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Definability of Initial Segments

Saharon Shelah and Akito Tsuboi

Abstract In any nonstandard model of Peano arithmetic, the standard part is
not first-order definable. But we show that in some model the standard part is
definable as the unique solution of a formula ϕ(P), where P is a unary predicate
variable.

1 Introduction

Let T be a first-order theory formulated in the language L and P, P ′ new distinct
relation symbols not in L. Let ϕ(P) be an (L ∪ {P})-sentence. Let us say that
ϕ(P) defines P implicitly in T if T proves ϕ(P) ∧ ϕ(P ′) → ∀x(P(x) ↔ P ′(x)).
Beth’s definability theorem states that if ϕ(P) defines P implicitly in T then P(x) is
equivalent to an L-formula.

However, if we consider implicit definability in a given model alone, the situation
changes. For a more precise explanation, let us say that a subset A of a given model
M of T is implicitly definable if there exists a sentence ϕ(P) such that A is the
unique set with (M, A) |H ϕ(P). It is easy to find a structure in which two kinds
of definability (implicit definability and first-order definability) are different. For
example, let us consider the structure M = (N ∪ Z, <), where < is a total order
such that any element in the Z-part is greater than any element in the N-part. The
N-part is not first-order definable in M because the theory of M admits quantifier
elimination after adding the constant 0 (the least element) and the successor function
to the language. But the N-part is implicitly definable in M because it is the unique
nontrivial initial segment without a last element. On the other hand, for a given
structure, we can easily find an elementary extension in which the two notions of
implicit definability and first-order definability coincide.

In this paper, we shall consider implicit definability of the standard part {0, 1, . . .}
in nonstandard models of Peano arithmetic (PA). It is clear that the standard part
of a nonstandard model of PA is not first-order definable. As is stated above, there
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is a model in which every set defined implicitly is first-order definable. So we ask
whether there is a nonstandard model of PA in which the standard part is implicitly
definable.

In Section 2, we define a certain class of formulas and show that in any model of
PA the standard part is not implicitly defined by such formulas.

Section 3 is the main section of the present paper; we shall construct a model of
PA in which the standard part is implicitly defined. To construct such a model, first
we assume a set theoretic hypothesis ♦Sλ

+

λ

, which is an assertion of the existence of
a very general set. Then we shall eliminate the hypothesis using absoluteness for the
existence of a model having a tree structure with a certain property.

In this paper L is a first-order countable language. L-structures are denoted by
M , N , Mi , . . .. We do not distinguish a structure and its universe. A, B, . . . will be
used for denoting subsets of some L-structure. Finite tuples of elements from some
L-structure are denoted by ā, b̄, . . .. We simply write A ⊂ M for expressing that A
is a subset of the universe of M .

2 Undefinability Result

Let us first recall the definition of implicit definability.

Definition 2.1 Let M be an L-structure. Let P be a unary second-order variable.
A subset A of M is said to be implicitly definable in M if there is an (L ∪ {P})-
sentence ϕ(P) with parameters such that A is the unique solution to ϕ(P), that is,
{A} = {B ⊂ M : M |H ϕ(B)}.

In this section, L is the language {0, 1,+, ·, <}, and PA denotes the Peano arithmetic
formulated in L. We shall prove that the standard part is not implicitly definable in
any model of PA by using a certain form of formulas. We fix a model M of PA and
work on M .

Definition 2.2 An (L ∪ {P})(M)-formula ϕ(ȳ) (with parameters) will be called
simple if it is equivalent (in M) to a prenex normal form

Q1 x̄1 . . . Qn x̄n[P( f (x̄1, . . . , x̄n, ȳ)) → P(g(x̄1, . . . , x̄n, ȳ))]

where Qi s are quantifiers and f and g are definable functions. If Q1 = ∀ then ϕ
will be called a simple 5n-formula. Similarly, it is called a simple 6n-formula if
Q1 = ∃.

Remark 2.3 If P is an initial segment of M , then

1. a1 ∈ P ∧ a2 ∈ P is equivalent to max{a1, a2} ∈ P;
2. a1 ∈ P ∨ a2 ∈ P is equivalent to min{a1, a2} ∈ P.

An L-formula ϕ(x̄) is equivalent to a formula of the form P( f (x̄)), where f is a
definable function such that f (x̄) = 0 if ϕ(x̄) holds and f (x̄) = a (a is a nonstandard
element) otherwise. An initial segment I of an ordered structure will be called a cut
if I does not have a last element. The statement that P is a cut is expressed by a
simple 52-formula.

