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Simplified Lower Bounds
for Propositional Proofs

ALASDAIR URQUHART and XUDONG FU

Abstract This article presents a simplified proof of the result that bounded
depth propositional proofs of the pigeonhole principle are exponentially large.
The proof uses the new techniques for proving switching lemmas developed by
Razborov and Beame. A similar result is also proved for some examples based
on graphs.

1 Introduction Substantial progress has been made recently in proving lower
bounds on the complexity of propositional proofs. A decisive advance was made by
Ajtai [1], who proved superpolynomial lower bounds on the size of bounded depth
Frege proofs of tautologies encoding the pigeonhole principle. In later work, Bellan-
toni, Pitassi, and Urquhart [4] simplified Ajtai’s proof, and subsequently Krajı́c̆ek,
Pudlák, and Woods, and Pitassi, Beame, and Impagliazzo in [3], [10], and [12] inde-
pendently extended it to prove exponential lower bounds for the same set of tautolo-
gies.

All of the arguments establishing these lower bounds use a type of combinato-
rial argument known generically as a switching lemma. In its simplest form (see Furst,
Saxe, and Sipser [7], Yao [17], and Håstad [9]) this type of argument shows that if a
formula in conjunctive normal form is simplified by a random partial assignment of
truth-values to its variables (a random restriction) then with high probability it can
be written in disjunctive normal form, where the conjuncts are not too large. Thus a
random partial assignment of truth-values allows us to switch efficiently between con-
junctive and disjunctive normal form. In a similar way, the switching lemmas used
in other cases show that the use of random restrictions allows a formula of bounded
depth to be represented by a formula in disjunctive normal form composed of small
terms.

Proofs of the switching lemmas used in papers on the complexity of proofs [1,
3, 4, 10, 12] are significantly more complex than the proofs in Boolean complexity
theory on which they are modeled [7, 9, 17]. In these lemmas, the variables are not
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independent (as they are in the simpler case), and this fact leads to rather complex
and delicate arguments involving conditional probability. However, recent work of
Razborov [13] and Beame [2] has led to drastic simplification of these proofs.

The main purpose of the present paper is to present a fully detailed version of
the resulting simplified proof of exponential lower bounds for bounded depth Frege
proofs of the pigeonhole tautologies. Its principal contribution is to show how the
rather complicated combinatorial and probabilistic arguments for the lower bounds
used in the earlier papers [10, 12] can be replaced by the much simpler counting tech-
niques of Razborov and Beame.

The proof techniques used for this proof can also be used to give exponential
lower bounds for tautologies based on graphs. (The original idea for these tautologies
is due to Tseitin [15].) In a later section of the paper a proof of this lower bound is
sketched for a family of tautologies based on complete graphs. The last section of the
paper gives a few open problems that appear to require new ideas going beyond the
techniques expounded here.

2 Frege systems The proof systems we consider are those familiar from textbook
presentations of logic, consisting of a finite number of axiom schemes and schematic
rules. We call such a system a Frege system. (Strictly speaking, this is a misnomer,
since Frege’s original system [8] included a tacitly applied rule of substitution; the
use of schematic rules to avoid the rule of substitution is a device of von Neumann
[11].)

The language for propositional logic used here is based on binary disjunction
∨ and negation ¬; a conjunction A ∧ B is treated as an abbreviation for the formula
¬(¬A ∨ ¬B). In addition, we include the propositional constants 0 and 1 standing
for “false” and “true” respectively. The set of propositional variables will be specified
in the following section. If A is a formula and p1, . . . , pm a sequence of variables
then we write A[B1/p1, . . . , Bm/pm] for the formula resulting from A by substituting
B1, . . . , Bm for p1, . . . , pm.

A Frege rule is defined to be a sequence of formulas written in the form
A1, . . . , Ak � A0. In the case in which the sequence A1, . . . , Ak is empty, the rule is
referred to as an axiom scheme. The rule is sound if A1, . . . , Ak |= A0, that is, if every
truth-value assignment satisfying A1, . . . , Ak also satisfies A0. If A1, . . . , Ak � A0

is a Frege rule, then C0 is inferred from C1, . . . , Ck by this rule if there is a se-
quence of formulas B1, . . . , Bm and variables p1, . . . , pm so that for all i, 0 ≤ i ≤ k,
Ci = Ai[B1/p1, . . . , Bm/pm].

