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The Expressive Truth Conditions
of Two-Valued Logic

Stephen Pollard

Abstract In a finitary closure space, irreducible sets behave like two-valued
models, with membership playing the role of satisfaction. If f is a function on
such a space and the membership of fxp, ..., x; in an irreducible set is deter-
mined by the presence or absence of the inputs x1, ..., x, in that set, then f isa
kind of truth function. The existence of some of these truth functions is enough
to guarantee that every irreducible set is maximally consistent. The closure space
is then said to be expressive. This paper identifies the two-valued truth functional
conditions that guarantee expressiveness.

1 Introduction

Say that a closure space with domain S is expressive if, whenever A is a closed
proper subset of B, there is a closed set D such that A € D # CI(BU D) = S.
Think of an inconsistent set as one whose closure is the whole domain S. Then the
idea is that we can find items that yield a consistent set when added to A, but yield
an inconsistent one when added to B. If — behaves like two-valued negation, then
we just pick an x that belongs to B but not to A. If we add —x to A, we obtain a
consistent set, but when we add it to B we obtain an inconsistent one (Martin and
Pollard [2], pp. 121-22; [4], p. 122). So closure spaces with the right sort of nega-
tion function are expressive. This makes it tempting to think of expressive closure
spaces as ones in which some analogue of classical negation is definable (Pollard
and Martin [5], p. 113); but that is not quite right. A finitary closure space will also
be expressive if it has a function or relation that behaves like material implication
([2], pp. 187-88; [“], p. 125). This paper identifies all the two-valued truth functions
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whose closure-theoretic properties guarantee expressiveness. This is of some interest
because a finitary closure space is expressive if and only if its maximally consistent
sets form a closed basis (that is, if and only if every closed set is the intersection of
maximally consistent sets). The existence of such a closed basis is incompatible with
an intuitionistic treatment of negations and conditionals. So, by identifying closure
theoretic properties that guarantee expressiveness, we identify deductive properties
antithetical to intuitionism.

2 Preliminaries

Let (S, Cl) be a closure space. That is, (1) Cl is a function that assigns subsets of
S to subsets of S; and (2) if A and B are any subsets of S, then A € CI(B) if and
only if C1(A) € CI(B). CI(A) is said to be the closure of A. Readers unaccustomed
to working with abstract closure functions might find it helpful to think of A as a
set of sentences and think of CI(A) as the set of sentences that follow from or are
derivable from members of A. We assume, for the remainder of this paper, that
(S, Cl) is finitary. That is, if A € S and x € CI(A), then x belongs to the closure of
some finite subset of A. In the case of implicational or deductive closure, this would
mean that a sentence follows from or is derivable from sentences only if it follows
from or is derivable from finitely many of those sentences. Say that a subset of S is
closed just in case it contains (and, hence, is identical to) its own closure. (If it helps,
take ‘closed’ to mean closed under consequence or derivability.) Finally, say that a
set B is irreducible just in case B is closed but is not the intersection of closed sets
all distinct from B. In a finitary closure space, every closed set is the intersection
of irreducible sets. (Since we adopt the convention that N is the universe, S is
the intersection of the empty set of irreducible sets.) So, once the universe is fixed,
the structure of the whole space is determined by the irreducible sets (Crawley and
Dilworth [1], pp. 43—44; [3], p. 161; Wéjcicki [1 0], p. 27). In particular, if we can
arrange for the irreducible sets to treat an operator in the right way, we can arrange
for that operator to behave well throughout the space.

It is often helpful to think of irreducible sets as closure theoretic surrogates for
models. In a finitary closure space, x € CI(A) if and only if x belongs to every
irreducible set that contains A (just as x is a consequence of A if and only if x is
true in every interpretation that satisfies every member of A). So membership in
an irreducible set is like truth in a model and it makes some sense to talk about the
“semantics” of functions in our closure space.

Here is an example. Suppose, for each irreducible set B and each x € S, that B
“satisfies” —x if and only if B does not “satisfy” x (thatis, =x € B if and only if x ¢
B). Then — will behave just like an operator that obeys the truth table for two-valued
negation. Note, for instance, that C1({——x}) is the intersection of the irreducible sets
that have ——x as a member. Itis easy to see that x belongs to each of those sets (since
—x does not). So x € CI({——x}). That is, — satisfies the classical double negation
elimination principle and it does so because it has the right “semantic” properties:
for each x, —x belongs to just the right irreducible sets.

