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Infinite Versions of Some Problems
From Finite Complexity Theory

JEFFRY L. HIRST and STEFFEN LEMPP

Abstract Recently, several authors have explored the connections between
NP-complete problems for finite objects and the complexity of their analogs
for infinite objects. In this paper, we will categorize infinite versions of sev-
eral problems arising from finite complexity theory in terms of their recursion
theoretic complexity and proof theoretic strength. These infinite analogs can
behave in a variety of unexpected ways.

1 Introduction Startling parallels exist between the computational complexity of
certain graph theoretic problems and the recursion theoretic complexity and proof the-
oretic strength of their infinite analogs. For example, the problem of deciding which
finite graphs have an Euler path is known to be P-time computable [7], and Beigel
and Gasarch have shown in an unpublished work that the problem of deciding which
infinite recursive graphs have an Euler path is arithmetical. By contrast, the prob-
lem of deciding which finite graphs have Hamilton paths is NP-complete [6], and
Harel [4] has shown that the problem of deciding which infinite recursive graphs have
a Hamilton graph is �1

1 complete. Thus, the possibly greater computational complex-
ity is paralleled by a demonstrable increase in recursion theoretic complexity. This
pattern can also be seen through an application of the techniques of reverse mathe-
matics. The existence of a function that decides which graphs have Euler paths is
provably equivalent to ACA0, while the existence of a similar function for Hamilton
paths is equivalent to the much stronger axiom system �1

1– CA0.
Unfortunately, other graph theoretic problems do not demonstrate this paral-

lelism. We have selected some examples to illustrate two general themes. First, dif-
ferent infinite statements related to a fixed finite problem can have different recursion
theoretic complexities. This would seem to indicate that the use of a preferred infinite
formulation might lead to natural parallels between finite complexity and recursion
theoretic complexity. However, the behavior of infinite analogs is not so easily tamed.
Indeed, similar formulations of infinite versions of problems with different finite com-
plexities may have the same recursion theoretic complexity.
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2 Variability among graph coloring problems This section contains examples il-
lustrating our first theme. The problem of determining which finite graphs are 3-
chromatic is NP-complete [6]. Extrapolating from the problem of finding Hamilton
paths, we would expect infinite analogs of the 3-coloring problem to be �1

1 complete.
However, the actual recursion theoretic complexity depends on the formulation of the
infinite analog, as demonstrated by the following three theorems. Our notation is pat-
terned after that of Soare [10].

The following theorem shows that the set of indices of 3-chromatic recursive
graphs is arithmetical, and so is much simpler than the �1

1 complete set we are seek-
ing. This result is implicit in the work of Beigel and Gasarch [1]. By formulating
their results in terms of partial recursive functions rather than index sets, Beigel and
Gasarch isolate the recursion theoretic complexity contributed by questions of chro-
maticity from that contributed by the coding of the graphs. To maintain uniformity
with later results, we have chosen to use index sets here.

Theorem 2.1 The set of indices of 3-chromatic recursive graphs is �0
2 definable.

Proof: Let G1 denote the set of indices of 3-chromatic recursive graphs. Note that
x ∈ G1 if and only if every finite subgraph of the graph with index x is 3-chromatic.
Thus, G1 is �0

1 definable, using the set of indices of all recursive graphs as a pa-
rameter. Since the set of indices of recursive graphs is �0

2 definable, G1 is also �0
2

definable. �

In order to find an infinite analog of the 3-coloring problem with a complicated asso-
ciated index set, we examine natural supersets of the 3-chromatic graphs. One can-
didate is the collection of finitely colorable graphs. The set of indices of the finitely
colorable graphs is definable by the conjunction of a �0

2 and a �0
2 formula, and so is

�0
3 definable (see [1]). By expanding our superset again to the collection of graphs

with finitely colorable connected components, we gain some complexity in the index
set.

Theorem 2.2 The set of indices of recursive graphs with finitely colorable con-
nected components is �0

3 complete.

Proof: Let G1 denote the set of indices of recursive graphs with finitely colorable
connected components. Suppose that x is the index of a graph G. Then x ∈ G1 if and
only if for every vertex v of G, there is an integer k such that every finite connected
subgraph of G containing v is k-chromatic. Thus, G1 is a �0

3 definable subset of the
set of indices of recursive graphs.

