25

Notre Dame Journal of Formal Logic
Volume 37, Number 1, Winter 1996

Multi-Dimensional Semantics
for Modal Logics

MAARTEN MARX

Abstract Weshow that every modal logic (with arbitrary many modalities of
arbitrary arity) can be seen as a multi-dimensional modal logic in the sense of
Venema. This result shows that we can give every modal logic a uniform “con-
crete” semantics, as advocated by Henkin et al. This can also be obtained using
the unravelling method described by de Rijke. The advantage of our construc-
tion is that the obtained class of frames is easily seen to be elementary and that
the worlds have a more uniform character.

1 Introduction  Multi-dimensional (MD) modal logics are the topic of Venema
[Ld]. We intuitively describe what is meant by this term. A MD modal logic is a se-
mantically given modal logic in which the worlds of the frames@ieng sequences,
for some fixed ordinadk, and the accessibility relations are defined in a uniform set-
theoretic manner. A typical example of such a relation is “forgetting-tinecoordi-
nate,” i.e., fors, t sequences, we define

def . .
ssit< (V] #Dsj=tj.

Then,
def
M, SIF Oip s () (S=i t & M, tIF ).

Note the similarity of this modality with the existential quantifier in first-order logic:
Axg is satisfied at an assignmesiff there exists an assignmenivhich agrees with

son every variable except maykeandy is satisfied at. The simplest and probably
best known MD modal logic i§5, in which the worlds are sequences of length 1,
and the accessibility relation is defined as above. Recall that this logic is equivalent
to monadic first-order logic. If we make the sequences longerndagg, and we

add modalities for every coordinate, we arrive in cylindric modal logic, the modal
counterpart of first-order logic with variables (cf.[LT]). In this paper we start from
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another natural operation on sequences: composition of binary relationd/ Eor
UxU and{s,r,t} C V, define

def
Cusit &= S=lol=th& =5
def
M sk ooV ¥ = @rt):Cusrt& M, rl- & M, tIF .

A well-investigated modal logic with" as its main connective &rrow logic
(cf., van Benthemld, [9], Venemall0], Marx [6]). Traditionally, only the “square”
version of arrow logic (in which one considers only frames whose universe is a full
Cartesian product, that is, the modal counterpart of Representable Relation Algebras)
was investigated. Recently, the nonsquare versions (in which the universe can be any
subset of a Cartesian product) received a good deal of attention (cf., e.g., MBfidux [
Kramer F], Marx [E]). If one considers a modal logic with one binary modality,
the weakest derivation system (the generalization ofdteystem for unary modal
logic) turns out to be strongly sound and complete with respect to the class of multi-
dimensional frame§s = (V, Cy) : V C U x U for some seU}. This indicates thata
natural interpretation for a binary modality is indeed (“nonsquare”) relation composi-
tion. This result formed the basis for the theorem to be proved here and is an instance
of the more general formulation.

We start with the necessary definitions. After that we look at modal logics with
just one modality and show how to give them a multi-dimensional semantics. Having
established these results we are ready for the general theorem which deals with modal
logics with arbitrary many modalities. Then we show that the proposed frame-classes
are elementary, and we finish with a discussion of the results.

1.1 Preliminaries Arbitrary modalities are denoted by, their duals—V— by V.
A modal similarity type Sis a pair(O, p) with O a %t of logical connectives and
0. O — w afunction assigning to each symbol @ afinite rank or arity. We call
L amodal logic of type S= (O, p) if Lis atuple(Fml, L, IF) in which,

e Fml is the smallest set containing countably many propositional variables and
which is closed under the Boolean connectives and the connectigs in

e L is a class of frames of the forgw, RY)vco, in which W is a set, and each
RV is a subset ofv*V+1,

¢ |- is the usual truth-relation from modal logic between models over frames in
L, worlds, and formulas. For the modal connectives it is defined as

def
M, XIFV(@1, ..., 00) =  OX...Xw)  RVXX1... X,y &
M, xq I 91 & ... & M, X9 IF @y

Theminimal derivation system Ks for a similarity typeSis defined as having
only CT andDB as its axioms and onlylP, UG, andSUB as its derivation rules.

(CT) all classical tautologies
(DB)  V(p1,---, Pi-1, P—> P, Pist, -5 Pn) <

V(p1, ..., Pi—1. P, Pig1s---» Pn) = V(P1, ..., Pi—1, P’ Pit1,---» Pn)
(MP)  {p,o—> v}/ ¥ (Modus Ponens)
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UG) ¢/ V(e1,...,0i-1,9, ¥it1,--.,¢n) (Universal Generalization)
(SUB) ¢ /o, (Substitution)

whereV is ann-adic operator and a dubstitution.

