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Computing Verisimilitude

KATARINA BRITZ and CHRIS BRINK

Abstract This paper continues the power ordering approach to verisimili-
tude. We define a parameterized verisimilar ordering of theories in the finite
propositional case, both semantically and syntactically. The syntactic definition
leads to an algorithm for computing verisimilitude. Since the power ordering
approach to verisimilitude can be translated into a standard notion of belief re-
vision, the algorithm thereby also allows the computation of membership of a
belief-revised theory.

1 Introduction Verisimilitude (or truthlikeness) concerns the ordering of theories
according to their closeness to the truth. In the context of this paper ‘the truth’ will
be some preferred theory, and thus verisimilitude becomes a parameterized ordering.
Originally the notion is due to Popper [11], for whom it was a necessary ingredient in
his philosophy that science makes progress by discarding one theory in favor of an-
other which is closer to the truth. On Popper’s definition, one theory is closer to the
truth than another if and only if it has more true consequences and fewer false con-
sequences. However, Miller [10] and Tichý [16] later showed that Popper’s ordering
on theories was flawed in that all theories that have some false consequences are in-
comparable. A survey of the developments in verisimilitude since then can be found
in Brink [3].

Somewhat tangential to the context of philosophy of science, Brink, Heidema,
and Burger have introduced and studied the power relations approach to verisi-
militude (see [5], [6], [8]). This approach seems quite general, being embedded in
the study of power structures (as in Brink [4]), and having been linked up to domain
theory (as in Brink, Vermeulen, and Pretorius [7]) and more recently by Ryan and
Schobbens to belief revision (cf. [13]). Ryan and Schobbens show that given a suit-
able notion of verisimilitude we may define the standard notion of belief revision from
it by saying that ϕ ∈ T ∗ ψ if and only if ϕ is in every theory containing ψ which is
closest to T .

In this paper we extend the power relations approach to verisimilitude by ex-
hibiting the parameterized version in both a semantic and a syntactic context and cast-
ing the syntactic version in the form of an algorithm for computing verisimilitude.
This then also yields an algorithm for computing belief revision.
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In Section 2section.2 we rephrase the relevant concepts from [5]. In Sec-
tion 3section.3 we generalize the work in [5] by defining a semantic order on propo-
sitional sentences relative to an arbitrary propositional sentence. This may be seen
as ordering sentences in a situation of incomplete information, or as ordering sen-
tences relative to a given subjective truth. In Section 4section.4 we give the syntactic
description of the semantic order described in Section 3section.3 and turn this into
an algorithm. Section 5section.5 gives an application to belief revision. The work
presented in Sections 2section.2 and 3section.3 has been extended to the case of in-
finitely many variables (see [6], [7]). Our discussion will however be restricted to the
case of finitely many propositional variables, due to the inherently finite nature of the
computational syntactic approach of Section 4section.4.

2 The power relations approach Let L denote the propositional language gener-
ated by finitely many propositional variables p1, p2, . . . , pn, and the usual connec-
tives ∨, ∧ and ¬. The tautology is written � and its negation ⊥. Propositional sen-
tences will be denoted by Greek symbols. Let δ be any conjunction of literals such
that each variable appears exactly once in δ. That is, δ is a conjunction of propo-
sitional variables and negations of propositional variables of the form δ = [¬]p1 ∧
[¬]p2 ∧ . . . ∧ [¬]pn. δ makes a claim about the truth or falsity of each atomic fact
in the language L . Each propositional variable represents an atomic fact. If p j ap-
pears in δ, then the truth of p j is asserted, and if ¬p j appears in δ, then the falsity of
p j is asserted. We say that δ fully describes some possible world. We fix one such
possible world, called t, as the real world. t corresponds to the Truth as known by an
omniscient observer. t can also be written as a valuation t : L → 2, where 2 is the
two-element Boolean algebra, with

t(pi) =
{

1 iff pi is true in the real world
0 iff pi is false in the real world.

Each possible world can be identified in this way with some valuation w : L → 2.
We will, for the remainder of this paper, regard possible worlds as valuations. The
set of all valuations will be denoted by W .

The set of valuations that satisfy a propositional sentence ϕ is written Mϕ. A
valuation w is called a model of ϕ iff w ∈ Mϕ iff w(ϕ) = 1. Two sentences ϕ and
ψ are called equivalent iff they have the same models. Two valuations u and w are
called i-equivalent, written u ≡i w, iff u(p j) = w(p j) for all j 	= i.

Our aim in this section is to order sentences according to their closeness to the
Truth, by ordering their sets of models. These sets of valuations will be ordered in
terms of an order ≤t on elements of the sets according to their closeness to the real
world t. Let u and w be valuations. u ≤t w reads “w is closer to t than u is,” where
“closer” is taken to include implicitly the possibility “or equal.” It holds iff w agrees
with t on at least all those propositional variables where u agrees with t, and is defined
as follows:

Definition 2.1 Let t be the real world, and u and w be any valuations. The binary
relation ≤t ⊆ W 2 is defined by:

u ≤t w iff (∀pi)(u(pi) = t(pi)) ⇒ (w(pi) = t(pi)).
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This order on valuations can now be used to define a verisimilar pre-order on sets of
models of sentences through the use of power relations. Brink [4] provides a detailed
account on power relations in the more general context of power structures.