To show that G1 is �0
3 complete, let G0 denote the set of indices of those re-

cursive graphs which have connected components that are not finitely colorable. It
suffices to show that (Cof, Cof ) ≤1 (G0,G1). Here, Cof = {e : We is cofinite}.

For each e ∈ ω, define the graph Ge as follows. Ge will contain vertices labeled
vm,n for each m and n in ω, and some additional unlabeled vertices. For each m, the
vertex vm,0 will be included in a complete graph on m + 1 vertices. For every m
and j all edges of the form (vm, j, vm, j+1) will be included in Ge. Finally, the edge
(vm, j, vm+1, j) will be included in Ge if and only if {e}(m) halts by stage j. For every
e, Ge is recursive. By the s-m-n Theorem, there is a 1-1 recursive function f such
that for every e, f (e) is an index for Ge.
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Note that if e ∈ Cof , then there is a j such that the vertices {vm,n : m > j} are
all in the same connected component. Consequently, arbitrarily large complete finite
subgraphs are contained in this component, and it is not finitely colorable. Thus, if e ∈
Cof , f (e) ∈ G0. Now suppose that e ∈ Cof and C is a connected component of Ge.
C must contain a vertex of the form vm,0. Since e ∈ Cof , there is a least j greater than
m such that {e}( j) never halts. Consequently, C cannot contain any vertex vn,k such
that n > j. This ensures that C is j + 1-chromatic, so f (e) ∈ G1. Thus, f witnesses
that (Cof, Cof ) ≤1 (G0,G1), as desired. �

For the next proof, we will need the following notation for finite sequences of natural
numbers. Assuming a recursive bijection between ω and ω<ω, we will use a Greek
letter (usually σ or τ) to denote both a sequence and its integer code. The formula
σ ⊆ τ means that σ is an initial (not necessarily proper) segment of τ. Thus, T is a
tree if whenever τ ∈ T and σ ⊆ τ, then σ ∈ T .

Given an arbitrary index e, {e} may or may not be the characteristic function
for a recursive tree. To streamline our discussion, consider the following auxiliary
function.

Definition 2.3 For e ∈ ω, the partial recursive function ηe is defined by:

ηe(τ) =




1 if ∀σ ⊆ τ ({e}(σ) = 1),

0 if {e}(τ) = 0 ∧ [∀σ ⊆ τ ({e}(σ) = 0 ∨ {e}(σ) = 1)]
∧[∀σ ⊆ τ ∀α ⊆ σ ({e}(α) = 0 → {e}(σ) = 0)],

↑ otherwise.

Naı̈vely, ηe approximates the characteristic function of a tree. In particular, ηe is total
if and only if e is the index of a recursive tree. Note that by the s-m-n Theorem, there
is a 1-1 recursive function which maps each e to an index for ηe.

So far, we have examined sets of graphs that can be colored with a set of colors
that is “small” in some sense. In finite graphs, coloring with a small number of colors
forces repeated use of some color. Thus, it seems reasonable to consider graphs with
colorings that use one color infinitely often. Note that this set of graphs is a superset
of the graphs with finitely colorable connected components.

Theorem 2.4 ([5]) The set of indices of recursive graphs with colorings which use
one color infinitely often is �1

1 complete.

Proof: Let G denote the set of indices of recursive graphs with colorings that use
one color infinitely often. Note that x ∈ G if and only if there is a function χ mapping
the vertices of the graph with index x into ω, such that χ maps neighboring vertices
to different values, and 0 appears infinitely often in the range of χ. This statement
can be formalized using a single existential set quantifier followed by an arithmetical
formula, so G is �1

1 definable.
To show that G is �1

1 complete, we will show that T ≤1 G, where T denotes
the set of indices of recursive trees which are not well founded. With each e ∈ ω, we
associate a partial recursive graph, Ge. The vertex set for Ge consists of (codes for)
elements of ω<ω. For every σ, τ ∈ ω<ω, the characteristic function for the edge set
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of Ge is defined by

Ee(σ, τ) =




0 if ηe(σ) = 1 ∧ ηe(τ) = 1 ∧ (σ ⊆ τ ∨ τ ⊆ σ),

1 if ηe(σ) = 1 ∧ ηe(τ) = 1 ∧ ¬(σ ⊆ τ ∨ τ ⊆ σ),

1 if ηe(σ) ↓ ∧ηe(τ) ↓ ∧(ηe(σ) = 0 ∨ ηe(τ) = 0),

↑ otherwise.