If F is a set of Frege rules and A a formula, then a proof of A in F from
A1, . . . , Am is a finite sequence of formulas such that every formula in the sequence
is one of A1, . . . , Am or inferred from earlier formulas in the sequence by a rule in F ,
and the last formula is A. The formulas in the sequence are the lines in the proof.

If F is a set of Frege rules, then it is implicationally complete if whenever
A1, . . . , Am |= A0 then there is a proof of A0 in F from A1, . . . , Am. A Frege system
is defined to be a finite set of sound Frege rules that is implicationally complete.

Example 2.1 Shoenfield’s system ([14], p. 21), in which the primitive connectives
are ∨ and ¬ follows:
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Excluded Middle: � ¬p ∨ p;
Expansion rule: p � q ∨ p;

Contraction rule: p ∨ p � p;
Associative rule: p ∨ (q ∨ r) � (p ∨ q) ∨ r;

Cut rule: p ∨ q,¬p ∨ r � q ∨ r.

If � is a sequence of formulas then the size of � is the number of distinct subformulas
in �. In particular, we define the size of a Frege rule A1, . . . , Ak � A0 to be the size
of the sequence A1, . . . , Ak, A0. For example, the size of the cut rule in Shoenfield’s
system is 7.

A formula can be represented by its formation tree in which the leaves are labeled
with propositional variables or constants, and an interior node is labeled with ∨ if it
is the parent of two nodes, and with ¬ if it is the parent of only one. A branch in the
tree representing a formula, when traversed from the root to the leaf at the end of the
branch is labeled with a block of operators of one kind (say ¬), followed by a block
of the other kind (say ∨), . . . , ending with a variable or constant. The logical depth
of a branch is defined to be the number of blocks of operators labeling the branch.
The depth of a formula is the maximum logical depth of the branches in its formation
tree.

Example 2.2 The formula (¬p ∨ ¬¬1) ∨ ¬(¬q ∨ r) has depth 4.

The depth of a proof in a Frege system is the maximum depth of a line in the proof.
The lower bound proved in this paper is for proofs of bounded depth, in which all
formulas have depth bounded by a fixed constant.

3 Matchings and restrictions In this section we introduce a language for the
propositional pigeonhole principle and a space of matchings that serve to define re-
strictions on the propositional variables in the language.

Let D, R be finite nonempty sets where D ∩ R = ∅, and let S = D ∪ R. We
shall suppose that S is ordered, with all elements of D preceding elements in R, and
refer to this ordering as ordering by size. (Later, a different ordering on a subset of S
plays an important role.) A matching between D and R is a set of mutually disjoint
unordered pairs {i, j}, where i ∈ D, j ∈ R (that is to say, a matching in the complete
bipartite graph D × R). A matching covers a vertex i if {i, j} belongs to the matching
for some vertex j; a matching covers a set X if it covers all the vertices in X. If X ⊆ S,
then M(X) denotes the set of all matchings ρ such that ρ covers X, but no matching
properly contained in ρ covers X. If π is a matching then we denote by V (π) the set
of vertices covered by π. A matching between D and R is perfect if it covers all of
the vertices in D ∪ R.

The pigeonhole principle states that if |D| = n + 1, |R| = n then there is no per-
fect matching between D and R. To formalize this as a tautology in propositional
logic we introduce propositional variables Pij for i ∈ D, j ∈ R. The language built
from these variables and the constants 0 and 1 using the connnectives ∨ and ¬ we
shall refer to as L(D, R); we also refer to the language as Ln in contexts where D, R
are understood as the basic sets. The tautology PH P(D, R) is the disjunction∨

i 	= j∈D
k∈R

(Pik ∧ Pjk) ∨
∨

i 	= j∈R
k∈D

(Pki ∧ Pkj) ∨
∨
i∈D

∧
k∈R

¬Pik ∨
∨
k∈R

∧
i∈D

¬Pik.
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We shall also refer to this as PH Pn when the underlying sets are understood.
Let D, R be fixed, where |D| = n + 1, |R| = n. The set of matchings between