For any binary relation over a set A, one can define a power relation over the
power set of A. We overload the symbol ≤t of Definition 2.1 to use it for the power
relation it induces as well. (The elements related to each other disambiguate the two
relations.) Let ϕ and ψ be sentences. ϕ ≤t ψ reads “ψ is closer to t than ϕ is.”

Definition 2.2 For any sentences ϕ and ψ, the pre-order ≤t is defined by:

ϕ ≤t ψ iff (∀u ∈ Mϕ)(∃v ∈ Mψ)[u ≤t v] and (∀v ∈ Mψ)(∃u ∈ Mϕ)[u ≤t v].

Brink and Heidema [5] motivate this definition by showing that this order on sen-
tences exhibits many of the desirable properties of a verisimilar order on theories as
formulated by Popper and others.

3 Semantic generalization We regard a theory as an assertion phrased in the lan-
guage of propositional logic over finitely many variables. The beliefs of the previous
section were ordered relative to the belief of an omniscient observer whose beliefs
describe a single possible world t. The verisimilar order then indicates which of any
two beliefs are in closer agreement with that of the omniscient observer who knows
the truth values of all atomic facts. In this section, we will order sentences accord-
ing to how closely they agree with an arbitrary third sentence. We call the sentence
relative to which we define the order τ, the models of τ being any set of valuations,
instead of the singleton set {t}. If we wish to remain in a context where we still be-
lieve in the existence of an objectively observed Truth, τ may be seen as describing
that truth partially. Any one of the possible worlds described by τ may be the real
world. τ therefore provides incomplete information about the Truth, and other sen-
tences are ordered relative to this incomplete description of the Truth. Alternatively,
if we are not concerned with an objectively observed Truth, we can view the order as
being a subjective ordering of beliefs relative to the beliefs stated by τ. Agents hav-
ing different beliefs can use this order to compare the beliefs of other agents to their
own.

An important concept in the ordering of theories is that of relevance. Schurz
and Weingartner [14] noted that the case against Popper’s original proposed order
depends upon introducing certain irrelevancies as consequences in the construction
of its argument. By placing certain relevance criteria on the classical deductive con-
sequence relation, these irrelevant consequents can be disallowed. In [14] the rele-
vance criteria are purely syntactical. For example, irrelevant disjunctive weakening
is not allowed: The inference from α � β to α � β ∨ γ is not valid, since γ may be
irrelevant to both α and β. A verisimilar order on theories is then defined in terms of
this restricted relevant deductive consequence relation, while remaining within the
framework of classical logic.

In Section 2section.2 sentences were ordered relative to a single valuation t. If
that is the case, the sentence with model t pronounces upon the truth of all atomic
facts, and hence all atomic facts must be relevant when determining the verisimilar
order. Further, since the truth values of all nonatomic facts are functionally dependent
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upon the truth of atomic facts, we need not be concerned about the truth values of any
nonatomic consequences of τ. The order on valuations (and hence also the order on
sentences) is therefore defined in terms of the truth values of all the atomic variables.
If, however, τ is an arbitrary sentence, not all atomic variables are relevant.

Our notion of relevance is that of Ryan [12], where it is called natural conse-
quence. It is based on the concept of monotonicity. We will use the concept of mono-
tonicity to define two orders on valuations, namely �τ (in 3.4) and then ≤τ, which is
based on �τ (in 3.11). The power order of ≤τ then gives a parameterized verisimilar
order on sentences (in Definition 3.12), similar to the power order defined in Defi-
nition 2.2. We will also relate the order on valuations defined in Definition 3.11 to
an order on valuations defined in [12] and formulated in terms of the natural conse-
quence relation. This is done in Theorem 3.19 and the three lemmas preceeding it.

Definition 3.1 ([12])

1. A sentence ϕ is monotone in an atomic proposition pi iff ∀u ∈ Mϕ and ∀w ∈ W
such that u ≡i w, if u(pi) ≤ w(pi) then w ∈ Mϕ.

2. A sentence ϕ is antitone in an atomic proposition pi iff ∀u ∈ Mϕ and ∀w ∈ W
such that u ≡i w, if u(pi) ≥ w(pi) then w ∈ Mϕ.

In other words, ϕ is monotone in a propositional variable pi iff increasing the truth
value of pi in 2 preserves satisfaction of ϕ, and it is antitone in pi iff decreasing the
truth value of pi in 2 preserves satisfaction of ϕ. (Note: [12] uses the term ‘anti-
monotonic’ where we’ve used ‘antitone.’) The variables in which a sentence is mono-
tone (antitone) can also be characterized syntactically (see Barwise [2]).

Theorem 3.2 A sentence ϕ is monotone (antitone) in a variable pi iff there exists
some sentence ψ, written in disjunctive normal form and logically equivalent to ϕ,
such that pi does not occur negatively (positively) in ψ.

Proof: This is a consequence of Lyndon’s Homomorphism theorem (see [2]), which
states that a theory is logically equivalent to a positive set of sentences if and only if
it is preserved under homomorphic images.