Roughly, we connect σ and τ by an edge if they are incomparable nodes on the tree
or if one of them is not in the tree, ignoring those nodes whose status is suspect. By
the s-m-n Theorem, there is a 1-1 recursive function f such that for every e, f (e) is
an index for Ge.

If e ∈ T , then e is the index of a recursive tree containing an infinite path P.
Consequently, f (e) is the index of a recursive graph. We can color this graph by
mapping every node of P to 0, and mapping all other nodes to their integer codes.
Since 0 is used infinitely often in this coloring, f (e) ∈ G.

Now suppose e /∈ T . If e is not the index of a recursive tree, then f (e) is not
the index of a recursive graph, so f (e) /∈ G. If we suppose that e is the index of a
recursive tree T , then T is well founded. Suppose, by way of contradiction, that there
is a coloring of the associated recursive graph Ge that uses 0 infinitely often. All the
nodes of Ge that are colored 0 correspond to comparable nodes of T , contradicting
the claim that T is well founded. Again, we have f (e) /∈ G, completing the proof
that T ≤1 G. �
The techniques of reverse mathematics can be used to draw a distinction between the
first two of our infinite analogs and the third. The following two results make use of
the axiom systems RCA0(Recursive Comprehension Axiom), ACA0 (Arithmetical
Comprehension Axiom), and �1

1– CA0 (�1
1 Comprehension Axiom). For a brief

overview of reverse mathematics, see Simpson [9].

Theorem 2.5 (RCA0) The following are equivalent:

1. ACA0.
2. For any sequence of graphs 〈Gi : i ∈ ω〉, there is a function s : ω → 2 such that

s(i) = 1 if and only if Gi is 3-chromatic.
3. For any sequence of graphs 〈Gi : i ∈ ω〉, there is a function s : ω → 2 such that

s(i) = 1 if and only if every connected component of Gi is finitely colorable.

Proof: To prove (1) → (2) and (1) → (3), it suffices to show that the function s
is arithmetically definable in 〈Gi : i ∈ ω〉. For (2), a �0

1 defining formula for s can
be extracted from the proof of Theorem2.1. Similarly, for (3), imitating the proof of
Theorem 2.2 yields a �0

3 defining formula.
By Lemma 2.7 of [8], to prove that (2) → (1) and (3) → (1), it suffices to show

that RCA0 can prove that for any injection g : ω → ω, there is a sequence of graphs
〈Gi : i ∈ ω〉 such that the range of g is �0

1 definable in the associated function s. Fix
g and assume RCA0. We will define a sequence of graphs that works for both (2) and
(3). Let Gn have ω as its vertex set. For every j ∈ ω, include the edge ( j, j + 1) in Gn.
For j < k, add the edge ( j, k) to Gn if and only if ∃t ≤ j (g(t) = n). The sequence
〈Gi : i ∈ ω〉 is �0

1 definable in g, so RCA0 proves it exists. Let s be as in (2) or (3).
Then s(n) = 1 if and only if n is not in the range of g. Thus, the range of g is �0

1
definable in s, as desired. �
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The proceeding proof still holds if 3-chromatic is replaced by 2-chromatic in the state-
ment of (2). Thus, these infinite analogs of the 2-coloring and 3-coloring problems
are provably equivalent.

Theorem 2.6 (RCA0) The following are equivalent:

1. �1
1– CA0.

2. For any sequence of graphs 〈Gi : i ∈ ω〉, there is a function s : ω → 2 such that
s(i) = 1 if and only if Gi has a coloring in which one color is used infinitely
often.