We shall prove that the standard part is not implicitly definable by a finite number of
simple 52-formulas. In fact we can prove more.
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Proposition 2.4 Let I0 be a cut of M with I0 < a, that is, any element of I0 is
smaller than a. Let {ϕi(P) : i ≤ n} be a finite set of simple 52-sentences. If
I0 satisfies {ϕi(P) : i ≤ n}, then there is another cut I < a which also satisfies
{ϕi(P) : i ≤ n}.

Let us say that a cut I is approximated by a decreasing ω-sequence if there is a
definable function f (x) with I = {a ∈ M : (∀m ∈ ω) a ≤ f (m)}. Similarly,
we say that I is approximated by an increasing ω-sequence if there is a definable
function g(x) with I = {a ∈ M : (∃m ∈ ω) a ≤ g(m)}. Notice that no cut of M
is approximated both by a decreasing ω-sequence and by an increasing ω-sequence.
For a cut I with I < a, let I ∗ = {d : a − d /∈ I }. I ∗ is a cut with I ∗ < a and
I ∗∗ = I . If I is approximated by a decreasing ω-sequence, then I ∗ is approximated
by an increasing ω-sequence. For a sentence ϕ(P), let ϕ∗(P) denote the sentence
obtained from ϕ(P) by replacing all the occurrences of P(∗) by ¬P(a − ∗). If a cut
I < a satisfies a simple 52-sentence ϕ(P), then I ∗ satisfies ϕ∗(P), which is also
a simple 52-sentence. For a cut I < a, I satisfies ϕ(P) if and only if I satisfies
ϕ∗∗(P) holds.

Proof of Proposition 2.4 For i ≤ n, let ϕi(P) have the form

∀x̄∃ȳ[P( fi (x̄, ȳ)) → P(gi(x̄, ȳ))].

By the remark just after Proposition 2.4, we can assume that I0 cannot be approxi-
mated by a decreasing ω-sequence. We shall show that there is an initial segment I
with I0 ( I < a and M |H

∧
i≤n ϕi(I ). Since I0 satisfies ϕi(P), for each b0 ∈ M

with I0 < b0 < a, we have M |H
∧

i≤n ∀x̄∃ȳ[ fi (x̄, ȳ) ∈ ω → gi(x̄, ȳ) ≤ b0]. By
overspill there is an element b1 with I0 < b1 < b0 such that

M |H
∧

i≤n

∀x̄∃ȳ[ fi(x̄, ȳ) ≤ b1 → gi(x̄, ȳ) ≤ b0].

By choosing maximum such b1 < b0, we may assume that b1 ∈ dcl(ā, b0), where
ā are parameters necessary for defining fi s and gis. So we can choose an L(ā)-
definable function, h(x) such that

(i) I0 < b < a implies I0 < h(b) < b and
(ii) M |H

∧
i≤n ∀x∃y[ fi(x̄, ȳ) ≤ h(b) → gi(x̄, ȳ) ≤ b], for any nonstandard

b ∈ M .
By using recursion we can choose a definable function l(x) with l(m) = hm(a) (the
m-time application of h) for each m ∈ ω. Now we put

I = {d ∈ M : (∀m ∈ ω) d ≤ l(m)}.

Since m < h(m) holds for any m ∈ ω, by overspill, there is a nonstandard m∗ such
that m∗ < h(m∗). This shows that I is an initial segment different from I0. Now we
show the following.

Claim 2.5 For all i ≤ n and for all d̄ ∈ M, there is ē ∈ M such that

fi (d̄, ē) ∈ I → gi(d̄, ē) ∈ I.

Let d ∈ M and i ≤ n be given. We can assume that ∀y( fi(d̄, ȳ) ∈ I ) holds in M .
So by the definitions of I and l, for all k ∈ ω, we have M |H ∀y( fi (d̄, ȳ) ≤ l(k)).
Hence, for some nonstandard k∗ ∈ M with k∗ ≤ l(k∗), we have

M |H ∀ȳ( fi (d̄, ȳ) ≤ l(k∗)).
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On the other hand, by our choice of h and l, we can find ē with

M |H fi (d̄, ē) ≤ l(k∗) → gi(d̄, ē) ≤ l(k∗ − 1).

Hence, for this ē, we have gi(d̄, ē) ≤ l(k∗ − 1) ∈ I. �

Corollary 2.6 The standard part is not implicitly definable by a finite number of
simple 63-formulas.