For example, p ∧ q is monotone in both p and q, but antitone in neither; p ∨ ¬q is
monotone in p and antitone in q; p is monotone in itself, and both monotone and
antitone in q, and p ∨ ¬p is both monotone and antitone in both p and q.

Two sets of propositional variables that we will frequently refer to, are the fol-
lowing.

Definition 3.3

ϕ+ = {pi | ϕ is not antitone in pi}, and ϕ− = {pi | ϕ is not monotone in pi}.
Syntactically, ϕ+ is the set of all propositional variables that occur positively in every
disjunctive normal form of ϕ. ϕ− are those variables that occur negatively in every
disjunctive normal form of ϕ. Note that [12] defines the related sets ϕ+ and ϕ− as the
sets of variables in which ϕ is monotone and antitone respectively. We will however
mostly use their set-theoretic complements and have therefore taken these as defini-
tion for ϕ+ and ϕ− respectively. We use these sets to define an order on valuations
relative to an arbitrary sentence τ:
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Definition 3.4 Let τ be any sentence and u and w be valuations. Then

u �τ w iff (∀pi ∈ τ+)[u(pi) = 1 ⇒ w(pi) = 1] and

(∀pi ∈ τ−)[u(pi) = 0 ⇒ w(pi) = 0].

Lemma 3.5 If Mτ = {t}, then u �τ w iff u ≤t w.

Proof: Definition 2.1 may be rewritten as follows:

u ≤t w iff (∀pi)[(t(pi) = 1 ⇒ (u(pi) = 1 ⇒ w(pi) = 1))

and (t(pi) = 0 ⇒ (u(pi) = 0 ⇒ w(pi) = 0))].

Recall that each propositional variable occurs exactly once in the primitive conjunc-
tion τ, either negated or unnegated. If pi appears unnegated in τ, then t(pi) = 1, and
if pi appears negated in τ, then t(pi) = 0. Using the notation of Definition 3.3, the
definition can therefore also be written as follows:

u ≤t w iff (∀pi ∈ τ+)[u(pi) = 1 ⇒ w(pi) = 1] and

(∀pi ∈ τ−)[u(pi) = 0 ⇒ w(pi) = 0].

Lemma 3.6 �τ is a pre-order.

Proof: To show reflexivity, we check that for any valuation u, u �τ u. This fol-
lows from Definition 3.4, since (∀pi ∈ τ+)[u(pi) = 1 ⇒ u(pi) = 1] and (∀pi ∈
τ−)[u(pi) = 0 ⇒ u(pi) = 0].

To prove transitivity, let u �τ v and v �τ w. That is, (∀pi ∈ τ+)[u(pi) = 1 ⇒
v(pi) = 1] and (∀pi ∈ τ−)[u(pi) = 0 ⇒ v(pi) = 0]}, and (∀pi ∈ τ+)[v(pi) = 1 ⇒
w(pi) = 1] and (∀pi ∈ τ−)[v(pi) = 0 ⇒ w(pi) = 0]}. Hence (∀pi ∈ τ+)[u(pi) =
1 ⇒ w(pi) = 1] and (∀pi ∈ τ−)[u(pi) = 0 ⇒ w(pi) = 0]}. Therefore u �τ w.

In Definition 3.7 below, we define a sentence which we call uτ. In Lemma 3.8 we
show that the models of uτ are those valuations that are closer to τ than u is according
to the order �τ.

Definition 3.7 For any sentence τ and valuation u, uτ is defined by:

uτ =
∧

{pi | pi ∈ τ+ and u(pi) = 1} ∧
∧

{¬pi | pi ∈ τ− and u(pi) = 0}.

Lemma 3.8 Muτ is the �τ-upclosure of u.

Proof: We have to show the following:

Muτ = {v | u �τ v}
= {v | (∀pi ∈ τ+)[u(pi) = 1 ⇒ v(pi) = 1] and

(∀pi ∈ τ−)[u(pi) = 0 ⇒ v(pi) = 0]}.
uτ is the conjunction of all literals that appear in every disjunctive normal form of τ

and are satisfied by u. Therefore a valuation v satisfies uτ iff for any literal l satisfied
by u that appear in every disjunctive normal form of τ, v(l) = 1.

Lemma 3.9 Mτ is �τ-upclosed.
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Proof: We have to show that, for any sentence τ and valuations u and w, if u �τ w

and u ∈ Mτ, then w ∈ Mτ. Suppose u �τ w and u ∈ Mτ. By Definition 3.4, for all
pi such that τ is not antitone in pi, if u(pi) = 1 then w(pi) = 1. And for all pi such
that τ is not monotone in pi, if u(pi) = 0 then w(pi) = 0. Therefore, for any pi such
that u(pi) 	= w(pi), one of two cases holds: either u(pi) = 1 and τ is antitone in pi,
or u(pi) = 0 and τ is monotone in pi. Recall that u satisfies τ by assumption. In both
cases satisfaction of τ is preserved when changing the value of u(pi) to that of w(pi).
Since u and w can only differ in finitely many variables, w ∈ Mτ.