Proof: To prove that (1) → (2), it suffices to note that the function s is �1
1 definable

in 〈Gi : i ∈ ω〉, and so exists by �1
1– CA0. To prove the converse, we will use the fact

that �1
1– CA0 is equivalent to the existence of a function that decides which members

of a sequence of trees are well founded. (This is an easy consequence of Lemma 6.1
in [3].) Assume RCA0, and suppose that 〈Ti : i ∈ ω〉 is a sequence of trees. With each
tree Tn, we associate a graph Gn as follows. The vertices of Gn are the nodes of Tn, and
two vertices of Gn are connected if and only if the associated nodes are incomparable
in the tree ordering. The sequence 〈Gi : i ∈ ω〉 is �0

1 definable in 〈Ti : i ∈ ω〉, and so
exists by RCA0. Let s be as in (2). Then s(i) = 1 if and only if Gi contains an infinite
collection of pairwise disconnected vertices, which occurs if and only if Ti is not well
founded. Thus (2) implies �1

1– CA0, completing the proof. �

3 Variability among graph isomorphism problems From the results in the preced-
ing section, it is clear that the recursion theoretic strength of infinite analogs depends
in part on their formulation. As shown by Harel and Tirza Hirst in [5], adoption of a
standardized translation yields interesting parallels between finite complexity and re-
cursion theoretic complexity for restricted classes of problems. However, for broader
classes of problems, the parallels break down. In this section, we will consider three
problems of diverse finite complexity that all have �1

1 complete infinite analogs, thus
illustrating our second theme. Consider the following three variants of the subgraph
isomorphism problem:

P1 Given a pair of finite graphs, H and G, determine if H is isomorphic to a sub-
graph of G.

P2 For a fixed finite graph H, given a finite graph G, determine if H is isomorphic
to a subgraph of G.

P3 For a fixed finite graph G, given a finite graph H, determine if H is isomorphic
to a subgraph of G.

P1 is the familiar form of the subgraph isomorphism problem, and is known to be
NP-complete [2]. One algorithm for solving P2 and P3 consists of enumerating all
functions from H into G, and checking each one to see if it is the desired isomorphism.
The number of functions to check is bounded by | G ||H|, where | G | denotes the
number of vertices of G. Since H is fixed in P2, the number of functions to check is
a constant power of | G |. Furthermore, the number of steps required to check each
function is bounded by a constant based on the fixed value | H |. Thus, P2 can be
solved in a number of steps which is bounded by a polynomial in | G |. In P3, G is
fixed, and we can discard any graphs H such that | H |>| G |, so the number of steps
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required to solve an instance of P3 is bounded by a constant based on the fixed value
| G |. Summarizing, the complexity of three problems ranges from NP-complete to
constant time computable.

Compared to the coloring problem in §2, these subgraph isomorphism problems
have very straightforward infinite analogs. Despite the variation in the computational
complexity of the finite problems, their infinite analogs are all �1

1 complete, as is
shown in the following three theorems.

Theorem 3.1 ([5]) The set of indices of ordered pairs of recursive graphs, (H, G),
such that H is isomorphic to a subgraph of G is �1

1 complete.

Proof: Let G be the set of indices of ordered pairs of recursive graphs such that the
first graph is isomorphic to a subgraph of the second. Since x ∈ G if and only if an
appropriate isomorphism exists, it is easy to see that G is �1

1 definable.
To prove that G is �1

1 complete, we will show that T ≤1 G, where T denotes
the set of indices of recursive trees which are not well founded. With each e ∈ ω,
we associate a pair of partial recursive graphs, He and Ge. He is a countably infinite
linear graph with a triangle attached at one end. To be precise, the vertex set of He is
{vn : n ∈ ω} and the edge set is {(v0, v2)} ∪ {(vn, vn+1) : n ∈ ω}. If e is the index of a
recursive tree T , then Ge consists of a copy of T with a triangle attached to the root,
and a collection of disconnected vertices. In general, the vertex set for Ge consists
of {v0, v1, v2} and (codes for) the elements of ω<ω. Let σ0 denote the code for the
empty sequence. The edge (v0, σ0) and the three edges of the form (vi, v j) where
i �= j are included in Ge. For every σ and τ in ω<ω, the edge (σ, τ) is included in Ge

if and only if

ηe(σ) = ηe(τ) = 1 ∧ σ ⊆ τ ∧ ¬∃α(σ � α � τ),

where ηe is the function defined in §2. By the s-m-n Theorem, there is a recursive 1-1
function f such that for every e, f (e) is an index for the pair (He, Ge).

