms is given below.

Theorem 6.4  For each descriptivé -frame?, let fx be the isomorphism fror
to (F) 4 in the proof of Theoreri.3. Then for any frame morphism q frojnto &/,

@540 fy=fyoq.

Proof Foranya e WandX € P, X € (qN)(fx@) iff g7(X) € fx(a) iff
aeq i(X)iff q(a) e Xiff X e fx(q(@)). O

We can associate dn-algebray* and a homomorphism* from &' to 3+ with a
descriptivel -frame® and a frame morphismm from & to ', respectively. It is easy
to check that

1. (idy)t = idv . , where ‘id’ denotes identity maps,
2. (o)t =qy oqy
So( - )T defines a contravariant functor fraf to .
Thus Theorent.3 shows that the collection of isomorphisis constructs a
natural isomorphism between the composite fun@toy, )+ and the identity functor
on 4, and Theoren®.4 shows that the collection of isomorphism$ constructs a

natural isomorphism between the composite fun@tey™).. and the identity functor
on ¥. Hence we have the following theorem.

Theorem 6.5 The categoriest and £ are dual by the functorg- ), and(-)™.
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