Infinite Versions of Some Problems From Finite Complexity Theory

JEFFRY L. HIRST and STEFFEN LEMPP

Abstract

Recently, several authors have explored the connections between NP-complete problems for finite objects and the complexity of their analogs for infinite objects. In this paper, we will categorize infinite versions of several problems arising from finite complexity theory in terms of their recursion theoretic complexity and proof theoretic strength. These infinite analogs can behave in a variety of unexpected ways.

1 Introduction Startling parallels exist between the computational complexity of certain graph theoretic problems and the recursion theoretic complexity and proof theoretic strength of their infinite analogs. For example, the problem of deciding which finite graphs have an Euler path is known to be P-time computable [7] and Beigel and Gasarch have shown in an unpublished work that the problem of deciding which infinite recursive graphs have an Euler path is arithmetical. By contrast, the problem of deciding which finite graphs have Hamilton paths is NP-complete [6, and Harel 4 has shown that the problem of deciding which infinite recursive graphs have a Hamilton graph is Σ_{1}^{1} complete. Thus, the possibly greater computational complexity is paralleled by a demonstrable increase in recursion theoretic complexity. This pattern can also be seen through an application of the techniques of reverse mathematics. The existence of a function that decides which graphs have Euler paths is provably equivalent to $\mathbf{A C A}_{0}$, while the existence of a similar function for Hamilton paths is equivalent to the much stronger axiom system $\Pi_{1}^{1}-\mathbf{C A}_{0}$.

Unfortunately, other graph theoretic problems do not demonstrate this parallelism. We have selected some examples to illustrate two general themes. First, different infinite statements related to a fixed finite problem can have different recursion theoretic complexities. This would seem to indicate that the use of a preferred infinite formulation might lead to natural parallels between finite complexity and recursion theoretic complexity. However, the behavior of infinite analogs is not so easily tamed. Indeed, similar formulations of infinite versions of problems with different finite complexities may have the same recursion theoretic complexity.

2 Variability among graph coloring problems This section contains examples illustrating our first theme. The problem of determining which finite graphs are 3chromatic is NP-complete 6. Extrapolating from the problem of finding Hamilton paths, we would expect infinite analogs of the 3 -coloring problem to be Σ_{1}^{1} complete. However, the actual recursion theoretic complexity depends on the formulation of the infinite analog, as demonstrated by the following three theorems. Our notation is patterned after that of Soare [10].

The following theorem shows that the set of indices of 3-chromatic recursive graphs is arithmetical, and so is much simpler than the Σ_{1}^{1} complete set we are seeking. This result is implicit in the work of Beigel and Gasarch 11. By formulating their results in terms of partial recursive functions rather than index sets, Beigel and Gasarch isolate the recursion theoretic complexity contributed by questions of chromaticity from that contributed by the coding of the graphs. To maintain uniformity with later results, we have chosen to use index sets here.

Theorem 2.1 The set of indices of 3-chromatic recursive graphs is Π_{2}^{0} definable.
Proof: Let \mathcal{G}_{1} denote the set of indices of 3-chromatic recursive graphs. Note that $x \in \mathcal{G}_{1}$ if and only if every finite subgraph of the graph with index x is 3-chromatic. Thus, \mathcal{G}_{1} is Π_{1}^{0} definable, using the set of indices of all recursive graphs as a parameter. Since the set of indices of recursive graphs is Π_{2}^{0} definable, \mathcal{G}_{1} is also Π_{2}^{0} definable.

In order to find an infinite analog of the 3-coloring problem with a complicated associated index set, we examine natural supersets of the 3 -chromatic graphs. One candidate is the collection of finitely colorable graphs. The set of indices of the finitely colorable graphs is definable by the conjunction of a Π_{2}^{0} and a Σ_{2}^{0} formula, and so is Δ_{3}^{0} definable (see [1]). By expanding our superset again to the collection of graphs with finitely colorable connected components, we gain some complexity in the index set.