Given any two-valued truth function, we can translate its truth conditional proper-
ties into abstract closure theoretic properties. Any function that has the latter proper-
ties will have “semantic” characteristics that mirror those of the truth function. The
next section shows how this is done.
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3 Truth Conditions

Given a two-valued truth function, our strategy is to write out its truth table and
transform each line into a statement about the interactions between our closure op-
erator and a function f : S — S. We are trying to guarantee that the conditions
under which fxp, ..., x, is “satisfied” by an irreducible set will mirror those under
which an application of the truth function is satisfied by a two-valued interpretation.
We will use the truth table entries to label the closure theoretic conditions gener-
ated from them. If the truth table entry says that a pair of Ts yields an F, our name
for the corresponding closure theoretic condition will be TT = F. More generally,
Vi,...,V, = Vg (where each of the Vs is either truth or falsehood) will be the con-
dition on CI and f generated from the truth table entry with inputs Vy, ..., V, and
output Vo. When we use such an entry to characterize an n-ary function fxi, ..., x,,
we let T (the set of “true inputs”) be {x; : Vi = T} and we let F (the set of “false
inputs”) be {x; : Vi = F }. Then we say
f satisfies Vi, ..., V, = T justin case
(ﬂxeF Cl(AU {x})) NCIAU{fx1,...,xs}) CSCI(AUT)

whenever A C Sand xq,...,x, € S;

f satisfies Vi, ..., V, = Fjustin case
MNyer CHAU{x}) CCIAUT U{fx1,...,x4})

whenever A C S and x1,...,x, € S.

Students of multiple-conclusion logics may recognize that this is a closure theoretic
version of Shoesmith and Smiley’s technique for characterizing two-valued truth
functions ([7], p. 312-13; cf. Kneale [”], pp. 246—47; see also Scott [0], p. 415).
To see how the technique works in practice, consider the truth table for classical
negation.

z | 7z
rrF
F | T

To associate a closure theoretic principle with each line of the truth table, we say
— satisfies T = F just in case

MNyez ClA U {x}) € Cl(A U {z} U {—z})

whenever A C Sandz € S;
— satisfies F = T just in case
(mxe{z} CI(A U {x})) NCI(A U {—z}) € CI(A U @)

whenever A C Sandz € S.
Each principle can be simplified.
— satisfies T = F justin case S € Cl({z, —z}) forall z € S.

— satisfies F = T justin case CI(AU{z}) NCl(AU{—z}) € CI(A) whenever
AC Sandz e S.
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In a deductive setting, T = F would say that every sentence is derivable from a con-
tradiction (ex falso quodlibet), whereas F = T would say that something is derivable
whenever it is derivable from each term of a contradiction. If we let A be the empty
set, we obtain the two axioms for classical negation from Tarski [¢] ([V], ch. 3; see
also [3], p. 68).

Tarski’s Axiom 9* CI({z, —z}) = S.
Tarski’s Axiom 10* Cl({z}) N Cl({—z}) = CI(D).

As so often occurs in mathematics, the order of exposition here is the reverse of the
order of discovery. The two Tarski axioms were the starting point and the abstract
schemes emerged as generalizations of them.

We refer to each of our principles Vi, ..., V, = Vg as a truth condition. We now
show that each of our truth conditions supplies f with the right “semantic” properties
(that is, each truth condition guarantees that the membership or nonmembership of

fx1,...,x, in anirreducible set will depend in the intended way on the membership
or nonmembership of the arguments x1, . . ., x, in that set).
Theorem 3.1 Suppose the n-ary function f satisfies the truth condition Vi, ..., V,

= T. Pick any irreducible set B. Then fx1,...,x, € BifT C Band (FNB) = @.

Proof Under the hypotheses of the theorem,

(NeerCUB U {xH) NCUB U {fx1,...,xa}) € B.