Example 3.10 Consider the sentence τ = (p ∧ ¬r) ∨ (q ∧ ¬r), generated by pro-
positional variables p, q and r. The models of τ is the set Mτ = {110, 111, 010, 011}.
Further, τ+ = {p, q} and τ− = {r}. The pre-order �τ on valuations relative to τ is
obtained as follows: Let, for example, u = 000 and v = 100. Then, by Definition 3.4,
we must check that if u(p) = 1 then v(p) = 1, if u(q) = 1 then v(q) = 1, and if
u(r) = 0 then v(r) = 0. Any two valuations can be ordered in this fashion using
Definition 3.4, giving rise to the pre-order below.
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One can see in this example that the set of models of τ form an upclosed set in the
order, as proved in Lemma 3.9. In order to contract these models of τ so that they
are equivalent, we refine the relation �τ to form the relation ≤τ defined in Defini-
tion 3.11 below. Our justification for using the same notation in Definition 3.11 as in
Definition 2.1 follows just below the definition.

Definition 3.11 Let τ be a sentence and u and w be valuations. Then u ≤τ w iff
w ∈ Mτ ∪ Muτ.

Mτ ∪ Muτ is the set of models of the sentence τ ∨ uτ. If τ has a single model
t, each propositional variable appears exactly once in τ, either negated or unnegated.
In this case the sets τ+ and τ− therefore form a partition of the literals in τ. Namely,
they are the subsets of positive and negative literals in τ. uτ is the conjunction of all
the literals in τ satisfied by u. Hence w is closer to t than u iff w agrees with t on at
least those propositional variables where u agrees with t. This yields the same order
on valuations as defined in Definition 2.1. Definition 2.1 is therefore a special case
of Definition 3.11. This justifies our choice of ≤τ as an order on valuations relative
to an arbitrary sentence τ.
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Now that we have an order on valuations, it is easy to obtain an order on sen-
tences, as was done in Section 2section.2. The same power construction used in Def-
inition 2.2 to order sets of valuations can be used.

Definition 3.12 Let τ, ϕ and ψ be sentences. The pre-order ≤τ is defined by:

ϕ ≤τ ψ iff (∀u ∈ Mϕ)(∃v ∈ Mψ)[u ≤τ v] and (∀v ∈ Mψ)(∃u ∈ Mϕ)[u ≤τ v].

In the remainder of this section, we relate the order on valuations we defined in
Definition 3.11 to the order defined in [12] and given in Definition 3.14 below.

Definition 3.13 ([12]) A sentence ψ is a natural consequence of a sentence ϕ iff
Mϕ ⊆ Mψ, ψ− ⊆ ϕ− and ψ+ ⊆ ϕ+.

Note, for example, that if α is a natural consequence of ϕ and pi does not occur pos-
itively (negatively) in ϕ, then it may also not occur positively (negatively) in α. This
prohibits the introduction of irrelevant disjuncts in consequences.

Definition 3.14 ([12]) Let τ be any sentence and u and w be valuations. Then w is
closer to τ than u iff any natural consequence of τ satisfied by u is also satisfied by
w.

As in Definition 3.12, this order on valuations can be lifted to a power order on sets
of valuations, yielding a verisimilar order on propositional sentences.

Definition 3.15 A sentence ψ is called logically stronger than a sentence ϕ iff ev-
ery valuation that satisfies ψ also satisfies ϕ, and logically weaker than ϕ iff every
valuation that satisfies ϕ, also satisfies ψ.

In Lemma 3.18 below we show that for any sentence τ and valuation u, τ ∨ uτ is
the logically strongest natural consequence of τ satisfied by u. This implies, as we will
prove in Theorem 3.19, that the orders defined in Definition 3.11 and Definition 3.14
coincide. Consequently, instead of considering all the natural consequences of a sen-
tence as required in Definition 3.14, we need only consider the logically strongest
natural consequence of the theory when determining which of two valuations are in
closer agreement with the sentence.

Lemma 3.16 The natural consequences of τ are precisely the �τ-upclosed super-
sets of Mτ.

Proof: Let ϕ be a natural consequence of τ. Then Mϕ is a superset of Mτ. Let
u ∈ Mϕ and u �τ w. We have to show that w ∈ Mϕ. By Definition 3.4, (∀pi ∈
τ+)[u(pi) = 1 ⇒ w(pi) = 1] and (∀pi ∈ τ−)[u(pi) = 0 ⇒ w(pi) = 0]}, and by
Definition 3.13, ϕ+ ⊆ τ+ and ϕ− ⊆ τ−. Therefore (∀pi ∈ ϕ+)[u(pi) = 1 ⇒ w(pi) =
1] and (∀pi ∈ ϕ−)[u(pi) = 0 ⇒ w(pi) = 0]}. Therefore u �ϕ w. It follows from
Lemma 3.9 that w ∈ Mϕ.