Theorem 2.2 The set of indices of recursive graphs with finitely colorable connected components is Π_{3}^{0} complete.
Proof: Let \mathcal{G}_{1} denote the set of indices of recursive graphs with finitely colorable connected components. Suppose that x is the index of a graph G. Then $x \in \mathcal{G}_{1}$ if and only if for every vertex v of G, there is an integer k such that every finite connected subgraph of G containing v is k-chromatic. Thus, \mathcal{G}_{1} is a Π_{3}^{0} definable subset of the set of indices of recursive graphs.

To show that \mathcal{G}_{1} is Π_{3}^{0} complete, let \mathcal{G}_{0} denote the set of indices of those recursive graphs which have connected components that are not finitely colorable. It suffices to show that $(\operatorname{Cof}, \overline{\operatorname{Cof}}) \leq_{1}\left(\mathcal{G}_{0}, \mathcal{G}_{1}\right)$. Here, $\operatorname{Cof}=\left\{e: W_{e}\right.$ is cofinite $\}$.

For each $e \in \omega$, define the graph G_{e} as follows. G_{e} will contain vertices labeled $v_{m, n}$ for each m and n in ω, and some additional unlabeled vertices. For each m, the vertex $v_{m, 0}$ will be included in a complete graph on $m+1$ vertices. For every m and j all edges of the form ($v_{m, j}, v_{m, j+1}$) will be included in G_{e}. Finally, the edge ($v_{m, j}, v_{m+1, j}$) will be included in G_{e} if and only if $\{e\}(m)$ halts by stage j. For every e, G_{e} is recursive. By the $s-m$-n Theorem, there is a 1-1 recursive function f such that for every $e, f(e)$ is an index for G_{e}.

Note that if $e \in \operatorname{Cof}$, then there is a j such that the vertices $\left\{v_{m, n}: m>j\right\}$ are all in the same connected component. Consequently, arbitrarily large complete finite subgraphs are contained in this component, and it is not finitely colorable. Thus, if $e \in$ Cof, $f(e) \in \mathcal{G}_{0}$. Now suppose that $e \in \overline{C o f}$ and C is a connected component of G_{e}. C must contain a vertex of the form $v_{m, 0}$. Since $e \in \overline{C o f}$, there is a least j greater than m such that $\{e\}(j)$ never halts. Consequently, C cannot contain any vertex $v_{n, k}$ such that $n>j$. This ensures that C is $j+1$-chromatic, so $f(e) \in \mathcal{G}_{1}$. Thus, f witnesses that $(\operatorname{Cof}, \overline{\operatorname{Cof}}) \leq_{1}\left(\mathcal{G}_{0}, \mathcal{G}_{1}\right)$, as desired.

For the next proof, we will need the following notation for finite sequences of natural numbers. Assuming a recursive bijection between ω and $\omega^{<\omega}$, we will use a Greek letter (usually σ or τ) to denote both a sequence and its integer code. The formula $\sigma \subseteq \tau$ means that σ is an initial (not necessarily proper) segment of τ. Thus, T is a tree if whenever $\tau \in T$ and $\sigma \subseteq \tau$, then $\sigma \in T$.

Given an arbitrary index $e,\{e\}$ may or may not be the characteristic function for a recursive tree. To streamline our discussion, consider the following auxiliary function.

Definition 2.3 For $e \in \omega$, the partial recursive function η_{e} is defined by:

$$
\eta_{e}(\tau)=\left\{\begin{array}{lll}
1 & \text { if } & \forall \sigma \subseteq \tau(\{e\}(\sigma)=1), \\
0 & \text { if } & \{e\}(\tau)=0 \wedge[\forall \sigma \subseteq \tau(\{e\}(\sigma)=0 \vee\{e\}(\sigma)=1)] \\
& & \wedge[\forall \sigma \subseteq \tau \forall \alpha \subseteq \sigma(\{e\}(\alpha)=0 \rightarrow\{e\}(\sigma)=0)], \\
& & \text { otherwise. }
\end{array}\right.
$$

Naïvely, η_{e} approximates the characteristic function of a tree. In particular, η_{e} is total if and only if e is the index of a recursive tree. Note that by the $s-m-n$ Theorem, there is a 1-1 recursive function which maps each e to an index for η_{e}.