We recall the standard modal logical result tikad is strongly sound and com-
plete with respect to the class of all frames of typaNe denote this class bis.

If §is a frame, we usé& to denote its universe. A modal logi€ml, L, IF) is
calleda-dimensional if

e (VFel):F C“U for some set), and
e V3, 8cl):F=G=F=@6.

A frameg, is calledrooted, if a € F and the subframe &, generated by is §,. For
3, &, two frames of types = (O, p), we say thatf and® are S-bisimular (notation:
§ =5 ®) if there exists a nonempty relati@C F x G such that, for every € O,

o if Rgxoxl...xpv and xoByp, then there existys, ..., Yy,v € G such that
quﬁ YoYi - - . Ypv andx; By; (forward condition),
e similarly in the other direction (backward condition).

The relationB is called anS-bisimulation. A function f : F — G is called anS

zigzagmor phism (also called- or bounded mor phism) from § onto® (notation:§ —f»
®), if fissurjective and is anS-bisimulation. Note that the forward condition then
states thaf is a homomorphism. Fdf aclass of frames, we usg&gK to denote the
class of all zigzagmorphic images of member&of

2 Multi-dimensional semanticsfor modal logics

2.1 Logics with one modality The major connective in this article is a general-
ization of dyadic composition to-ary relations. We use to denote this operator
(the context provides its specific arity). Timeadic connectives has the follow-
ing definition onn-dimensional frames. Le¥ € U", 9 = (V, v) be a model, and
(X0, X1, ..., Xn—1) € V. Then

def
m’ (X07 Xl! A Xn_l) ”_ .(§007 ¢)17 AR (pn_l) <:>

(32) m’ (Z’ Xl? ceey Xn—l) ”_ 900 &
M, (Xg,Z, X2, ..., %n—1) Ik @1 &

M, (X0, -+ -5 Xn—2,2) IF on_1.

Forn = 1, we get the univers&b modality; forn = 2, e can be seen as the composi-
tion modality defined in the introduction (only the order of the arguments is reversed,
i.e.,pe =10V ).

For convenience, we use the substitution functioh : U" — U", which is
defined as follows: fos € U", ze U and 0< i, j < n, we set

§Z(j)={z if i = |

s(j) otherwise
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Then we can define easily as follows: fos € V, we have
Sl e(go, ..., gn1) <= 32) 2 IFpo&...& S IFgn_s. (1)

Definition 2.1  Forn > 2,GC,, denotes the class of alldimensional frames whose
universe is a subset &f", for some base séi. The accessibility relation fos in a
GCp-frame with universe/ is denoted byCy. Itisdefined aysr?...r"1 «—
F2)(Vi): s, =r'".

We are ready to formulate the first theorem, dealing with modalities of rank higher
than one.

Theorem 2.2 Let S= (e, n) beany similarity typein which the rank of e ishigher
than 1. Then Ks is strongly sound and compl ete with respect to the class GC ).

Proof: The theorem is an immediate consequence of the standard modal logical
completeness result mentioned above and the fackKiat = ZigGCy, which fol-
lows simply from the next claim.

Claim 23 Let . = (W, R), with R< W™ for n > 2, be arooted frame. Then
Ja is a zigzagmorphic image of a (rooted) frame &, = (V, Cy), with V C "U, for
some set U, and Cy is generalized composition.

Proof of claim: Let §5 be as stated in the lemma. We define the rooted frame
(V, Cy), its baseU, and the zigzagmorphism simultaneously. The Qewill con-

sist of strings of symbols, denoted by. . . In these strings we code why we add an
element tdJ. Define the binary relatioB® as the smallest set such that

e (al,...,"an"),a) € B,and

e if (s,X) € BandRxyp...yn_1, then(s. ., Y € B.

(s X)RxYo...Yn-1
LetV be the domain oB and® 1. ... an) = (V, Cv). Weclaim thatB is a zigzagmor-
phism from® a1, . an) ONt0Fa. By the definition ofB, (x) below holds:

.....

*) (rbw)yeB = r=(al,...,"an") & w = a, or there exists unique
se dom(B), {x, Yo,..., Yn-1} € W andi such that ei-

therr =s& w=xorr = $(S,X)ny0...yn,1j & w=yY.