Conversely, let ϕ be any consequence of τ such that Mϕ is a �τ-upclosed set.
Suppose ϕ is not a natural consequence of τ. Then either ϕ+ 	⊆ τ+ or ϕ− 	⊆ τ−. Let’s
assume ϕ+ 	⊆ τ+. That is, there exists some pi such that τ is monotone in pi but ϕ

is not. Since ϕ is not monotone in pi, there exist some valuations u and w such that
u ≡i w and u(pi) < w(pi) and u ∈ Mϕ and w 	∈ Mϕ. Since Mϕ is upwardly closed
in the order �τ and u ∈ Mϕ and w 	∈ Mϕ, u 	�τ w. It follows from the definition of �τ
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that (∃p j ∈ τ+)[u(p j) = 1 ∧ w(p j) = 0] or (∃p j ∈ τ−)[u(p j) = 0 ∧ w(p j) = 1]}.
Since u ≡i w and u(pi) < w(pi), pi ∈ τ−, contradicting the fact that τ is monotone
in pi. Therefore ϕ must be a natural consequence of τ.

Lemma 3.17 τ ∨ uτ is a natural consequence of τ.

Proof: The lemma follows directly from Lemmas 3.9, 3.8, and 3.16, as well as the
fact that the union of two upclosed sets in a pre-order is upclosed.

Lemma 3.18 τ ∨ uτ is the logically strongest natural consequence of τ satisfied by
u.

Proof: The models of any natural consequence of τ form an upclosed set by Lem-
ma 3.16. That set must contain Mτ since it is a consequence of τ. Further, if it is
satisfied by u, then it must contain Muτ, since Muτ is the upclosure of u. Any natural
consequence of τ satisfied by u is therefore logically weaker than (or equally strong
as) τ ∨ uτ. The result now follows from Lemma 3.17.

Theorem 3.19 u ≤τ w iff for every natural consequence ψ of τ, if u satisfies ψ,
then so does w.

Proof: Suppose u ≤τ w, that is, w ∈ Mτ ∪ Muτ. Let ψ be a natural consequence of
τ satisfied by u. Then (Mτ ∪ Muτ ) ⊆ Mψ by Lemma 3.18. Hence w ∈ Mψ.

Conversely, suppose for every natural consequence ψ of τ, if u satisfies ψ, then
so does w. In particular, if u satisfies τ ∨ uτ, then w satisfies τ ∨ uτ. Since u ∈ Muτ,
w satisfies τ ∨ uτ. That is, u ≤τ w.

4 Syntactic approach The verisimilar order on sentences defined in Definition 2.2
can also be defined in terms of two closure operations ∇t (down-closure) and �t (up-
closure) on sentences (cf. [8]).

Definition 4.1 The down-closure ∇tϕ of a sentence ϕ with respect to a a valuation
t is the sentence with models {u | (∃v ∈ Mϕ)[u ≤t v]}. The up-closure �tϕ is the
sentence with models {v | (∃u ∈ Mϕ)[u ≤t v]}.
These operations can also be described in terms of the logical strength of ϕ. The up-
closure of a sentence ϕ is the logically strongest sentence that is both logically weaker
than ϕ and can be described using only positive literals. The down-closure of ϕ is the
logically strongest sentence that is both logically weaker than ϕ and can be described
using only negative literals. Lemma 4.2 describes how to obtain this description syn-
tactically.

Lemma 4.2 ([8]) If t is the valuation that assigns the value 1 to all positive literals,
then the down-closure and up-closure of any sentence ϕ written in disjunctive normal
form can be obtained as follows:

1. If ϕ ≡ ⊥, then ∇tϕ = �tϕ = ⊥. Else:
2. Replace all positive literals in ϕ with � to obtain a sentence logically equivalent

to ∇tϕ.
3. Replace all negative literals in ϕ with � to obtain a sentence logically equiva-

lent to �tϕ.
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Theorem 4.3 defines the verisimilar order of Definition 2.2 in terms of Definition 4.1.

Theorem 4.3 ([8]) Let t be the real world, and let ϕ and ψ be any sentences.

ϕ ≤t ψ iff Mϕ ⊆ M∇tψ and Mψ ⊆ M�tϕ

iff M∇tϕ ⊆ M∇tψ and M�tψ ⊆ M�tϕ.

The down-closure and up-closure of sentences can be described either semanti-
cally as in Definition 4.1 or syntactically as in Lemma 4.2. Theorem 4.3 therefore pro-
vides a description of the verisimilar order based on the syntactic form of sentences,
as opposed to the definition in terms of valuations of Definition 2.2. In Algorithm 4.4
below we give this description. For any sentences ϕ and ψ, Algorithm 4.4 determines
whether ϕ ≤t ψ, where t is the valuation that satisfies the sentence τ = p1 ∧ . . . ∧ pn.

Algorithm 4.4 ([8])

1. Write ϕ and ψ in disjunctive normal form.

2. Derive the sentences ∇tϕ, ∇tψ, �tϕ and �tψ, as described in Lemma 4.2.

3. Check if ∇tϕ � ∇tψ and �tψ � �tϕ. If so, then ϕ ≤t ψ by Theorem 4.3.

Algorithm 4.4 works only if the order on valuations is relative to a single valuation
satisfying all positive literals in the language. In this section we will give a similar
algorithm whereby one can determine which of any two sentences are closer to an
arbitrary third sentence. This will yield a description of the verisimilar order of Defi-
nition 3.12 based on the syntactic form of sentences. We first define the down-closure
∇τϕ and up-closure �τϕ of a sentence ϕ relative to an arbitrary third sentence τ, in
terms of the pre-order �τ defined in Definition 3.4. The same notation may be used as
in Definition 4.1 since we know from Lemma 3.5 that �τ and ≤t coincide when Mτ

is a singleton set. We then give an equivalent syntactic description of these closures
in Lemma 4.6.