If e ∈ T , then e is the index of a recursive tree containing an infinite path P. In
this case, He is isomorphic to the subgraph of Ge consisting of the base triangle and
a copy of P. Thus f (e) ∈ G.

Now suppose that e /∈ T . If e is not the index of a recursive tree, then Ge is not
a recursive graph, so fe /∈ G. If e is the index of a recursive tree T , then T is well
founded. The graph Ge is a copy of T with a triangle attached to its base. Any isomor-
phism mapping He into Ge must map the triangle in He into the triangle in Ge, and
the linear portion of He to an infinite path in the copy of T . Since T is well founded,
no such isomorphism exists. Thus f (e) /∈ G, completing the proof that T ≤1 G. �

Theorem 3.2 There is a recursive graph H, such that the set of indices of recursive
graphs containing a subgraph isomorphic to H is �1

1 complete.

Proof: In the proof of Theorem 3.1, He is a fixed recursive graph defined without
reference to e. Any recursive 1-1 function mapping e to an index for the graph Ge

(defined as in the proof of Theorem 3.1) witnesses the desired 1-reduction. �

Theorem 3.3 There is a recursive graph G, such that the set of indices of recursive
graphs that are isomorphic to a subgraph of G is �1

1 complete.
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Proof: We begin the proof by constructing the recursive graph G. This graph will
consist of a countable collection of subgraphs 〈Ge : e ∈ ω〉, where each Ge consists
of a treelike substructure together with some spurious disconnected subgraphs.

For each e ∈ ω, Ge will be constructed from cycles labeled C(e, σ, k) for each
nonempty σ ∈ ω<ω and each k ∈ ω. The cycle C(e, σ, k) consists of 2(e + 1) + 2
vertices joined to make a circular graph. We designate two vertices of C(e, σ, k) as
v0

e,σ,k and v1
e,σ,k, and require that the paths joining them contain e + 2 edges. To give

a concrete example, C(1, σ, k) looks like a hexagon, with the bottom vertex labeled
v0

1,σ,k and the top vertex labeled v1
1,σ,k.

The treelike substructure of Ge consists of a triangular base with a vertex labeled
t0, and branches consisting of linked cycles. We say that a cycle C(e, σ, k) is exact
if k is the least integer such that (1) ηe(τ) ↓ by stage k for every τ which is an initial
subsequence of σ or has a code less than σ, and (2) ηe(σ) = 1. (Here ηe is the function
defined in §2.) Edges are added to Ge by the following two rules. Connect v0

e,σ,k to
t0 if and only if C(e, σ, k) is an exact cycle and σ is a sequence of length 1. Connect
v1

e,σ,k to v0
e,τ, j if and only if C(e, σ, k) and C(e, τ, j) are exact cycles and τ = σ ∗ 〈m〉

for some m ∈ ω. Cycles which are not exact are spurious; they are included in Ge,
but are never connected to the treelike substructure.

Let G be the union of all the Ge’s. G is recursive, since the rules for adding edges
involve only bounded computations. Furthermore, if e is the code of a recursive tree
T , then the treelike substructure of Ge can be mapped homomorphically onto T by
identifying exact cycles with corresponding nodes. Viewing the cycles as nodes, the
substructure is well founded if and only if T is a well-founded tree. If e is not the
code of a recursive tree, ηe is not total, and the treelike substructure of Ge is finite.