D and R we shall denote by Mn. A matching π determines a restriction ρπ of the
variables of Ln by the following definition. For a variable Pij, if i or j is covered by
π then ρπ(Pij) = 1 if {i, j} ∈ π, ρπ(Pij) = 0 if {i, j} 	∈ π; otherwise ρπ(Pij) is unde-
fined. Since a matching uniquely determines and is determined by the corresponding
restriction, we shall identify a matching with the restriction it determines, and refer
to it according to context as a matching or a restriction. If ρ1 and ρ2 are two match-
ings in Mn, and ρ1 ∪ ρ2 is also a matching, then we say that they are compatible.
If ρ1 and ρ2 are compatible matchings, then their union will be written as ρ1ρ2. If
ρ is a matching, then D�ρ = D \ V (ρ), R�ρ = R \ V (ρ) and S�ρ = S \ V(ρ). If
M is a set of matchings, and ρ a matching, then M�ρ is defined to be {ρ′ \ ρ : ρ′ ∈
M, ρ′ compatible with ρ}.

If A is a formula of Ln, and ρ ∈ Mn, then we denote by A�ρ the formula resulting
from A by substituting for the variables in A the constants representing their value
under ρ. That is to say, if Pij is set to 1 or 0 by ρ, then we substitute 1 or 0 for Pij,
otherwise the variable is unchanged. If � is a set of formulas and ρ ∈ Mn then ��ρ is
{A�ρ : A ∈ �}. The formula A�ρ can be simplified by eliminating the constants by
the rules ¬0 ≡ 1, ¬1 ≡ 0, (0 ∨ A) ≡ A, (A ∨ 0) ≡ A, (1 ∨ A) ≡ 1, (A ∨ 1) ≡ 1. If
a formula A can be simplified to a formula B using these rules, then we write A ≡ B.

The language Ln contains only binary disjunction. However, in the proofs that
follow it is convenient to introduce an auxiliary language that uses unbounded con-
junctions and disjunctions. We shall distinguish the order of the terms in such con-
junctions and disjunctions.

Let A be an unbounded conjunction each of whose conjuncts is a variable of
Ln or a constant. We shall say that A is a matching term if the set of pairs {i, j} for
Pij a variable in A forms a matching. The size of a matching term is the cardinality
|π| of the matching π corresponding to it; the set of vertices V(A) associated with a
matching term A is the set of vertices mentioned in the variables in A, that is, the set
V (π). If π is a matching, then we shall write ∧π for the matching term that describes
it, the conjunction containing the set of variables Pij for {i, j} ∈ π as conjuncts.

An unbounded disjunction of matching terms we shall call a matching disjunc-
tion; it is a matching disjunction over S if all the vertices mentioned in it are in S. If
all of the matching terms in a matching disjunction have size bounded by r, then it is
an r-disjunction.

Let A be a disjunction in the language Ln, and Ai, i ∈ I, those subformulas of
A that are not disjunctions, but every subformula of A properly containing them is a
disjunction. Then the merged form of A is the unbounded disjunction

∨
i∈I Ai.

4 Matching trees In the present section, we introduce decision trees in which the
branches represent matchings. We assume that the space of matchings is the set Mn of
matchings between D and R, where |D| = n + 1, |R| = n, S = D ∪ R. The leaves of
all trees are assumed to be ordered left to right. The nodes lying immediately below
a node in a tree are its children. The depth of a tree T , |T |, is the maximum length of
a branch in T .
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Definition 4.1 A matching tree over S is a tree T satisfying the following condi-
tions.

1. The nodes of T other than the leaves are labeled with vertices in S.
2. If a node in T is labeled with a vertex i ∈ S, then the edges leading out of the

node are labeled with distinct pairs of the form {i, j} where j ∈ R if i ∈ D, j ∈ D
if i ∈ R.

3. No node or edge label is repeated on a branch of T .
4. If p is a node of T then the edge labels on the path from the root of T to p

determine a matching π(p) between D and R.

We shall use the notation Br(T ) for the set of matchings determined by the branches
of T , that is, {π(l) : l a leaf in T}. If M is a set of matchings, then T is said to be
complete for M if for any node p in T labeled with a vertex i ∈ S, the set of matchings
{π(q) : q a child of p} consists of all matchings in M of the form π(p) ∪ {{i, j}}. If
the space of matchings is Mn, we shall use the abbreviation “complete” instead of
“complete for Mn”.