3 Definability Result

In this section we aim to prove the following theorem.

Theorem 3.1 There is a model of PA in which the standard part is implicitly de-
finable.

Instead of proving the theorem, we prove a more general result, Theorem 3.5, from
which Theorem 3.1 easily follows. For stating the result, we need some preparations.

We assume the countable language L contains a binary predicate symbol <, a
constant symbol 0, and a unary function symbol S. We fix a complete countable L-
theory T with a partial definable function F(x, y) such that the following sentences
are members of T .

1. < is a linear order with the first element 0;
2. For each x , S(x) is the immediate successor of x with respect to <;
3. ∀y1, . . . , yn∀z1, . . . , zn∃x(

∧
i 6= j yi 6= y j →

∧n
i=1 F(x, yi) = zi) (for

n ∈ ω).

Remark 3.2 In PA, let F(x, y) = z be a definable function such that the sequence
coded by x has z as the yth element. It is easy to see that this F satisfies the third
condition above. So, any completion of PA satisfies our requirements stated above.

Let P be a new unary predicate symbol not in L. Throughout this section ψ∗(P) is
the conjunction of the following (L ∪ {P})-sentences:

1. P is a cut (nonempty proper initial segment closed under S), that is,
¬(∀x P(x))∧ P(0)∧∀x∀y(P(y)∧x < y → P(x))∧∀x(P(x) → P(S(x)));

2. for no x and z with P(z) is {F(x, y) : y < z} ∩ P unbounded in P, that is,
∀x∀z[P(z) → ∃w(P(w) ∧ ∀y(P(F(x, y)) → F(x, y) < w))].

The subset {Sn(0) : n ∈ ω} of a model of T will be called the standard part of the
model and denoted by N. It is clear that N satisfies ψ∗(P), that is, the sentence
ψ∗(P) holds in the (L ∪ {P})-structure (M,N).

Definition 3.3 A model M of T will be called appropriate if the following two
conditions are satisfied:

1. M 6= N;
2. if (M, I ) |H ψ∗(P) then

(a) I = N or
(b) I is first-order definable with parameters.

Remark 3.4 In case that T is a completion of PA, part (b) of condition 2 in Def-
inition 3.3 does not occur, because in any model of T no definable proper subset is
closed under S.

Theorem 3.5 There is an appropriate model of T .
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We shall prove Theorem 3.5 by a series of claims. For a period of time, we fix an
uncountable cardinal λ with λ = λ<λ. In our proof of the theorem we shall construct
an appropriate model of cardinality λ+ under a set-theoretic assumption, and later
by eliminating this assumption, we get an appropriate model (of cardinality ℵ1) in
ZFC. We don’t know whether the existence of a countable appropriate model can be
shown in ZFC.

First we need some definition. The definition itself can be stated in a general
context. However, we give the definition for a countable T . (Recall that our T is
countable.)

Definition 3.6 Let M be a model of T and ϕ(x, ā) a formula with parameters from
M . We say that ϕ(x, ā) is big (in M) if in some (any) ℵ1-saturated model N � M
there is A ⊂ N with |A| ≤ ℵ0 such that for any finite number of distinct elements
a1, . . . , an ∈ N \ A, and any elements b1, . . . , bn ∈ N , we have

N |H ∃x[ϕ(x, ā) ∧

n∧

i=1

F(x, ai) = bi ].

Let us briefly recall the definition of bigness defined in Shelah [5]. Let R /∈ L be
a unary predicate symbol. A statement (or an infinitary (L ∪ {R})-sentence) 0(R)
is called a notion of bigness for T , if any model M of T satisfies the following
axioms, for all formulas ϕ(x, ȳ) and ψ(x, ȳ) (where 0(ϕ(x, ȳ)) means that setting
R(x) = ϕ(x, ȳ) [so ȳ is a parameter] makes 0 true):

1. ∀ȳ(∀x(ϕ(x, ȳ) → ψ(x, ȳ)) ∧ 0(ϕ(x, ȳ)) → 0(ψ(x̄ , ȳ)));
2. ∀ȳ(0(ϕ(x, ȳ) ∨ ψ(x̄ , ȳ)) → 0(ϕ(x, ȳ)) ∨ 0(ψ(x, ȳ)));
3. ∀ȳ(0(ϕ(x, ȳ)) → ∃≥2xϕ(x̄, ȳ));
4. ∀x0(x = x).