So, B is a function. It clearly obeys the backward condition of a bisimulation. Be-
causeB is a function, the forward condition states ttgis a homomorphism, which
follows simply from (x). It is qurjective, becausg, is generated ba. SoBis a
zigzagmorphism. Hence, the claim.

This finishes the proof of the theorem. O
Now we consider modal logics with one monadic modality.

Definition 2.4  Consider a similarity type with one modality of rank 1.GCg de-
notes the class of all two-dimensional frames, wheris interpreted as the domino
operator, i.e., for pairga, b) in the domain oft,

M, (@ b)IFCp <= (I2): M, (b, 2) I @.
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Theorem 25 Let & be a monadic modality. The basic derivation system K is
strongly sound and complete with respect to the class of frames GCg .

Proof: Soundness is immediate. For completeness, suppése, ¢. By standard
modal reasoning we find a franfg = (W, R) such that

1. 8¢, d = Z, butFq, d i~ o,
2. §qis point-generated bg, and
3. §d E YXyz((RyXx A Rzx) — y = 2) (Fq is “unravelled”).

Let§(a.q) denote th&5Cq-frame with universé(d’, d)} U {(a, b) € W x W : Rab}.

Using conditions (2) and (3) above it is easy to see that the funttidefined by

h(a, b) = bis an isomorphism betweeyy andg . q4). But then, by (1), we are done.
O

Finally we consider the (trivial) case of modal logics with just one modal constant.

Definition 2.6  Consider a similarity type with one modal constanGCg denotes
the class of allGC,-frames, where is interpreted as the identity constant, i.e.,

M, (@, b)lFv < a=h.
The accessibility relation of in a GCo-frame with universe/ is denoted byDJ.

Theorem 2.7 Let vbeamodal constant. Thebasic derivation system K, isstrongly
sound and compl ete with respect to the class of frames GCy.

Proof: This follows immediately from the following simple fact:
every frame(W, R) with R € W is isomorphic to a frame iGCo. (2)

(Hint: note that every frame with one unary accessibility relation is a disjoint union
of one-element frames.) O

2.2 Logics with arbitrary many modalities We are almost ready to prove the
generalization of the last three theorems to arbitrary similarity typea multi-
dimensional semantics for which the basic derivation sy#gyis sound and com-
plete. The idea of the semantics is that we interpret the modalities as described in
the previous section, and different modalities are interpreted on disjoint parts of the
sequences. For instance, the semantics of a modal logic with two dyadic modalities
will be given by 4-dimensional frames, on which one modality is interpreted as com-
position on the first two coordinates, and the other modality is interpreted on the last
two coordinates.

Thus we will use generalized composition of ramlon sets of relations with
rank higher tham, say«. The idea is that the connective works only on a spe-
cific subsequence of length On that part, it behaves just like-adic composition.
We define these modalities as follows. Lé¢tC U%, j,j+ (n—1) < «a, and let
k=1(j,j+1,...,j+ (n—1)) be a sequence of consecutive numbers. SLae-
note any sequence obtained fray changing some of the coordinatagside «.
Then fors € V, we define

wk(nN—

«k(0) 1
M, S oc(G0r .. o 1) —= (32 M8 I o& .. &MS, IFeni (3)
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The accessibility relation af, on ane-dimensional frame with universéis denoted
by Ci(@-#(*) Note that ifs and« are sequences of the same length, then we get the
definition from the previous section. In the other cases, we hid the existential quan-

tification over coordinates outsiddn S. As an example, the definition of 2 3 4) on
sets of 7-ary relations is given below: (&™ indicates that any element is allowed at

this place)
M, (X, y, a, b, c, v, w) I+ ®(2,3.4) (90, @1, 2)
¢
(X,y,a,b,c, v, w) e V&

3z) M, (-, —,z,b,c,—,—) F @&
M, (-, —,a,zc—,—-) IF 91 &
m’ (_s_’ a-7 bv zZ —, _) H_ @2.

In a similar way we extend the definition of the domino operator and the identity con-
stant; fori, i+1 < «, ands € V we set

M, slk-iirne <<= thereexistsans.t.r(i) =s(i+ 1) andM,r - ¢
m,SH—L(Sij — S =5

In the next definition, we specify a multi-dimensional semantics for any modal type.
A concrete example is provided in the proof of Theolzf)

Definition 2.8 Let S= {0, p} be an arbitrary similarity typeGCs denote$ the
class of alla-dimensional frames whose universe is a subset af-dimensional
cube, and where

a=2-{VeO:0<p(V) <2+ ,_,(n-|[{Ve O:p(V)=n}]),and

o the modal constants are interpreted as diagaidgls

e the monadic modalities are interpreted a&i@¢, but now using the domino
operatord; j+1) ONw-sequences, as described above,

e for n > 1, all modalities of rank are interpreted ae, of rankn, and

o thedjj, the i i;1), ande, are chosen such that all modalities are interpreted

on pairwise disjoint parts of the-sequences.