Definition 4.2 Let X be a set of nodes in S. The full matching tree T for X over
S is constructed as follows. If p is a node in T such that π(p) does not cover X,
then p is labeled with the first node i in X not covered by π(p), and the set {π(q) :
q a child of p} consists of all matchings in S of the form π(p) ∪ {{i, j}}, for j ∈ S.

If T is the full matching tree for X over S, then Br(T ) = M(X). Every full match-
ing tree for a subset of S is complete, but not every complete matching tree is a full
matching tree for some subset of S.

Lemma 4.3 Let T be a complete matching tree over the space S = D ∪ R, |D| =
n + 1, |R| = n, and ρ a matching in Mn such that |ρ| + |T | ≤ n. Then there is a
π ∈ Br(T ) such that π ∪ ρ ∈ Mn.

Proof: We show that by successively choosing nodes in T starting at the root we
can find a branch in T so that the required π labels the chosen path. Let us suppose
that the nodes have been chosen as far as a node p that is not a leaf. By assumption,
ρ ∪ π(p) ∈ Mn; since |ρ| + |T | ≤ n, |ρ ∪ π(p)| < n. Let i be the vertex in S labeling
node p; there exists at least one matching extending ρ ∪ π(p) that covers i. Since T
is complete, at least one edge below p is labeled with a pair that extends ρ ∪ π(p) to
a matching in Mn. Then we can extend the path by choosing the node at the end of
this edge. �
If the leaves of a matching tree T are each labeled with 0 or 1, then it is a matching
decision tree. We define for i = 0, 1,

Bri(T ) = {π(l) : l is a leaf of T labeled i}.

If T is a matching decision tree, then Tc is the matching decision tree that results by
changing the leaf labels of T from 0 to 1 and 1 to 0, while Disj(T ) is the unbounded
disjunction

∨{∧π : π ∈ Br1(T )}.
Lemma 4.4 If T is a matching decision tree, and ρ extends a matching π(l) ∈
Br(T ), then Disj(T )�ρ ≡ 0 or 1 according to whether l is labeled 0 or 1.
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Proof: If l is labeled 1, then since ρ extends π(l), the term ∧π(l) is set to 1 by ρ,
so that Disj(T )�ρ ≡ 1. If l is labeled 0, then we need to establish that for any leaf
l′ labeled 1, ∧π(l′)�ρ ≡ 0. Let p be the node at which the branches ending in l and
l′ diverge. If i is the vertex in S labeling p, then π(l) and π(l′) must disagree on the
vertex matched with i. Thus ∧π(l′)�ρ ≡ 0, showing that Disj(T )�ρ ≡ 0. �

Definition 4.5 Let F = C1 ∨ · · · ∨ Cm be a matching disjunction over S. The
canonical matching decision tree for F over S, TreeS(F), is defined inductively as
follows.

1. If F ≡ 0 then TreeS(F) is a single node labeled 0; if F ≡ 1 then TreeS(F) is
a single node labeled 1;

2. If F 	≡ 0, F 	≡ 1, let C be the first matching term in F such that C 	≡ 0. Then
TreeS(F) is constructed as follows.

(a) Construct the full matching tree for V(C) over S.

(b) Replace each leaf l of the full matching tree for V(C) by the canonical
matching decision tree TreeS�π(l)(F�π(l)).

In a canonical matching decision tree, certain nodes are singled out as boundary nodes
and are specified by induction as follows: the boundary nodes of TreeS(F) are the
root of TreeS(F) together with all the boundary nodes in the trees TreeS�π(l)(F�π(l))
that form subtrees of TreeS(F) by clause 2b of the previous definition.

Example 4.6 Let D = {1, 2, 3, 4, 5}, R = {6, 7, 8, 9}, S = D ∪ R, let F be the
matching disjunction (P17 ∧ P38) ∨ (P16 ∧ P27) ∨ (P56 ∧ P49) ∨ (P16 ∧ P59), and ρ

the mapping {1 �→ 6}. Figure 1 shows the canonical tree TreeS�ρ(F�ρ). The filled-in
nodes in the diagram represent boundary nodes in the canonical tree.