Now let 0(ϕ) be the statement ‘ϕ is big’ in the sense of Definition 3.6. Then
this 0 satisfies the above four axioms: It is easy to see that our 0 satisfies Ax-
ioms 1, 3, and 4. So let us prove Axiom 2. Suppose that neither ϕ nor ψ is big.
Let M be a model of T and N � M be ℵ1-saturated. Let A be a subset of N
of cardinality ≤ ℵ0. Since ϕ is not big, A cannot witness the definition of big-
ness, so there are a finite number of elements a1, . . . , an ∈ N \ A with no repe-
tition and b1, . . . , bn ∈ N such that N |H ∀x[

∧
i≤n F(x, ai) = bi → ¬ϕ(x)].

Since ψ is not big, A′ = A ∪ {a1, . . . , an} cannot witness the definition of big-
ness, hence there are an+1, . . . , am ∈ N \ (A ∪ {a1, . . . , an}) with no repetition and
bn+1, . . . , bm ∈ N such that N |H ∀x[

∧
n+1≤i≤m F(x, ai) = bi → ¬ψ(x)]. So

N |H ∀x[
∧

i≤m F(x, ai) = bi → ¬(ϕ(x)∨ ψ(x))]. Since A was chosen arbitrarily,
this shows that ϕ ∨ ψ is not big.

We introduce some terminology. A Dedekind cut of M of cofinality (µ1, µ2) is a
pair (C1,C2) such that

(i) M = C1 ∪ C2,
(ii) ∀x ∈ C1∀y ∈ C2[x <M y],

(iii) the cofinality of C1 with respect to < is µ1, and
(iv) the coinitiality of C2 (i.e., the cofinality of C2 with respect to the reverse

ordering) is µ2.

Let Sλ
+

λ = {δ < λ+ : cf(δ) = λ}. From now on, until the end of Claim 3.8, we
assume ♦Sλ+λ

+ ♦λ, where λ = λ<λ.
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By [5], we have the following claim. (Recall that our λ is uncountable. Even if
λ = ℵ0, a similar (but not identical) statement holds. For more details, see Shelah
[6].)

Claim 3.7 (Under ♦Sλ+λ
+ ♦λ) There is a model M of T such that the condition

(a) if (C1,C2) is a Dedekind cut of M of cofinality (λ+, λ+) then C1 is a subset
of M definable with parameters

holds, and which is the union of a continuous elementary chain 〈Mi : i < λ+〉 of
models of T such that for some sequence 〈ai : i < λ+〉 of elements ai ∈ Mi+1 \ Mi ,

(b) |Mi | = λ;
(c) Mi is saturated unless i is a limit ordinal with cf(i) < λ;
(d) tpMi+1(ai/Mi) is big, that is, each formula in it is big;
(e) Mi ⊂ {F Mi+1(ai , c) : Mi |H c < b} if b ∈ Mi \ N.

Now we expand the language L by adding new binary predicate symbols. Let
L

∗ = L ∪ {E1, E2, <lev, <tr}. We expand the L-structure M obtained in
Claim 3.7 to an L

∗-structure M∗ by the following interpretation. For a ∈ M ,
let i(a) = min{i < λ+ : a ∈ Mi+1}.

1. E M∗

1 = {(a, b) : i(a) = i(b)};
2. E M∗

2 = {(a, b) : i(a) = i(b) and M |H (c< a ≡ c< b) for every c ∈ Mi(a)};
in other words, (a, b) ∈ E M∗

2 iff a and b determine the same Dedekind cut of
Mi(a)(= Mi(b));

3. <M∗

lev = {(a, b) : i(a) < i(b)};
4. <M∗

tr = {(a, b) : i(a) < i(b) and M |H (c<a ≡ c<b) for every c ∈ Mi(a)}.
The relation <tr defines a preorder on M∗ and induces a tree structure on the E2-
equivalence classes. This tree structure (M∗/E2, <tr) is a definable object of M∗eq.
(We do not use a new symbol for the order induced by <tr.) Similarly <lev induces
a linear order on the E1-equivalence classes. Let R be the definable function which
maps aE2 to aE1 . R is considered as a rank function which assigns a level to each
node of the tree. Then 〈<tr, <lev, R〉 is an L

∗-tree in the sense of Shelah [4]. A
subset B of M∗/E2 will be called a branch of the tree if

(i) it is linearly ordered by <tr,
(ii) aE2 ∈ B and b ≤tr a imply bE2 ∈ B, and

(iii) the set {R(aE2) : aE2 ∈ B} of all levels in B is unbounded in M∗/E1.