So far, we have examined sets of graphs that can be colored with a set of colors that is "small" in some sense. In finite graphs, coloring with a small number of colors forces repeated use of some color. Thus, it seems reasonable to consider graphs with colorings that use one color infinitely often. Note that this set of graphs is a superset of the graphs with finitely colorable connected components.

Theorem 2.4 (5]) The set of indices of recursive graphs with colorings which use one color infinitely often is Σ_{1}^{1} complete.

Proof: Let \mathcal{G} denote the set of indices of recursive graphs with colorings that use one color infinitely often. Note that $x \in \mathcal{G}$ if and only if there is a function χ mapping the vertices of the graph with index x into ω, such that χ maps neighboring vertices to different values, and 0 appears infinitely often in the range of χ. This statement can be formalized using a single existential set quantifier followed by an arithmetical formula, so \mathcal{G} is Σ_{1}^{1} definable.

To show that \mathcal{G} is Σ_{1}^{1} complete, we will show that $\mathcal{T} \leq_{1} \mathcal{G}$, where \mathcal{T} denotes the set of indices of recursive trees which are not well founded. With each $e \in \omega$, we associate a partial recursive graph, G_{e}. The vertex set for G_{e} consists of (codes for) elements of $\omega^{<\omega}$. For every $\sigma, \tau \in \omega^{<\omega}$, the characteristic function for the edge set
of G_{e} is defined by

$$
E_{e}(\sigma, \tau)=\left\{\begin{array}{lll}
0 & \text { if } \quad \eta_{e}(\sigma)=1 \wedge \eta_{e}(\tau)=1 \wedge(\sigma \subseteq \tau \vee \tau \subseteq \sigma), \\
1 & \text { if } \quad \eta_{e}(\sigma)=1 \wedge \eta_{e}(\tau)=1 \wedge \neg(\sigma \subseteq \tau \vee \tau \subseteq \sigma), \\
1 & \text { if } \quad \eta_{e}(\sigma) \downarrow \wedge \eta_{e}(\tau) \downarrow \wedge\left(\eta_{e}(\sigma)=0 \vee \eta_{e}(\tau)=0\right), \\
\uparrow & \text { otherwise. }
\end{array}\right.
$$

Roughly, we connect σ and τ by an edge if they are incomparable nodes on the tree or if one of them is not in the tree, ignoring those nodes whose status is suspect. By the $s-m-n$ Theorem, there is a 1-1 recursive function f such that for every $e, f(e)$ is an index for G_{e}.

If $e \in \mathcal{T}$, then e is the index of a recursive tree containing an infinite path P. Consequently, $f(e)$ is the index of a recursive graph. We can color this graph by mapping every node of P to 0 , and mapping all other nodes to their integer codes. Since 0 is used infinitely often in this coloring, $f(e) \in \mathcal{G}$.

Now suppose $e \notin \mathcal{T}$. If e is not the index of a recursive tree, then $f(e)$ is not the index of a recursive graph, so $f(e) \notin \mathcal{G}$. If we suppose that e is the index of a recursive tree T, then T is well founded. Suppose, by way of contradiction, that there is a coloring of the associated recursive graph G_{e} that uses 0 infinitely often. All the nodes of G_{e} that are colored 0 correspond to comparable nodes of T, contradicting the claim that T is well founded. Again, we have $f(e) \notin \mathcal{G}$, completing the proof that $\mathcal{T} \leq 1 \mathcal{G}$.
The techniques of reverse mathematics can be used to draw a distinction between the first two of our infinite analogs and the third. The following two results make use of the axiom systems $\mathbf{R C A}_{0}$ (Recursive Comprehension Axiom), $\mathbf{A C A}_{0}$ (Arithmetical Comprehension Axiom), and $\Pi_{1}^{1}-\mathbf{C} \mathbf{A}_{0}\left(\Pi_{1}^{1} \mathbf{C o m p r e h e n s i o n ~ A x i o m}\right)$. For a brief overview of reverse mathematics, see Simpson 97 .
Theorem $2.5\left(\mathbf{R C A}_{0}\right) \quad$ The following are equivalent:

1. $\boldsymbol{A C A} A_{0}$.
2. For any sequence of graphs $\left\langle G_{i}: i \in \omega\right\rangle$, there is a function $s: \omega \rightarrow 2$ such that $s(i)=1$ if and only if G_{i} is 3 -chromatic.
3. For any sequence of graphs $\left\langle G_{i}: i \in \omega\right\rangle$, there is a function $s: \omega \rightarrow 2$ such that $s(i)=1$ if and only if every connected component of G_{i} is finitely colorable.
Proof: To prove (1) \rightarrow (2) and (1) \rightarrow (3), it suffices to show that the function s is arithmetically definable in $\left\langle G_{i}: i \in \omega\right\rangle$. For (2), a Π_{1}^{0} defining formula for s can be extracted from the proof of Theorem 2.1. Similarly, for (3), imitating the proof of Theorem 2.2yields a Π_{3}^{0} defining formula.

By Lemma 2.7 of 8 , to prove that (2) \rightarrow (1) and (3) \rightarrow (1), it suffices to show that $\mathbf{R C A}_{0}$ can prove that for any injection $g: \omega \rightarrow \omega$, there is a sequence of graphs $\left\langle G_{i}: i \in \omega\right\rangle$ such that the range of g is Δ_{1}^{0} definable in the associated function s. Fix g and assume $\mathbf{R C A}_{0}$. We will define a sequence of graphs that works for both (2) and (3). Let G_{n} have ω as its vertex set. For every $j \in \omega$, include the edge $(j, j+1)$ in G_{n}. For $j<k$, add the edge (j, k) to G_{n} if and only if $\exists t \leq j(g(t)=n)$. The sequence $\left\langle G_{i}: i \in \omega\right\rangle$ is Δ_{1}^{0} definable in g, so $\mathbf{R C A}_{0}$ proves it exists. Let s be as in (2) or (3). Then $s(n)=1$ if and only if n is not in the range of g. Thus, the range of g is Δ_{1}^{0} definable in s, as desired.

The proceeding proof still holds if 3-chromatic is replaced by 2-chromatic in the statement of (2). Thus, these infinite analogs of the 2 -coloring and 3-coloring problems are provably equivalent.
Theorem $2.6\left(\mathbf{R C A}_{0}\right) \quad$ The following are equivalent:

1. $\Pi_{1}^{1}-\mathbf{C A}_{0}$.
2. For any sequence of graphs $\left\langle G_{i}: i \in \omega\right\rangle$, there is a function $s: \omega \rightarrow 2$ such that $s(i)=1$ if and only if G_{i} has a coloring in which one color is used infinitely often.
Proof: To prove that (1) \rightarrow (2), it suffices to note that the function s is Σ_{1}^{1} definable in $\left\langle G_{i}: i \in \omega\right\rangle$, and so exists by $\Pi_{1}^{1}-\mathbf{C A}_{0}$. To prove the converse, we will use the fact that $\Pi_{1}^{1}-\mathbf{C A}_{0}$ is equivalent to the existence of a function that decides which members of a sequence of trees are well founded. (This is an easy consequence of Lemma 6.1 in [3].) Assume $\mathbf{R C A}_{0}$, and suppose that $\left\langle T_{i}: i \in \omega\right\rangle$ is a sequence of trees. With each tree T_{n}, we associate a graph G_{n} as follows. The vertices of G_{n} are the nodes of T_{n}, and two vertices of G_{n} are connected if and only if the associated nodes are incomparable in the tree ordering. The sequence $\left\langle G_{i}: i \in \omega\right\rangle$ is Δ_{1}^{0} definable in $\left\langle T_{i}: i \in \omega\right\rangle$, and so exists by $\mathbf{R C A}_{0}$. Let s be as in (2). Then $s(i)=1$ if and only if G_{i} contains an infinite collection of pairwise disconnected vertices, which occurs if and only if T_{i} is not well founded. Thus (2) implies $\Pi_{1}^{1}-\mathbf{C} \mathbf{A}_{0}$, completing the proof.