Definition 4.5 The down-closure ∇τϕ of a sentence ϕ with respect to a sentence τ

is the sentence with models {u | (∃v ∈ Mϕ)[u �τ v]}, and its up-closure �τϕ is the
sentence with models {v | (∃u ∈ Mϕ)[u �τ v]}.

Lemma 4.6 The down-closure and up-closure with respect to a sentence τ of any
sentence ϕ written in disjunctive normal form can be obtained as follows:

1. If ϕ ≡ ⊥, then ∇τϕ = �τϕ = ⊥. Else:

2. Replace with � every positive literal in ϕ in which τ is antitone but in which
ϕ is not antitone. Replace further with � every negative literal in which τ is
monotone but in which ϕ is not monotone. The resulting sentence is logically
equivalent to �τϕ.

3. Replace with � all positive literals in ϕ in which τ is monotone but in which ϕ is
not monotone. Replace further with � all negative literals in which τ is antitone
but in which ϕ is not antitone. The resulting sentence is logically equivalent to
∇τϕ.
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Proof: (1) If ϕ is the contradiction, the result is immediate by definition. For the
remainder of the proof we assume that ϕ is consistent.

(2) Call the resulting sentence ξ. We will prove that M�τϕ ⊆ Mξ and then that
Mξ ⊆ M�τϕ. Let w ∈ M�τϕ. Then ∃u ∈ Mϕ with u �τ w, i.e., w ∈ Muτ. By
Lemma 3.8,

(∀pi ∈ τ+)[u(pi) = 1 ⇒ w(pi) = 1] and (∀p j ∈ τ−)[u(p j) = 0 ⇒ w(p j) = 0].

In the formation of ξ, all the positive occurrences of variables in which ϕ is not anti-
tone and τ is antitone were removed from ϕ. ξ is in disjunctive normal form because
ϕ is, and these literals do not appear in ξ, so in all those positive literals in which ξ

is not antitone, τ is not antitone in either. Therefore ξ+ ⊆ τ+. Similarly, ξ− ⊆ τ−.
Therefore,

(∀pi ∈ ξ+)[u(pi) = 1 ⇒ w(pi) = 1] and (∀p j ∈ ξ−)[u(p j) = 0 ⇒ w(p j) = 0].

That is, w ∈ Muξ. Each replacement during the formation of ξ is a replacement of a
literal with � in a sentence written in disjunctive normal form and therefore weakens
the sentence logically. Therefore Mϕ ⊆ Mξ. Since u ∈ Mϕ, u ∈ Mξ. Any sentence
is a natural consequence of itself. Since u ∈ Mξ, ξ is a natural consequence of itself
satisfied by u. It follows from Lemma 3.18 that Muξ ⊆ Mξ. Therefore w ∈ Mξ. So
M�τϕ ⊆ Mξ.

Conversely, suppose ϕ = δ0 ∨ δ1 ∨ . . . ∨ δn−1, where each disjunction δi is some
primitive conjunction, say δi = p0 ∧ p1 ∧ . . .∧ pm−1. Consider any such conjunction
δi. Replace any positive literal +p j in δi in which τ is antitone and in which ϕ is not
antitone with � to form ϕ′. Let w ∈ Mϕ′. If w ∈ Mϕ then w ∈ M�τϕ. Otherwise, if
w 	∈ Mϕ, then w is j-equivalent to some u ∈ Mδi ⊆ Mϕ. Since p j 	∈ τ+ and u(p j) = 1,
by Definition 3.4 u �τ w. Therefore w ∈ M�τϕ. The argument for the deletion of
negative literals is the same.

(3) Again, call the resulting sentence ξ. Let u ∈ M∇τϕ. Then ∃w ∈ Mϕ with
u �τ w, i.e., w ∈ Muτ. By Lemma 3.8,

(∀pi ∈ τ+)[u(pi) = 1 ⇒ w(pi) = 1] and (∀p j ∈ τ−)[u(p j) = 0 ⇒ w(p j) = 0],

i.e.,

(∀p j ∈ τ−)[w(p j) = 1 ⇒ u(p j) = 1] and (∀pi ∈ τ+)[w(pi) = 0 ⇒ u(pi) = 0].

Since ξ+ ⊆ τ− and ξ− ⊆ τ+,

(∀p j ∈ ξ+)[w(p j) = 1 ⇒ u(p j) = 1] and (∀pi ∈ ξ−)[w(pi) = 0 ⇒ u(pi) = 0].

That is, u ∈ Mwξ. Since w ∈ Mϕ and Mϕ ⊆ Mξ, w ∈ Mξ. It follows from this and
Lemma 3.18 that Mwξ ⊆ Mξ. Therefore u ∈ Mξ, and thus M∇τϕ ⊆ Mξ.