We defineda precisely large enough such that every modality can be interpreted as
in the previous section on separate subsequences lofthis way we ensured that
there is no interaction between the different modalities.

The following theorem is a joint result with Isim Nemeti and Ildilo Sain.

Theorem 2.9 Let Sbean arbitrary similarity type. Then Kgisstrongly sound and
complete with respect to the (multi-dimensional) class GCs.

Proof: If Sconsists of just one modality, the theorem follows from one of Theo-
remd92.2]2.5 or@.7] If we have more than one modality, we have to do additional
work. Using the argument for monadic modalities given in the proof of Thefir&m

and standard modal reasoning, it is easy to prove the theorem from the following
claim.

Claim 2.10 LetF = (W, Ry)ves be a frame where all relations are either unary
or have rank higher than two. Then § is a zigzagmor phic image of a GCg-frame.
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'3’ = (Wa RA’ RV’ RV)

e J ¢ split the frame
(W, Ra) (W, Ry) (W, Ry)
T hy 1 hy 1 hs zigzagmorphisms
(V1, Cvy) (V2, Cy,) (Va, DY)
N J v glue together

& = (V,Cy? C° DY)
Figure 1: Road map of the proof of theor&ad)

Proof of claim:  We describe the proof of this claim for the case of three modalities
A, V,andv with p(A) = 2, p(V) = 3, andp(v) = 0. It will be clear from the proof
how to extend it to any set of modalities. A “road map” of this proof is given in Fig-
urell] Let§ = (W, Ra, Ry, R,). We show that this frame is a zigzagmorphic image
of a frame® = (V, CJ?, CZ3, D¥P), with V < U7, for some seU.

First we split§ into three frames, one for each relation. We apily n =
ZigGC, and 2] to the three frameéW, R,), (W, Ry), and(W, R,) and obtain three
frames(V, Cy,), (V2, Cy,), and (Va, D{’,i) in which V; and V3 are binary relations
on setdJ; andUs, respectively, and, is a ternary relation on some 4¢4. The rela-
tionsCy andDy), are defined as stated before. BY », = ZigGCn and ), the frames
(W, Ra), (W, Ry), and(W, R,) are zigzagmorphic images of the fram@&4, Cy,),

(V2, Cy,), and (V3, D%) by the functionshy, hy, andhg, respectively. For conve-
nience, we denote thethe coordinate of a sequensbéy s .
We define,
Vo E (se U1UUUUy)": (S0.50) € Vi & (2.5, 59) € Vo &
(S5, %) € V3 & hy((So, 1)) = ha2((s2, S3, 1)) = hz((Ss, S6))}-

We define the frame = (V, CJ?, C23, D%P).

By writing out definitions, we see thé{?srt if and only if Cy, (S0, 1) (To, 1) (to, ta),
and similarly for the two other relations. Now, we define a functionV —
W ash(s) = hi(s, s1). Note that, for alls € V, we haveh(s) = h;(sg, $1) =
ho(sp, S3, S4) = h3(Ss, ). The reader might have expected that

his a zigzagmorphism fror® ontoJ. 4)

We now prove .

his surjective. Let w € W, then (becauséy, hy, hz are surjective) there ex-
istss e Vi, r € Vb, andt € V3, such thathi(s) = ho(r) = hz(t) = w. Thus,
(S0, S1, fo, r'1, I'3, 1o, t1) is in V, and itsh-image equalsv.
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h is a homomorphism. Suppose thatY2srt holds:

CY2srt & (by definition ofV andCJ?)
Cv, (S0, s1) (o, r1) (to, ta) = (hy is a homomorphism)

def
Rahi(so, s1)hi(ro, ri)hi(to, t1) <= Rah(s)h(r)h(t).