If F = @, then it is trivial that fxi,...,x, € B. Suppose F # &. Then it would
contradict B’s irreducibility if fxi,...,x, ¢ B. O

For example, if the function — satisfies F = T, then —z will belong to an irreducible
set whenever z does not.

Theorem 3.2 Suppose the n-ary function f satisfies the truth condition Vi, ..., V,
= F. Pick any irreducible set B. Then fx1,...,x, ¢ BifT € Band(FNB) = @.

Proof Under the hypotheses of the theorem,

Mecr CI(B U {x}) € CUB U {fx1.....xn}).

If F = @and fx1,...,x, € B, then B = NG = S, which is impossible. If
F = {xt} and fxi1,...,x, € B, then x; € B, which contradicts our assumption
that no member of F belongs to B. Suppose F has more than one member. Then it
would contradict B’s irreducibility if fxi,...,x, € B. O

If the function — satisfies T = F, then —z will not belong to an irreducible set if z
does. The converse of Theorem holds, as does that of Theorem

Theorem 3.3 If, for each irreducible set B, fxi,...,x, € B whenever T C B
and (F N B) = &, then f satisfies the truth condition Vi, ..., V, = T.

Proof Suppose z ¢ CI(A U T). Then we can pick an irreducible set B that contains
(A U T) but does not have z as a member. Suppose z € CI(A U {fx1,...,x,}).
Then z belongs to every irreducible set that contains (A U {fx1,...,x,}). So
fx1,...,x, ¢ B and, hence, (F N B) # &. Let x belong to both F and B.
Then not every irreducible set that contains (A U {x}) has z as a member. So
z ¢ CI(A U {x}). (Il
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If —z belongs to an irreducible set whenever z does not, then the function — satisfies
F=T.

Theorem 3.4 [f, for each irreducible set B, fx1,...,x, ¢ B whenever T C B
and (F N B) = &, then f satisfies the truth condition V1, ...,V, = F.

Proof Suppose z ¢ CI(AUT U{fx1,...,x,}). Then we can pick an irreducible
set B that contains (AU T U {fxq, ..., x,}) but does not have z as a member. Note
that (F N B) # & and proceed as in the previous proof. (]

If z and —z never belong to the same irreducible set, then the function — satisfies T
= F.

4 Expressiveness

We now say that a set of n-ary truth conditions is consistent if and only if none of
the associated truth table entries assign both T and F to the same sequence of inputs.
(For example, you do not have both TF = T and TF = F.) We extend the notion
of expressiveness from closure spaces to sets of truth conditions by stipulating that
a consistent set of n-ary truth conditions is expressive if and only if every finitary
closure space with a function satisfying those conditions is expressive. A closed
subset of our domain is maximally consistent if and only if its only closed proper
superset is the whole domain S. A finitary closure space is expressive if and only if
each of its irreducible sets is maximally consistent ([ 3], Theorems 6.4, 6.33, 6.35, and
7.32). We use this fact in the proofs of some of the following results. By F, ..., F
we mean a sequence of inputs all of which are F. T, ..., T will be a sequence of
inputs all of which are T.

Lemma 4.1 A consistent set of n-ary truth conditions will not be expressive unless
F, ..., F = T is one of its members.

Proof Suppose (F,...,F = T) ¢ ®. We need just one finitary, nonexpressive
closure space with a function satisfying each member of ®. Consider the following
lattice of closed sets.

{a. b}
|
{b}

I
o

Notice that @ is irreducible but not maximally consistent. So this closure space is
not expressive. Let

oo | T ifr=b
YVZE1F ifx=a

and let

b if(r(x),...,t(xy) =T)e®

XlyeooyXn = .
8x1 " { a otherwise.
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We want to show that g satisfies every truth condition in ®. Suppose, first, that
(V1,...,V, = T) € ©. By Theorem 3.7, we need only verify that gx1, ..., x, be-
longs to our two irreducible sets (& and {b}) under the right conditions. As before,
weletT = {xx : Vpy =T}and F = {xy : Vy = F}. Since (F,...,F=T) ¢ 0,
T is nonempty. So it is vacuously true that gx1,...,x, € & whenever T C &
and (F N @) = &. Suppose T C {b} and (F N {b}) = @. Then Vi = t(xx)
whenever 1 < k < n. So gxi,...,x, = b and, hence, gx1,...,x, € {b}.
Now suppose (Vi,...,V, = F) € ©. By Theorem 3.4, we need only verify
that gx1, ..., x, is a nonmember of our irreducible sets under the right conditions.
Clearly gxi, ..., x, will not belong to & under any conditions. Suppose T C {b}
and (F N {b}) = @. Then, again, V;y = t(x;) whenever | < k < n. Since
® is consistent, (t(x1),...,7(xy) = T) ¢ ©. So gx1,...,x, = a and, hence,
gxX1,...,xn & {b}. O