2

1

1

0 0 0 0

7
7

5 5

1

{2,7} {2,8} {2,9}

{3,7} {4,7} {5,7}

{5,9} {5,9}

{3,7} {4,7} {5,7}

Figure 1: A canonical tree

If F is a matching disjunction, and T a matching decision tree, then we say that T
represents F if for every π(l) ∈ Br(T ), F�π(l) ≡ 1 if l is labeled 1, and F�π(l) ≡
0 if l is labeled 0. By construction, the canonical matching decision tree TreeS(F)

represents F.

Definition 4.7 Let T be a complete matching decision tree and ρ a restriction. Then
the tree T�ρ that results from T by applying the restriction ρ is defined inductively
as follows.
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1. If T consists of a single node, then T�ρ is T .
2. If T consists of more than one node, and the root of T is labeled with the vertex

i, then

(a) if for some j, {i, j} ∈ ρ, then T�ρ is the decision tree T ′�ρ, where T ′ is
the subtree attached to the root by the edge labeled with {i, j};

(b) if i 	∈ V (ρ), then T�ρ has as its root a vertex labeled i, and as immediate
subtrees all subtrees of the form T ′�ρ, where T ′ is attached to the root
of T by an edge labeled {i, k}, where k 	∈ V (ρ)—the same pair labels the
edge attaching T ′�ρ to the root of T�ρ.

In the following sections, restrictions are constructed by a process of successive ex-
tension. The following lemma guarantees that these extensions preserve certain rela-
tions.

Lemma 4.8 Let T be a matching decision tree and ρ a restriction.

1. Disj(T )�ρ ≡ Disj(T�ρ).
2. If T is complete for Mn, then T�ρ is complete for Mn�ρ.
3. (T�ρ)c = Tc�ρ.
4. If l is a leaf in T�ρ, then there is a leaf l′ in T bearing the same label as l so

that π(l′) ⊆ π(l) ∪ ρ.
5. If T represents a matching disjunction F, then T�ρ represents F�ρ.

Proof: The first four parts of the lemma are proved by induction on the depth of the
tree T . The fifth part follows from the fourth. �

5 Evaluations In this section, we introduce the basic concept of a k-evaluation:
a k-evaluation can be considered as a kind of nonstandard truth-definition for a set
of formulas. The notion of k-evaluation is due to Krajı́c̆ek, Pudlák, and Woods [10].
The definition of k-evaluation used here differs from that of [10]; in that paper a more
general definition is used in which formulas are assigned sets of restrictions rather
than complete decision trees.

Definition 5.1 Let � be a set of formulas of Ln, closed under subformulas, where
S = D ∪ R, |D| = n + 1, |R| = n. Let k > 0. A k-evaluation T is an assignment of
complete matching decision trees T(A) to formulas A ∈ Ln so that

1. T (A) has depth ≤ k;
2. T (1) is the tree with a single node labeled 1, and T(0) is the tree with a single

node labeled 0;
3. T (Pij) is the full matching tree for {i, j} over S, with a leaf l labeled 1 if π(l)

contains {i, j}, otherwise 0;
4. T (¬A) = T(A)c;
5. if A is a disjunction, and

∨
i∈I Ai is the merged form of A then T(A) represents∨

i∈I Disj(T (Ai)).

If T is a k-evaluation for a set of formulas �, then the set of matchings Br(T(A))

can be considered as a space of truth-value assignments for A; thus if T (A) has all
its leaves labeled 1, we can think of A as a kind of “tautology” relative to this space.
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However, in contrast to the classical notion of tautology, this notion is not preserved
under classically sound inferences (this fact is the key to the lower bound argument).

Example 5.2 Let D = {1, 2, 3} and R = {4, 5}, and let � = {P14 ∨ P15,¬P15 ∨
¬P25, P14 ∨ ¬P25}. Then there is a 2-evaluation for � so that the first two formulas
in � have 1 on all their leaves, but the third formula does not, although it is a logical
consequence of the first two.

The following lemma shows that examples like this do not exist if the depth of a k-
evaluation is small enough relative to the size of the inference rules of the proof sys-
tem.