3 Variability among graph isomorphism problems From the results in the preceding section, it is clear that the recursion theoretic strength of infinite analogs depends in part on their formulation. As shown by Harel and Tirza Hirst in [5], adoption of a standardized translation yields interesting parallels between finite complexity and recursion theoretic complexity for restricted classes of problems. However, for broader classes of problems, the parallels break down. In this section, we will consider three problems of diverse finite complexity that all have Σ_{1}^{1} complete infinite analogs, thus illustrating our second theme. Consider the following three variants of the subgraph isomorphism problem:

P1 Given a pair of finite graphs, H and G, determine if H is isomorphic to a subgraph of G.
P2 For a fixed finite graph H, given a finite graph G, determine if H is isomorphic to a subgraph of G.
P3 For a fixed finite graph G, given a finite graph H, determine if H is isomorphic to a subgraph of G.
$\mathbf{P} 1$ is the familiar form of the subgraph isomorphism problem, and is known to be NP-complete [2]. One algorithm for solving P2 and $\mathbf{P 3}$ consists of enumerating all functions from H into G, and checking each one to see if it is the desired isomorphism. The number of functions to check is bounded by $|G|^{|H|}$, where $|G|$ denotes the number of vertices of G. Since H is fixed in $\mathbf{P 2}$, the number of functions to check is a constant power of $|G|$. Furthermore, the number of steps required to check each function is bounded by a constant based on the fixed value $|H|$. Thus, $\mathbf{P 2}$ can be solved in a number of steps which is bounded by a polynomial in $|G|$. In $\mathbf{P 3}, G$ is fixed, and we can discard any graphs H such that | $H|>|G|$, so the number of steps
required to solve an instance of $\mathbf{P 3}$ is bounded by a constant based on the fixed value $|G|$. Summarizing, the complexity of three problems ranges from NP-complete to constant time computable.

Compared to the coloring problem in $\S 2$, these subgraph isomorphism problems have very straightforward infinite analogs. Despite the variation in the computational complexity of the finite problems, their infinite analogs are all Σ_{1}^{1} complete, as is shown in the following three theorems.

Theorem 3.1 ([5]) The set of indices of ordered pairs of recursive graphs, (H, G), such that H is isomorphic to a subgraph of G is Σ_{1}^{1} complete.

Proof: Let \mathcal{G} be the set of indices of ordered pairs of recursive graphs such that the first graph is isomorphic to a subgraph of the second. Since $x \in \mathcal{G}$ if and only if an appropriate isomorphism exists, it is easy to see that \mathcal{G} is Σ_{1}^{1} definable.

To prove that \mathcal{G} is Σ_{1}^{1} complete, we will show that $\mathcal{T} \leq_{1} \mathcal{G}$, where \mathcal{T} denotes the set of indices of recursive trees which are not well founded. With each $e \in \omega$, we associate a pair of partial recursive graphs, H_{e} and G_{e}. H_{e} is a countably infinite linear graph with a triangle attached at one end. To be precise, the vertex set of H_{e} is $\left\{v_{n}: n \in \omega\right\}$ and the edge set is $\left\{\left(v_{0}, v_{2}\right)\right\} \cup\left\{\left(v_{n}, v_{n+1}\right): n \in \omega\right\}$. If e is the index of a recursive tree T, then G_{e} consists of a copy of T with a triangle attached to the root, and a collection of disconnected vertices. In general, the vertex set for G_{e} consists of $\left\{v_{0}, v_{1}, v_{2}\right\}$ and (codes for) the elements of $\omega^{<\omega}$. Let σ_{0} denote the code for the empty sequence. The edge $\left(v_{0}, \sigma_{0}\right)$ and the three edges of the form $\left(v_{i}, v_{j}\right)$ where $i \neq j$ are included in G_{e}. For every σ and τ in $\omega^{<\omega}$, the edge (σ, τ) is included in G_{e} if and only if

$$
\eta_{e}(\sigma)=\eta_{e}(\tau)=1 \wedge \sigma \subseteq \tau \wedge \neg \exists \alpha(\sigma \subsetneq \alpha \subsetneq \tau),
$$

where η_{e} is the function defined in $\S 2$. By the $s-m-n$ Theorem, there is a recursive 1-1 function f such that for every $e, f(e)$ is an index for the pair (H_{e}, G_{e}).