Claim 3.8 Every branch of the tree (M∗/E2, <tr, <lev, R) is definable in M∗.

Proof Let B be a branch of the tree (M∗/E2, <tr, <lev, R). We show that B is
definable in M∗. Let I be the <-initial segment determined by B, that is,

I = {a ∈ M∗ : M∗ |H (∀bE2 ∈ B)(∃cE2 ∈ B)[bE2 <tr cE2 ∧ a < c]}.

It is easy to see that I and B are interdefinable in M∗. In fact, we have bE2 ∈ B if
and only if there exist c ∈ I and d ∈ M∗ \ I such that

1. bE2 intersects the interval [c, d],
2. if bE2 ⊂ I then any other b′

E2
with [c, d] ∩ I ∩ b′

E2
6= ∅ has a strictly larger

level than bE2 , and
3. if bE2 ⊂ M∗ \ I then any other b′

E2
with [c, d] ∩ (M∗ \ I ) ∩ b′

E2
6= ∅ has a

strictly larger level than bE2 .
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If the cofinality of (I,M∗ \ I ) is (λ+, λ+), then I is definable in M by property (a)
of Claim 3.7, so B is definable in M∗. So we may assume that the cofinality is not
(λ+, λ+).

First suppose that cf(I ) ≤ λ. Then we can choose a set {ai : i < λ} which is
cofinal in I . Choose j < λ+ with cf( j) = λ and {ai : i < λ} ⊂ M j . If M j \ I is
bounded from below in M∗ \ I , say by d ∈ M∗ \ I , then I is defined in M∗ by the
formula ∃y[x < y < d ∧ y <lev e], where e is an element from M j+1 \ M j . So we
may assume that there is a set {a ′

i : i < λ} ⊂ M j \ I which is coinitial in M∗ \ I . (We
shall derive a contradiction from this.) Let bE2 ∈ B with b /∈ M j . Since the other
case can be treated similarly, we can assume that b ∈ I . Then bE2 is included in
some interval [0, ai ]. By the definition of I , there is cE2 ∈ B such that bE2 <lev cE2

and ai < c. But then b and c determine different Dedekind cuts of M j , hence b and
c are not comparable with respect to <tr. This contradicts our assumption that B is a
branch.

Second suppose that the coinitiality of M∗ \ I is ≤ λ and that the cofinality of I is
λ+. As in the first case, we can choose j < λ+ such that M j \ I is coinitial in M∗ \ I .
Choose d ∈ I which bounds I ∩ M j from above and an element e ∈ M j+1 \ M j .
Then I is defined by the formula ∀y[d < y ∧ y <lev e → x < y]. Lastly the case
where the cofinality of (I,M∗ \ I ) is (µ1, µ2) with µ1, µ2 ≤ λ is impossible by the
definition of branch. �

Let T ∗ be the L
∗-theory of M∗. Under the hypothesis of Claims 3.7 and 3.8 (i.e.,

♦Sλ+λ
and so on), we have proven the existence of M∗ |H T ∗ having a tree with

the property stated in Claim 3.8. So, for example, we have such a model M∗ in the
constructible universe L, as our hypothesis holds there. Now we extend the structure
L. Let P be the forcing notion Levy(ℵ0, λ), and G ⊂ P generic over V . In the
generic extension L[G] (the Lévy collapse), we have λ = ℵ0 and λ+ = ℵ1. This
extension does not add branches to the tree as a branch has length λ+. We can now
apply the absoluteness (e.g., Theorem 6 in [4]) and get such a model without using
the hypothesis. Moreover, as T ∗ is countable, we can assume that relevant properties
of M∗ expressed by one L

∗
ω1ω

(Q)-sentence are also possessed by such models. (Q
is the quantifier which expresses “there are uncountably many”.) Thus in ZFC we
can show the following claim.

Claim 3.9 There is a model N∗ |H T ∗ of cardinality ℵ1 that satisfies
1. the tree (N∗/E2, <tr) has no undefinable branch;
2. the set N∗/E1 of levels has cardinality ℵ1, but for each bE1 ∈ N∗/E1,

{cE1 : cE1 <lev bE1} is countable;
3. if I is a definable subset of N∗ with the Dedekind cut (I, N∗ \ I ) of cofinality
(ℵ1,ℵ1), then I is definable in N;

4. the clause (e) of Claim 3.7, namely, for each level dE1 there is a ∈ N∗

such that if b ∈ N∗ \ N and b ≤lev d then {F(a, c) : c < b} includes
{c ∈ N∗ : c ≤lev d}.