Lemma 5.3 Let F be a Frege system in which the size of the rules is bounded by
f , and P a proof in F in the language L(D, R), where S = D ∪ R, |R| = n. If T is
a k-evaluation for all the formulas in P and k ≤ n/ f , then for any line A in P ,

∀π(π ∈ Br(T(A)) ⇒ Disj(T (A))�π ≡ 1),

that is, T (A) has all of its leaves labeled 1.

Proof: The lemma is proved by induction on the number of lines in the proof P . Let

A1(B1/p1, . . . , Bm/pm), . . . , Ak(B1/p1, . . . , Bm/pm)

A0(B1/p1, . . . , Bm/pm)

be an instance of a rule of F , and assume that the lemma holds for all of the
premises of the inference. Let � be the set of formulas A(B1/p1, . . . , Bm/pm),
where A(p1, . . . , pm) is a subformula of some Ai. By assumption, |�| ≤ f ; let
M = {π1 ∪ · · · ∪ π j ∈ Mn : πi ∈ Br(T(Ci))}, where � = {C1, . . . , C j}. By Lemma
4.3, if πi ∈ Br(T(Ci)), then there is a π ∈ Mn so that πi ⊆ π. Let us abbreviate
Disj(T(A)) as D(A). Then for π ∈ M and A, B ∈ �,

1. D(A)�π ≡ 0 or D(A)�π ≡ 1;
2. D(0)�π ≡ 0 and D(1)�π ≡ 1;
3. if ¬A ∈ � then D(¬A)�π ≡ 1 ⇐⇒ D(A)�π ≡ 0;
4. if (A ∨ B) ∈ � then D(A ∨ B)�π ≡ 1 ⇐⇒ D(A)�π ≡ 1 or D(B)�π ≡ 1.

These equivalences follow from the definition of a k-evaluation and from Lemmas
4.3 and 4.4.

For any π ∈ M, define an assignment Vπ of truth-values to the formulas in �

by setting Vπ(Ci) = 1 if D(Ci)�π ≡ 1, Vπ(Ci) ≡ 0 if D(Ci)�π ≡ 0. The list of
equivalences above shows that Vπ respects the rules of classical logic. By Lemma
4.4, the premises of the inference are all assigned the value 1 by Vπ; since the rule
of inference is sound, the conclusion of the inference is also assigned 1 by Vπ.
Now let σ ∈ Br(T (A0(B1/p1, . . . , Bm/pm))). There is a π ∈ M extending σ, so
Vπ(A0(B1/p1, . . . , Bm/pm)) = 1, equivalently, D(A0(B1/p1, . . . , Bm/pm))�σ ≡
1, concluding the proof of the lemma. �
The next lemma shows that, relative to a k-evaluation, k < n, the pigeonhole tautol-
ogy PH Pn is a “contradiction.”
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Lemma 5.4 Let D ∪ R = S, |D| = n + 1, |R| = n, PH Pn = PH P(D, R). If T is
a k-evaluation for a set of formulas containing PH Pn, k < n − 1, then all the leaves
of T(PH Pn) are labeled 0.

Proof: The reduced form of PH Pn is the join of the following sequence of formulas:

1. (Pik ∧ Pjk), where i 	= j ∈ D, k ∈ R;

2. (Pki ∧ Pkj), where i 	= j ∈ R, k ∈ D;

3.
∧

k∈R ¬Pik, for i ∈ D;

4.
∧

i∈D ¬Pik, for k ∈ R.

By the definition of k-evaluation and Lemma 4.4, it is sufficient to prove for any for-
mula A in the above list that the leaves of T(A) are all labeled with 0.

For a formula of the first kind, this amounts to showing that the leaves of
T (¬Pik ∨ ¬Pjk) are all labeled 1. By Definition 5.1, T (¬Pik ∨ ¬Pjk) represents
Disj(T(¬Pik) ∨ Disj(T (¬Pjk)), that is, the matching disjunction containing all
terms of the form (Piq ∧ Prk), q 	= k, r 	= i, and all terms of the form (Pjq ∧ Prk),
q 	= k, r 	= j. Let l be a leaf of T(¬Pik ∨ ¬Pjk). Since |π(l)| < n − 1, there is a re-
striction extending π(l) that sets one of these terms to 1. It follows that π(l) must set
the disjunction to 1, so that l bears the label 1. The proof for formulas of the second
kind proceeds similarly.