It was essential to this proof that & be irreducible—as the following theorem shows.

Theorem 4.2 A finitary closure space in which & is not irreducible will be expres-
sive if there is a function on that space satisfying T, ..., T = F and at least one
truth condition with output 'T.

Proof Suppose B is irreducible and z ¢ B. We want to show that C1(B U {z}) = S.
Suppose f satisfies T, ..., T=Fand Vy,...,V, = T.Picky € B and let

[y iftVi=T
YM=1; if V; =F.

Then, by Theorem 3.1, fxy,...,x, € B. ButCl(BU {y, z, fx1,...,x,}) = S. So
Cl(BU {z}) = S. O

The following lemmas will help us with the proof of Theorem
Lemma 4.3 If f satisfiesVy,...,V, = Fand

_ ]y i#fVi=F

then'y € Cl({z, fx1, ..., xz}).

Proof If F = &, then § C Cl({z, fxi1,...,x,}). If F is nonempty, then F = {y}
and, hence, CI({y}) € Cl({z, fx1,...,xs}). .

Lemma 4.4 A consistent set of n-ary truth conditions will not be expressive unless
at least one of its members has output F.

Proof Suppose every member of ® has output T. Consider the following lattice of
closed sets.
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We need to arrange that gxi, ..., x, belongs to each of our irreducible sets ({b, c}
and {c}) no matter what x1, ..., x, might be. No problem: just stipulate that
gx1,...,xn = c. By Theorem > .3, g satisfies every member of ©®. [l

Theorem 4.5 A consistent set of n-ary truth conditions will be expressive if and
only if its members include F, ..., F = T and at least one truth condition with
output F.

Proof (—) Apply Lemmas and

(<) Suppose f satisfies F,...,F = T and Vy,...,V, = F. Suppose B is
irreducible and z ¢ B. We want to show that C1(B U {z}) = S. Suppose y ¢ B and
X1, ..., X, are as in Lemma 4 .5. Then, by Theorem .1, fxi,...,x, € B. So, by
Lemma 4.2, y € CI(B U {z}). O

Exactly 2" =D — 1 two-valued n-ary truth functions have expressive truth conditions.
The seven binary ones are

«—~ - < | = =
TT| T T T F F F F
TF| T F F T T F F
FT|F T F T F T F
FF| T T T T T T T

The only one of the seven that might occasion any surprise at all is material equiva-
lence (<>). But consider three other binary truth functions.

< = <«
TT| F F F
TF| T T F
FT| T F T
FF| F F F

Each of these is definable in a finitary closure space that is not expressive. So these
functions do not have expressive truth conditions. However, as Theorem teaches
us, all the counterexamples have a somewhat odd property: & is irreducible. There
are two circumstances under which @ is not irreducible. First, @ is not closed.
This is equivalent to saying that C1(&) has members. In a deductive setting, this
would mean that at least one sentence is derivable from the empty set of premises—
a perfectly common circumstance. Second, & is closed but is not the intersection
of other closed sets. In a sentential logic with infinitely many sentence letters, one
would expect C1(2) to be the intersection of {CI({ P}) : P is a sentence letter}. The
frequency of contrary cases will depend, of course, on what one is willing to count
as a “sentential logic.”