Conversely, let ϕ = δ0 ∨ δ1 ∨ . . . ∨ δn−1, where each disjuct δi is some primitive
conjunct δi = p0 ∧ p1 ∧ . . . ∧ pm−1. Consider any such conjunct δi. To form δ′

i,
replace with � any positive literal +p j in δi in which τ is monotone and in which
ϕ is not antitone. Let u ∈ Mδ′

i. Then u is j-equivalent to some w ∈ Mδi ⊆ Mϕ. Since
p j 	∈ τ− and w(p j) = 1, by Definition 3.11 w ∈ Muτ, i.e., u �τ w. Therefore u ∈
M∇τϕ. The argument for the deletion of negative literals is similar. So Mξ ⊆ M∇τϕ.
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Theorem 4.7 shows that the verisimilar order on sentences defined in Defini-
tion 3.12, can be described in terms of the up-closure and down-closure of theories
defined in Definition 4.5. The theorem does not always hold when ϕ is the contradic-
tion; it is therefore formulated and proved only for consistent sentences. (If ϕ is the
contradiction, the left hand side holds only when ψ is also the contradiction, whereas
the right hand side holds whenever �τψ � τ.)

Theorem 4.7 For any consistent sentences ϕ, ψ and τ,

ϕ ≤τ ψ iff (M∇τψ ∩ Mτ = {} implies M∇τϕ ⊆ M∇τψ)

and (M�τψ ⊆ M�τϕ ∪ Mτ)

iff ((∇τψ) ∧ τ � ⊥ implies ∇τϕ � ∇τψ) and �τψ � (�τϕ) ∨ τ.

Proof: Suppose ϕ ≤τ ψ and M∇τψ∩ Mτ = {}. Let u ∈ M∇τϕ. Then ∃v ∈ Mϕ with
u �τ v. Since ϕ ≤τ ψ by assumption, ∃w ∈ Mψ with v ≤τ w. That is, w ∈ Mvτ ∪ Mτ.
Since M∇τψ ∩ Mτ = {} and Mψ ⊆ M∇τψ, Mψ ∩ Mτ = {}. Therefore w 	∈ Mτ.
Hence w ∈ Mvτ, that is, v �τ w. Therefore u �τ w by Lemma 3.6. Hence u ∈ M∇τψ.

Second, suppose ϕ ≤τ ψ. Let w ∈ M�τψ. Then ∃v ∈ Mψ with v �τ w. So
∃u ∈ Mϕ with u ≤τ v, i.e., v ∈ Muτ ∪ Mτ, i.e., u �τ v or v ∈ Mτ. If u �τ v then
u �τ w by Lemma 3.6, and therefore w ∈ M�τϕ. Else v ∈ Mτ, and hence so is w by
Lemma 3.9. Therefore w ∈ M�τϕ ∪ Mτ.

Conversely, suppose that (M∇τψ ∩ Mτ = {} implies M∇τϕ ⊆ M∇τψ) and that
(M�τψ ⊆ M�τϕ ∪ Mτ). Let u ∈ Mϕ. If M∇τψ ∩ Mτ 	= {} then ∃v ∈ M∇ψ ∩ Mτ.
Since v ∈ Mτ, u ≤τ v. Else M∇τψ ∩ Mτ = {}. Therefore u ∈ Mϕ ⊆ M∇τϕ ⊆
M∇τψ. So ∃v ∈ Mψ with u �τ v. Hence u ≤τ v.

Second, let w ∈ Mψ. Since M�τψ ⊆ M�τϕ ∪ Mτ by assumption, w ∈ M�τϕ

or w ∈ Mτ. If w ∈ M�τϕ, then ∃u ∈ Mϕ with u �τ w, hence u ≤τ w. Else w ∈ Mτ,
and u ≤τ w for any u ∈ Mϕ.

Theorem 4.7 may be regarded as a generalization of Theorem 4.3. For suppose the
special case holds where τ is the conjunction of all positive literals, and Mτ = {t}. We
have to show that [((∇τψ) ∧ τ � ⊥ implies ∇τϕ � ∇τψ) and �τψ � (�τϕ) ∨ τ] iff
[∇τϕ � ∇τψ and �τψ � (�τϕ)], using either Definition 4.1 or 4.5 for the up-closure
and down-closure operations, since we have already shown that they are the same.
Since t ∈ �τϕ, (�τϕ) ∨ τ = �tϕ. So �τψ � (�τϕ) ∨ τ iff �τψ � �τϕ. Further,
if t ∈ Mψ, then ∇τψ = � and hence both ((∇τψ) ∧ τ � ⊥ implies ∇τϕ � ∇τψ) and
(∇τϕ � ∇τψ) are true. Else, if t 	∈ Mψ, then (∇τψ) ∧ τ � ⊥ and hence ((∇τψ) ∧ τ �
⊥ implies ∇τϕ � ∇τψ) iff (∇τϕ � ∇τψ). Theorem 4.7 is therefore a generalization
of Theorem 4.3.

To conclude, here is the algorithm to determine which of two consistent sen-
tences ϕ and ψ are closer to an arbitrary sentence τ. Contradictions may be dealt with
separately as a special case.