If $e \in \mathcal{T}$, then e is the index of a recursive tree containing an infinite path P. In this case, H_{e} is isomorphic to the subgraph of G_{e} consisting of the base triangle and a copy of P. Thus $f(e) \in \mathcal{G}$.

Now suppose that $e \notin \mathcal{T}$. If e is not the index of a recursive tree, then G_{e} is not a recursive graph, so $f_{e} \notin \mathcal{G}$. If e is the index of a recursive tree \mathcal{T}, then \mathcal{T} is well founded. The graph G_{e} is a copy of T with a triangle attached to its base. Any isomorphism mapping H_{e} into G_{e} must map the triangle in H_{e} into the triangle in G_{e}, and the linear portion of H_{e} to an infinite path in the copy of T. Since T is well founded, no such isomorphism exists. Thus $f(e) \notin \mathcal{G}$, completing the proof that $\mathcal{T} \leq_{1} \mathcal{G}$.

Theorem 3.2 There is a recursive graph H, such that the set of indices of recursive graphs containing a subgraph isomorphic to H is Σ_{1}^{1} complete.

Proof: In the proof of Theorem 3.1. H_{e} is a fixed recursive graph defined without reference to e. Any recursive 1-1 function mapping e to an index for the graph G_{e} (defined as in the proof of Theorem 3.1) witnesses the desired 1-reduction.

Theorem 3.3 There is a recursive graph G, such that the set of indices of recursive graphs that are isomorphic to a subgraph of G is Σ_{1}^{1} complete.

Proof: We begin the proof by constructing the recursive graph G. This graph will consist of a countable collection of subgraphs $\left\langle G_{e}: e \in \omega\right\rangle$, where each G_{e} consists of a treelike substructure together with some spurious disconnected subgraphs.

For each $e \in \omega, G_{e}$ will be constructed from cycles labeled $C(e, \sigma, k)$ for each nonempty $\sigma \in \omega^{<\omega}$ and each $k \in \omega$. The cycle $C(e, \sigma, k)$ consists of $2(e+1)+2$ vertices joined to make a circular graph. We designate two vertices of $C(e, \sigma, k)$ as $v_{e, \sigma, k}^{0}$ and $v_{e, \sigma, k}^{1}$, and require that the paths joining them contain $e+2$ edges. To give a concrete example, $C(1, \sigma, k)$ looks like a hexagon, with the bottom vertex labeled $v_{1, \sigma, k}^{0}$ and the top vertex labeled $v_{1, \sigma, k}^{1}$.

The treelike substructure of G_{e} consists of a triangular base with a vertex labeled t_{0}, and branches consisting of linked cycles. We say that a cycle $C(e, \sigma, k)$ is exact if k is the least integer such that (1) $\eta_{e}(\tau) \downarrow$ by stage k for every τ which is an initial subsequence of σ or has a code less than σ, and (2) $\eta_{e}(\sigma)=1$. (Here η_{e} is the function defined in §2.) Edges are added to G_{e} by the following two rules. Connect $v_{e, \sigma, k}^{0}$ to t_{0} if and only if $C(e, \sigma, k)$ is an exact cycle and σ is a sequence of length 1 . Connect $v_{e, \sigma, k}^{1}$ to $v_{e, \tau, j}^{0}$ if and only if $C(e, \sigma, k)$ and $C(e, \tau, j)$ are exact cycles and $\tau=\sigma *\langle m\rangle$ for some $m \in \omega$. Cycles which are not exact are spurious; they are included in G_{e}, but are never connected to the treelike substructure.

Let G be the union of all the G_{e} 's. G is recursive, since the rules for adding edges involve only bounded computations. Furthermore, if e is the code of a recursive tree T, then the treelike substructure of G_{e} can be mapped homomorphically onto T by identifying exact cycles with corresponding nodes. Viewing the cycles as nodes, the substructure is well founded if and only if T is a well-founded tree. If e is not the code of a recursive tree, η_{e} is not total, and the treelike substructure of G_{e} is finite.