If we consider only the finitary closure spaces in which & is not irreducible, the
only two-valued binary truth functions whose presence does not guarantee expres-
siveness will be T-constant, F-constant, conjunction, disjunction, and the two binary
projection functions (exactly the binary truth functions of Post’s logic A1).
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5 Examples

A connective with the deductive properties of intuitionistic negation will take on the
deductive properties of classical negation when combined with any operator satisfy-
ing the conditions of Theorem +.5. Here is why. If — obeys the principle

—x € CI(A) iff CI(AU{x}) =S

(as does intuitionistic negation) then —x will belong to a maximally consistent set
if and only if x does not ([3], p. 203). So if every irreducible set is maximally
consistent, then — will have the “truth conditions” of classical negation.

A connective with the deductive properties of intuitionistic implication will take
on the deductive properties of material implication when combined with any operator
satisfying the conditions of Theorems .2 or 4.5. If — obeys the principle

(x = y)eCl(A) iff y e CI(AU {x})

(as does intuitionistic implication) then x — y will belong to a maximally consis-
tent set if and only if x does not or y does ([3], p. 73). So if every irreducible set
is maximally consistent, then — will have the “truth conditions” of material impli-
cation. Note, furthermore, that (x — x) € Cl(@). So & is not closed and, hence,
Theorem +.2 applies.

More concretely, if you want to have a connective that satisfies modus ponens and
the deduction theorem, but not Peirce’s law, then (for example) you cannot also have
a connective f that satisfies the following principles:

TT = F {0, ¥, f(p, ¥)} proves 6

{&1, ..., &, ¥} proves 0
=T {€1,.... & f(@,¥)} proves 6

where “proves” is a derivability relation that induces a finitary closure space (that is,
ClI will be a finitary closure operator if we stipulate that ¢ € CI(A) if and only if A
proves ). Your hope of avoiding Peirce’s law would also be dashed if f satisfied
modus ponens (TF = F) and

} = {&1,...,&,, ¢} proves 0

{%‘17 e 75}1’ (p} pI'OVeSH
FF=T {&1,..., &, ¥} proves 6 ¢ = {&,..., &} proves6.

{glv e “;:ns f((/), W)} pI‘OVCSH

It seems likely that someone has noticed these facts before. Now, however, we can
locate them within the general theory of finitary closure spaces.

Here is another application. Though it involves no result that is the least bit pro-
found, it may give a sense of how expansive the province of logic appears from the
closure theoretic perspective. Consider the following two conditions on the function
H. Given any integers j and k, any prime p, and any positive integer n,

Hl1 If p" divides j but not &, then p" divides Hjk.
H2 If p" divides both j and k, then p” does not divide Hjk.

Is there a function H that assigns integers to pairs of integers and satisfies both
H1 and H2? There are infinitely many functions that satisfy H1. Three of the
most obvious are O-constant (Hjk = 0), the first projection function (Hjk = j), and
multiplication (Hjk = j -k). There are also infinitely many functions that satisfy H?2.
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Two of the most obvious are 1-constant (Hjk = 1) and the function that assigns to
the pair (J, k) the first prime that does not divide either j or k. However, no function
satisfies both H1 and H2. Here is one reason why. The subgroups of the additive
group of integers form a finitary, nonexpressive closure space in which the empty
set is not irreducible ([3], pp. 135-38). The irreducible sets are the cyclic groups
generated by a power of a prime. So H1 is a version of TF = T, while H2 is a
version of TT = F. Theorem .2 guarantees that H will not satisfy both.

6 Summary

In a finitary, expressive closure space every closed set is the intersection of maxi-
mally consistent sets. So, once the universe of such a closure space is given, all its
remaining structure is determined by the maximally consistent sets. (The universe
is always the intersection of a set of maximally consistent sets, namely, the empty
one. But you cannot figure out what N& is supposed to be unless you already know
what the universe is. If the universe is not the union of the maximally consistent
sets, then the maximally consistent sets alone do not tell you what the universe is.)
It is natural to inquire into the circumstances under which the system UNIVERSE
+ MAXIMALLY CONSISTENT SETS determines the structure of the whole closure
space. This paper has contributed to that inquiry by identifying all the two-valued
truth functions whose truth conditions guarantee that every irreducible set is maxi-
mally consistent. If any of these functions are definable on a finitary closure space,
every closed set will be the intersection of maximally consistent sets and the system
UNIVERSE + MAXIMALLY CONSISTENT SETS will tell you everything there is to
know about the closure space.
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