Algorithm 4.8

1. Write ϕ and ψ in disjunctive normal form.

2. Calculate τ+, τ−, ϕ+, ϕ−, ψ+ and ψ−.

3. Derive the sentences ∇τϕ, ∇τψ, �τϕ and �τψ as described in Lemma 4.6.
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4. Check whether ((∇τψ) ∧ τ � ⊥ implies ∇τϕ � ∇τψ) and �τψ � (�τϕ) ∨ τ.
If so, then ϕ ≤τ ψ by Theorem 4.7.

There are two potential problems with this algorithm. First, for the calculation in (2) it
is assumed that literals do not appear redundantly in any sentence. That is, we depend
upon the syntactical form of a sentence when determining its monotonicities. Second,
if (4) is to be computed using a resolution-based theorem prover, the sentences should
have been in conjunctive normal form. In the case of single propositional sentences
this presents no real problem apart from efficiency, but it does not bode well for gen-
eralization to theories as sets of sentences, or to the predicate case. A theorem prover
based on negation normal form (as in Andrews [1]) could eliminate this problem.

5 Application to belief revision In Definition 3.11, we defined an order on valua-
tions relative to an arbitrary propositional sentence. In the context of default reason-
ing, such an order is known as a preference relation. u ≤τ w means that w is preferred
to u with respect to the satisfaction of τ. A preference relation ≤τ can be used to de-
fine a nonmonotonic (not to be confused with our definition of monotone!) inference
relation |∼τ (cf. Shoham [15]). As in the previous sections, we restrict ourselves to
propositional sentences, although the definition is usually stated more generally.

Definition 5.1 Let τ, ϕ and ψ be sentences. Then ϕ |∼τ ψ iff every ≤τ-maximal
model of ϕ is a model of ψ.

Note that ≤τ is defined in the opposite direction from that usually used in the literature
on preference relations; all minimal elements in such papers therefore become our
maximal elements.

In Makison and Gärdenfors [9], the link between belief revision and default rea-
soning is argued to be the following: if τ ∗ ϕ is the sentence obtained by revising τ

with ϕ, then ψ ∈ M(τ ∗ ϕ) iff ϕ |∼τ ψ. Using this as definition of belief revision, one
can define a belief revision operator in terms of a preference relation ≤τ (cf. [13]).

Definition 5.2 Let τ, ϕ and ψ be sentences. ψ ∈ M(τ ∗ ϕ) iff every ≤τ-maximal
model of ϕ is a model of ψ.

In the notation and context of this paper, the belief revision operator induced by the
preference relation ≤τ can also be written in terms of the verisimilar order on sen-
tences, provided ≤τ is antisymmetric. In order to achieve this, we have to change
the pre-orders defined in Definitions 3.4 and 3.11 into partial orders in the usual way:
define an equivalence relation by u ≡ v iff u �τ v and v �τ u (and similarly for ≤τ),
and order valuations according to the equivalence classes to which they belong. In
the next theorem, we assume that this has been done.

Theorem 5.3 Let τ, ϕ and ψ be sentences. ψ ∈ M(τ ∗ ϕ) iff ϕ ≤τ ϕ ∧ ψ.

Proof: ψ is a consequence of τ ∗ ϕ

iff every ≤τ-maximal model of ϕ is a model of ψ

iff (∀u maximal in Mϕ)(∃w ∈ Mψ)[u = w]
iff (∀u maximal in Mϕ)(∃w ∈ M(ϕ ∧ ψ))[u = w]
iff (∀u ∈ Mϕ)(∃w ∈ M(ϕ ∧ ψ))[u ≤τ w].
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Comparing this reformulation to the verisimilar order of Definition 3.12, one can
see that the former is the first half of the definition of the order ϕ ≤τ (ϕ ∧ ψ). Since
M(ϕ ∧ ψ) ⊆ Mϕ, the latter half of the definition follows trivially.

In the terminology of Definition 4.5, and as a consequence of Theorem 4.7, τ ∗ ϕ � ψ

iff the following condition is met: ϕ ∧ ψ must be consistent, and whenever ϕ ∧ ψ ∧ τ

is a contradiction, then ∇τϕ � ∇τ(ϕ ∧ ψ). Algorithm 4.8 may in this way be applied
to check whether a sentence ψ is a consequence of τ ∗ ϕ, where the belief revision
operator ∗ is induced by the preference relation ≤τ.

In the previous sections we used the preference relation ≤τ to define a param-
eterized verisimilar order, also called ≤τ, as a generalization of [5]. In this section
we rewrote the belief revision membership relation of Definition 5.2 and noted that it
closely resembles this verisimilar order. This similarity enabled us to apply the algo-
rithm obtained for computing verisimilitude to also compute membership of a belief-
revised theory. Verisimilitude seems the more general notion, since every belief-
revision calculation of the form ψ ∈ τ ∗ ϕ corresponds to a verisimilar ordering cal-
culation of the form ϕ ≤τ ξ where ξ is logically stronger than ϕ, but not all verisimilar
orderings correspond directly to a belief revision calculation.
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