Let G be the set of indices of recursive graphs that are isomorphic to a subgraph
of G. Since x ∈ G if and only if an isomorphism exists, it is easy to see that G is
�1

1 definable. To prove that G is �1
1 complete, we will show that T ≤1 G, where T

denotes the set of indices of recursive trees which are not well founded. With each
e ∈ ω, we associate a recursive graph He consisting of a countable linear graph with
each node replaced by a 2(e + 1) + 2 cycle and with a triangle attached at one end.
More precisely, He contains a triangle with one vertex labeled t0, and (copies of) the
cycles C(e, 〈0〉, k) for each k ∈ ω. To the edges already specified, we add the edge
(t0, v0

e,〈0〉,k) and the edges (v1
e,〈0〉,k, v

0
e,〈0〉,k+1) for each k ∈ ω. By the s-m-n Theorem,

there is a recursive 1-1 function f such that for every e, f (e) is an index for He.
If e ∈ T , then e is the index of a recursive tree containing an infinite path P. In

this case, He is isomorphic to the subgraph of Ge consisting of the base triangle and
a copy of P with nodes replaced by cycles. Thus f (e) ∈ G.

Now suppose that e /∈ T . Note that because the size of the cycles varies with e, if
He is isomorphic to a subgraph of G, then He is isomorphic to a subgraph of Ge. Since
e /∈ T , Ge consists of disconnected cycles and a well-founded treelike substructure.
If He is isomorphic to a subgraph of Ge, then the treelike substructure of Ge contains
an infinite path, yielding a contradiction. Thus f (e) /∈ G completing the proof that
T ≤1 G. �

Using the reverse mathematics framework, the preceding three theorems can be
lumped together into a single equivalence result.
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Theorem 3.4 (RCA0) The following are equivalent:

1. �1
1– CA0.

2. For any sequence of ordered pairs of graphs,〈(Hi,Gi):i∈ ω〉, there is a function
s : ω → 2 such that s(i)=1 if and only if Hi is isomorphic to a subgraph of Gi.

3. For any graph H, and any sequence of graphs 〈Gi : i ∈ ω〉, there is a function
s : ω → 2 such that s(i) = 1 if and only if H is isomorphic to a subgraph of Gi.

4. For any graph G, and any sequence of graphs 〈Hi : i ∈ ω〉, there is a function
s : ω → 2 such that s(i)=1 if and only if Hi is isomorphic to a subgraph of G.

Proof: To prove that (1) implies (2), (3), or (4), it suffices to note that the function
s is �1

1 definable in the appropriate sequence of graphs. Since (3) is a special case of
(2), we need only show that (3) → (1) and (4) → (1) to complete the proof. As in the
proof of Theorem 2.6, we will determine which members of a sequence of trees are
well founded. For the remainder of the proof, assume RCA0 and let 〈Ti : i ∈ ω〉 be a
sequence of trees.

To prove that (3) → (1), we use a simplified version of the construction in the
proof of Theorem 3.2. As in that proof, let H be a countable linear graph with a tri-
angle attached to one end. For each n ∈ ω, let Gn be a copy of Tn, with a triangle
attached to the root. The graph H and the sequence 〈Gi : i ∈ ω〉 are �0

1 definable in
〈Ti : i ∈ ω〉, so RCA0 proves that they exist. Let s be as in (3). Then s(i) = 1 if and
only if H is isomorphic to a subgraph of Gi, which occurs if and only if Ti has an
infinite path. Thus (3) implies �1

1– CA0.
To prove that (4) → (1), we use a simplified version of the proof of Theorem

3.3. As in that proof, let Hn consist of a linear graph with each node replaced by a
2(n + 1) + 2 cycle, and with a triangle attached to one end. The graph G consists
of subgraphs Gn for each n ∈ ω, where each Gn is a copy of Tn with nonbase nodes
replaced by 2(n + 1) + 2 cycles, and a triangle attached to the base node. The graph
G and the sequence 〈Hi : i ∈ ω〉 are �0

1 definable in 〈Ti : i ∈ ω〉, so RCA0 proves that
they exist. If s is as in (4), then s(i) = 1 if and only if Hi is isomorphic to a subgraph
of G, which occurs if and only if Hi is isomorphic to a subgraph of Gi. Finally, Hi

is isomorphic to a subgraph of Gi if and only if Ti is not well founded, so (4) implies
�1

1– CA0, completing the proof. �
Although infinite analogs are useful for studying restricted classes of problems,
the preceding examples indicate that, in a general setting, their behavior does not
necessarily parallel that of the associated finite problems. However, examination of
results in finite complexity can provide motivation for appealing results in recursion
theory and reverse mathematics.
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