Let \mathcal{G} be the set of indices of recursive graphs that are isomorphic to a subgraph of G. Since $x \in \mathcal{G}$ if and only if an isomorphism exists, it is easy to see that \mathcal{G} is Σ_{1}^{1} definable. To prove that \mathcal{G} is Σ_{1}^{1} complete, we will show that $\mathcal{T} \leq_{1} \mathcal{G}$, where \mathcal{T} denotes the set of indices of recursive trees which are not well founded. With each $e \in \omega$, we associate a recursive graph H_{e} consisting of a countable linear graph with each node replaced by a $2(e+1)+2$ cycle and with a triangle attached at one end. More precisely, H_{e} contains a triangle with one vertex labeled t_{0}, and (copies of) the cycles $C(e,\langle 0\rangle, k)$ for each $k \in \omega$. To the edges already specified, we add the edge $\left(t_{0}, v_{e,\langle 0\rangle, k}^{0}\right)$ and the edges $\left(v_{e,\langle 0\rangle, k}^{1}, v_{e,\langle 0\rangle, k+1}^{0}\right)$ for each $k \in \omega$. By the $s-m-n$ Theorem, there is a recursive 1-1 function f such that for every $e, f(e)$ is an index for H_{e}.

If $e \in \mathcal{T}$, then e is the index of a recursive tree containing an infinite path P. In this case, H_{e} is isomorphic to the subgraph of G_{e} consisting of the base triangle and a copy of P with nodes replaced by cycles. Thus $f(e) \in \mathcal{G}$.

Now suppose that $e \notin \mathcal{T}$. Note that because the size of the cycles varies with e, if H_{e} is isomorphic to a subgraph of G, then H_{e} is isomorphic to a subgraph of G_{e}. Since $e \notin \mathcal{T}, G_{e}$ consists of disconnected cycles and a well-founded treelike substructure. If H_{e} is isomorphic to a subgraph of G_{e}, then the treelike substructure of G_{e} contains an infinite path, yielding a contradiction. Thus $f(e) \notin \mathcal{G}$ completing the proof that $\mathcal{T} \leq{ }_{1} \mathcal{G}$.

Using the reverse mathematics framework, the preceding three theorems can be lumped together into a single equivalence result.

Theorem $3.4\left(\mathbf{R C A}_{0}\right)$ The following are equivalent:

1. $\Pi_{1}^{1}-\mathbf{C A}_{0}$.
2. For any sequence of ordered pairs of graphs, $\left\langle\left(H_{i}, G_{i}\right): i \in \omega\right\rangle$, there is a function $s: \omega \rightarrow 2$ such that $s(i)=1$ if and only if H_{i} is isomorphic to a subgraph of G_{i}.
3. For any graph H, and any sequence of graphs $\left\langle G_{i}: i \in \omega\right\rangle$, there is a function $s: \omega \rightarrow 2$ such that $s(i)=1$ if and only if H is isomorphic to a subgraph of G_{i}.
4. For any graph G, and any sequence of graphs $\left\langle H_{i}: i \in \omega\right\rangle$, there is a function $s: \omega \rightarrow 2$ such that $s(i)=1$ if and only if H_{i} is isomorphic to a subgraph of G.

Proof: To prove that (1) implies (2), (3), or (4), it suffices to note that the function s is Σ_{1}^{1} definable in the appropriate sequence of graphs. Since (3) is a special case of (2), we need only show that (3) \rightarrow (1) and (4) \rightarrow (1) to complete the proof. As in the proof of Theorem 2.6, we will determine which members of a sequence of trees are well founded. For the remainder of the proof, assume $\mathbf{R C A}_{0}$ and let $\left\langle T_{i}: i \in \omega\right\rangle$ be a sequence of trees.