Becausén(s) = hy (o, S1) = ha(S2, S, 1) = ha(ss, Ss), the proofs forCZ* and DP
are similar.

h satisfies the zigzag condition. SupposeRvh(s)y;Y»Yys holds. Then, sincé,
is zigzag andh(s) = ha(sp, S3, Su), wefind i, V5, Y5 € Vo, such thatCy, (s, S, Sa),
(Y1, Y5, ¥3) and hz(y/j) = yj. Chooser,t, v € V which agree on the second, third
and fourth coordinate witly], y5, y3, respectively. Since all labelling functions are
surjective, we can find sueht, v. By definition ofCZ> andh, we haveCZ3srtv and
h(r) = y1, h(t) = y2 & h(v) = ys. The proofs forC3? and D are similar. This
finishes the proof dl

We have proved the theorem for this special case. Notetka? = 2- |{v, A}| + 3-
[{V}|]. Looking at the road map of this proof, it is easily verified that we can extend
the proof to any set of modalities. O

2.3 Elementarity In this subsection we show that for finite similarity typgthe
classessCg are elementary.

Theorem 2.11  Let Sbe a modal similarity type consisting of finitely many modal
operators. Then the class GCgis elementary.

Proof: We first show the theorem for types with just one modality. B&2 this
is immediate by[Z). A first order definition 0fGCg4 can be found in a similar way

as we will show forGC,; we leave the details to the reader. For- 1, we give

only the proof forn = 2. The other cases are similar. L8Q def {F=(V,Cy) :

V = U x U for some set}. BecauseGC, consists of all substructures 80Q, it
suffices to show tha8Q is elementary. (Because th&C, can be axiomatized by
all the universal consequences of the first-order theor$@f) We need four ax-
ioms. We usd x as an abbreviation fo€xxx. We also term-define two functions:
X =Yy g} Cxyx & lyandx =y g Cxxy & ly (by the first axiom(-); and (-);
are total functions).

VxAly(Cxyx & ly), VYx3y(Cxxy & ly) (5)

X=N&X =Y =X=Y (6)
Cxyz = X =Y.¥r =&z =% (7)
Vxy(Ix& ly) = 3z(x=27 & y=17)) (8)

Any frameg = (W, C) satisfying E)—@) is isomorphic to the framél x I, C ),
by the functionh defined a$(x) = (X, X-). This finishes the proof fo&C,.

This proof can easily be adapted to the case with finitely many modalities. By
way of illustration we show how to modify the last proof for the similarity type
{(A1,2), (Ay, 2)}. We show that any fram& = (W, Cy, Cy), with the C; ternary,
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which satisfiesAx below is isomorphic to a frame = (V, CJ?, C2%) with V =

U1 xU;xUox U, for U; andU, some sets. Then the conclusion follows by the same
argument as given above. The set of axiofusis given as follows. We construct
predicated; andl; and functiong-),, (-)r,, (-)1,, (-)r, @s above fronC; andCy, re-
spectively. The sefx consists of the indexed versions Bj @nd [} plus the follow-

ing two:

X|1 = YIl & Xrl = le & X|2 = y|2 & sz = yl’z = X=Y, (9)
Yxyvw((Ihx & hhy& lov & lhw) =
Jzx=2,&y=72,&v=2,& w=17,)). (10)

It is now straightforward to show that the function W — 11 x 11 x I, x |, defined
by h(X) = (X, X, X1, Xr,) IS an isomorphism fron§ to the frame(V, C\c},z’ C\Z/’Z)
with V = |1X|1X|2X|2. O

We do not know whether the cla§¥Cs is elementary for infinites.

3 Final remarks. In Henkin et aI. (remark 2.7.46) it is argued that a Kripke-
style semantics for modal logic is not satisfactory, because the relations in the frames
are “abstract.” Instead, they advocate a “geometrical” or “concrete” semantics. A
“concrete” semantics for modal logic should, in their terminology, consist of a class
of frames in which the relations are definedsiraightforward set-theoretical terms,

the definitions are uniform for all frames involved, and as a consequence, each of

the frames is uniquely determined by its universe. The “standard’unravelling (cf.,
Sahlqvist[7, Bull and Segerberdd])) of modal frames gives a representation which

is satisfactory from the above point of view. This result can be extended to any modal
logic, as is shown by de Rijk&] (Proposition 6.3.5). We think however that the rep-
resentation given here is closer to the spirit of the remarfgifThe main advantage

of our representation is that the worlds in the frames are uniform: each world in each
frame is anx-long sequence (for sonfixed «), whereas in the standard unravelling,
the worlds are sequences of arbitrary length. (Their length is important, because it
determines to which worlds it is related.) Moreover, it is not clear whether the class
obtained by unravelling is elementary. Finally, we think that the generalized compo-
sition relation<Cy, are rather intuitive, even if they do become awkward to draw once
the sequences are longer than 2.
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NOTE

1. We keptthis definition deliberately imprecise in order to keep the intuituive ide&ef
We can make it precise in the following waysCs is the class of alk-dimensional
frames wherex is as above. Now lef be a function assigning to each operatoQra
finite subsequence ofin such a way that the concatenation of &limages is precisely
«. The modal constantsare then interpreted a8t (., the monadic modalitie$ as in
GCg, using9 (1), ti+1)), and the higher-adic modalitiéas generalized composition
® (V).