Claim 3.10 Let N∗ be a model of T ∗ with the properties stated in Claim 3.9. Then
the reduct N of N∗ to the language L is ψ∗-appropriate.

Proof Toward a contradiction, we assume that there is an undefinable (in the sense
of N) subset I ⊂ N with (N, I ) |H ψ∗(P) and I 6= N. We show that the cofinality
of (I, N∗ \ I ) is (ℵ1,ℵ1). Suppose that this is not the case. First assume that the
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cofinality of (I, <) is less than ℵ1. As (N∗/E1, <lev) has the cofinality ℵ1, there is
dE1 such that {c ∈ I : c ≤lev d} is unbounded in I . Since I 6= N, we can choose
b ∈ I \ N with b ≤lev d. By condition (4) of Claim 3.9, there is a ∈ N∗ such that
{F(a, c) : c < b} includes {c ∈ I : c ≤lev d}. So {F(a, c) : c < b}∩ I is unbounded
in I . This contradicts the last clause in the definition of ψ∗. Second, assume that
the coinitiality of N∗ \ I is less than ℵ1. For a similar reason as in the first case,
we can find dE1 such that {c ∈ N∗ \ I : c ≤lev d} is unbounded from below in
N∗ \ I . Also we can choose a ∈ N∗ and b ∈ I such that {F(a, c) : c < b} includes
{c ∈ N∗ \ I : c ≤lev d}. If I ∩ {F(a, c) : c < b} were bounded (from above) say by
e ∈ I , then I would be definable in N by the L-formula

ϕ(x, a, b, e)
def
≡ ∀z[(e < z ∧ ∃y(y < b ∧ z = F(a, y))) → x < z],

contradicting our assumption that I is not definable. So I ∩ {F(a, c) : c < b} is not
bounded in I . Again this contradicts the last clause in the definition of ψ∗. So we
have proven that the cofinality of (I, N∗ \ I ) is (ℵ1,ℵ1).

As in the proof of Claim 3.8, we shall define a set {(bi)E2 : i < ℵ1} and definable
intervals Ji ⊂ N∗ (i < ℵ1) such that for each i < ℵ1,

1. Ji s are decreasing,
2. bi ∈ Ji , Ji ∩ I 6= ∅, Ji ∩ (N∗ \ I ) 6= ∅,
3. there is no element d ∈ Ji with d <lev bi .

Suppose that we have chosen d j s and J j s for all j < i . Since the cofinality
of I and the coinitiality of N∗ \ I are both ℵ1,

⋂
j<i Ji intersects both I and

N∗ \ I . Choose b ∈
⋂

j<i Ji ∩ I and c ∈
⋂

j<i Ji ∩ (N∗ \ I ). Then we put
Ji = {e ∈ N∗ : N∗ |H b < e < d}. Choose bi ∈ Ji of the minimum level. (Such bi
exists and (bi)E2 is unique, because every nonempty definable subset of N ∗/E1 has
the minimum element with respect to <lev. If there are two such elements, they are
distinguished by elements of lower levels, contradicting the minimality.) We claim
that {(bi)E2 : i < ℵ1} determines a branch B = {cE2 : cE2 ≤tr (bi)E2 for some i}.
For this it is sufficient to show that the bis are linearly ordered by ≤tr. Let
i ≤ i ′ < ℵ1. Then both bi and bi ′ are members of the interval Ji . Suppose
that bi and bi ′ are not comparable with respect to ≤tr. They determine different
Dedekind cuts of the elements of lower levels. So there is an element c ∈ Ji with
c <lev bi . This contradicts our choice of bi ∈ Ji . By our assumption (the first
condition in Claim 3.9), the branch B = {(bi)E2 : i < ℵ1} is definable in N∗. It is
easy to see that I and B are interdefinable in N∗. So I is also definable in N∗, hence
I is definable in N by condition (3) in Claim 3.9. This contradicts our assumption
that I is undefinable in N . �

Remark 3.11 Theorem 3.5 is a rather general statement. However, there are several
related results concerning models of PA. The following are pointed out by the referee.
Our model constructed in the proof of Theorem 3.5 has the property that the standard
part N is the only semi-regular cut. (See Kirby and Paris [2] for the definition of semi-
regularity.) Such property is also possessed by the models constructed in Theorem
3.14 of Kaufmann and Schmerl [1] (under ♦) and Theorem 2.1 of Schmerl [3] (under
♦λ+).
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