To prove that $(3) \rightarrow(1)$, we use a simplified version of the construction in the proof of Theorem 3.2. As in that proof, let H be a countable linear graph with a triangle attached to one end. For each $n \in \omega$, let G_{n} be a copy of T_{n}, with a triangle attached to the root. The graph H and the sequence $\left\langle G_{i}: i \in \omega\right\rangle$ are Δ_{1}^{0} definable in $\left\langle T_{i}: i \in \omega\right\rangle$, so $\mathbf{R C A}_{0}$ proves that they exist. Let s be as in (3). Then $s(i)=1$ if and only if H is isomorphic to a subgraph of G_{i}, which occurs if and only if T_{i} has an infinite path. Thus (3) implies $\Pi_{1}^{1}-\mathbf{C} \mathbf{A}_{0}$.

To prove that $(4) \rightarrow(1)$, we use a simplified version of the proof of Theorem 3.3. As in that proof, let H_{n} consist of a linear graph with each node replaced by a $2(n+1)+2$ cycle, and with a triangle attached to one end. The graph G consists of subgraphs G_{n} for each $n \in \omega$, where each G_{n} is a copy of T_{n} with nonbase nodes replaced by $2(n+1)+2$ cycles, and a triangle attached to the base node. The graph G and the sequence $\left\langle H_{i}: i \in \omega\right\rangle$ are Δ_{1}^{0} definable in $\left\langle T_{i}: i \in \omega\right\rangle$, so $\mathbf{R C A}_{0}$ proves that they exist. If s is as in (4), then $s(i)=1$ if and only if H_{i} is isomorphic to a subgraph of G, which occurs if and only if H_{i} is isomorphic to a subgraph of G_{i}. Finally, H_{i} is isomorphic to a subgraph of G_{i} if and only if T_{i} is not well founded, so (4) implies $\Pi_{1}^{1}-\mathbf{C A}_{0}$, completing the proof.
Although infinite analogs are useful for studying restricted classes of problems, the preceding examples indicate that, in a general setting, their behavior does not necessarily parallel that of the associated finite problems. However, examination of results in finite complexity can provide motivation for appealing results in recursion theory and reverse mathematics.

Acknowledgments Lempp's research was partially supported by NSF grant DMS-9100114.

REFERENCES

[1] Beigel, R., and W. Gasarch, "On the complexity of finding the chromatic number of a recursive graph I: The bounded case," Annals of Pure and Applied Logic, vol. 45 (1989), pp. 1-38. Zbl 0685.03033IMR 91b:030762.|2
[2] Cook, S., "The complexity of theorem-proving procedures," pp. 151-158 in Proceedings of the Third Annual ACM Symposium on Theory of Computing, ACM, New York, 1971. Zbl 0253.68020 3
[3] Friedman, H., S. Simpson, and R. Smith, "Countable algebra and set existence axioms," Annals of Pure and Applied Logic, vol. 25 (1983), pp. 141-181. Zbl 0575.03038 MR 85i:03157 2
[4] Harel, D., "Hamiltonian paths in infinite graphs," Israel Journal of Mathematics, vol. 76 (1991), pp. 317-336. Zbl 0756.05073|MR 93d:68023 1
[5] Hirst, Tirza, and D. Harel, "Taking it to the limit: On infinite variants of NP-complete problems," Journal of Computer and System Sciences, forthcoming. Zbl 0859.68016 MR 97k:68060 2.4.|3.|3.1.
[6] Karp, R., "Reducibility among combinatorial problems," pp. 85-103 in Complexity of Computer Computations, edited by R. Miller and J. Thatcher, Plenum Press, New York, 1972. Zbl 0366.68041 MR 51:14644 1.2
[7] Kaufmann, A., Graphs, Dynamic Programming and Finite Games, Academic Press, New York, 1967. Zbl 0161.39201 1
[8] Simpson, S., "Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?," The Journal of Symbolic Logic, vol. 49 (1984), pp. 783-802. Zbl 0584.03039MR 86a:03066 2
[9] Simpson, S., "Subsystems of Z_{2}," pp. 434-448 in Proof Theory, by G. Takeuti, NorthHolland, Amsterdam, 1986.
[10] Soare, R., Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987. Zbl 0667.03030||MR 88m:03003 2

Department of Mathematical Sciences
Appalachian State University
Boone, NC 28608
email: j lh@math.appstate.edu
Department of Mathematics
University of Wisconsin
Madison, WI 53706-1388
email: Lempp@math.wisc.edu