34 MAARTEN MARX
REFERENCES

[1] Bull, R., and K. Segerberg, “Basic modal logic,” pp. 1-88iiandbook of Philosophical
Logic, vol. 2, edited by D. M. Gabbay and FiGther, Reidel, Dordrecht, 1984.
[Zbl0875.0304F MR 8445d¢ 13

[2] de Rijke, M., Extending Modal Logic, Ph.D. thesis, Institute for Logic, Language and
Computation, Universiteit van Amsterdam, 1993

[3] Henkin, L., J. D. Monk, and A. TarskCylindric Algebras, Parts| & |1, North-Holland,
Amsterdam, 198%Zbl 0576.0304F Zbl 0576.03043 MR 86m:03095a MR 86m:03095b
BIEI

[4] Kramer, R., “Relativized relation algebras,” pp. 293—34%igebraic Logic, edited by
H. Andréka, J. D. Monk, and |. Bimeti, North-Holland, Amsterdam, 1991.
b 0749.03041 MR 93¢:0308[ 11

[5] Maddux, R. D., “Some varieties containing relation algebrasansactions of the
American Mathematical Society, vol. 272 (1982), pp. 501-52ghl O 03039
MR 84a:03079[1

[6] Marx, M., Algebraic Relativization and Arrow Logic, Ph.D. thesis, Institute for Logic,
Language and Computation, University of Amsterdam, 199]L]

[7] Sahlgvist, H., “Completeness and correspondence in the first and second order seman-
tics for modal logic,” pp. 110-143 iRroceedings of the Third Scandinavian Logic Sym-
posium Uppsala 1973, edited by S. Kanger, North-Holland, Amsterdam, 1975.
[Zb0319.02018 MR 52:785% I3

[8] van Benthem, JL.anguagein Action (Categories, Lambdas and Dynamic Logic), Sud-

iesin Logic vol. 130, North-Holland, Amsterdam, 199bl 0717.0300
MR 929:03002[1

[9] van Benthem, J., “A note on dynamic arrow logics,” pp. 15—29agic and Information
Flow, edited by J. van Eijck and A. Visser, MIT Press, Cambridge, 18821 295 05§

[10] Venema, Y.Many-Dimensional Modal Logic, PhD thesis, Institute for Logic, Language
and Computation, Universiteit van Amsterdam, 1981[T]

[11] Venema, Y., “Cylindric modal logic, The Journal of Symbolic Logic, vol. 60 (1995),
pp. 591- GZHZDLQSSQ.IBQQISMB_Q.G.L.OS.QGZD

Department of Computing
Imperial College

180 Queens Gate

London, SW7 2BZ

United Kingdom

email:



http://www.emis.de/cgi-bin/MATH-item?0875.03045
http://www.ams.org/mathscinet-getitem?mr=844596
http://www.emis.de/cgi-bin/MATH-item?0576.03042
http://www.emis.de/cgi-bin/MATH-item?0576.03043
http://www.ams.org/mathscinet-getitem?mr=86m:03095a
http://www.ams.org/mathscinet-getitem?mr=86m:03095b
http://www.emis.de/cgi-bin/MATH-item?0749.03047
http://www.ams.org/mathscinet-getitem?mr=93c:03081
http://www.emis.de/cgi-bin/MATH-item?0515.03039
http://www.ams.org/mathscinet-getitem?mr=84a:03079
http://www.emis.de/cgi-bin/MATH-item?0319.02018
http://www.ams.org/mathscinet-getitem?mr=52:7855
http://www.emis.de/cgi-bin/MATH-item?0717.03001
http://www.ams.org/mathscinet-getitem?mr=92g:03002
http://www.ams.org/mathscinet-getitem?mr=1 295 058
http://www.emis.de/cgi-bin/MATH-item?0830.03008
http://www.ams.org/mathscinet-getitem?mr=96i:03062 
mailto: m.marx@doc.ic.ac.uk