For formulas of the third kind, we are required to show that the tree T =
T (

∨
k∈R ¬¬Pik) has all its leaves labeled 1. By Definition 5.1, T represents the

matching disjunction
∨{Pik : k ∈ R}. Let l be a leaf of T . Since |π(l)| < n − 1,

there is an extension π of π(l) where i ∈ V (π), so that
∨{Pik : k ∈ R}�π ≡ 1, hence∨{Pik : k ∈ R}�π(l) ≡ 1, showing that l must be labeled 1. For formulas of the fourth

kind, a symmetrical argument holds. �

If T is a k-evaluation of a set of formulas � in Ln and ρ ∈ Mn, then T�ρ is defined
to be the assignment of trees to formulas in ��ρ given by the definition: T(0) is the
tree with a single node labeled 0, while (T�ρ)(A�ρ) = T(A)�ρ if A�ρ is not the
constant 0. It follows from this definition that Disj((T�ρ)(A�ρ)) = Disj(T (A)�ρ)

for any formula A.

Lemma 5.5 Let T be a k-evaluation of a set of formulas � in Ln. If ρ ∈ Mn, then
T�ρ is a k-evaluation of ��ρ.

Proof: By induction on the complexity of a formula A ∈ �. If A is a constant or a
propositional variable, then the lemma is immediate. If A is a negated formula, then
the lemma follows by the third part of Lemma 4.8.

Finally, let A be a disjunction and
∨

i∈I Ai the merged form of A. By assumption,
T (A) represents

∨
i∈I Disj(T(Ai)), so by Lemma 4.8, T(A)�ρ represents

∨
i∈I

Disj(T (Ai))�ρ ≡
∨
i∈I

Disj(T(Ai)�ρ).

Hence, by the remark following the definition of T�ρ, the matching decision tree
T (A)�ρ represents

∨
i∈I Disj((T�ρ)(Ai�ρ)), completing the proof. �
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6 The switching lemma In this section we prove the appropriate switching lemma
by mapping the “bad” restrictions (those that result in a matching tree of large depth)
into a small set. We begin by defining a set of sequences used in defining the mapping.

Define Code(r, s) to be the set of all sequences β1, . . . , βk, where for each i,
βi ∈ {↑,∗}r \ {∗}r and there are exactly s occurrences of ↑ in the sequence.

Lemma 6.1 |Code(r, s)| ≤ (2r)s.

Proof: Given (β1, . . . , βk) ∈ Code(r, s), define a map f from {1, . . . , s} to
{1, . . . , r} × {0, 1} as follows. f (1) = (1, 0), and for i > 1, f (i) = ( j, b), where the
ith ↑ in β1, . . . , βk occurs in the jth place in some entry βl , and b is 0 or 1 depending
on whether the (i − 1)st ↑ occurs in βl or βl−1.

It is easy to see that a sequence (β1, . . . , βk) ∈ Code(r, s) is uniquely determined
by the map corresponding to it, so that this construction defines an injective mapping
from Code(r, s) into the set of all maps f : {1, . . . , s} → {1, . . . , r} × {0, 1}. �
For a given n, |D| = n + 1, |R| = n, S = D ∪ R, we define two sets of restrictions.
For l ≤ n, let

Ml
n = {ρ ∈ Mn : |R�ρ| = l},

and for s > 0, F a matching disjunction over S,

Badl
n(F, s) = {ρ ∈ Ml

n : |TreeS�ρ(F�ρ)| ≥ s}.

Lemma 6.2 Let F = C1 ∨ · · · ∨ Cm be an r-disjunction over D ∪ R = S, where
|D| = n + 1, |R| = n. Then there is a bijection from Badl

n(F, s) into
⋃

s/2≤ j≤s

Ml− j
n × Code(r, j) × [2l + 1]s.

Proof: Let ρ ∈ Badl
n(F, s); choose π to be the matching determined by the leftmost

path originating in the root of TreeS�ρ(F�ρ) that has length s.
Starting from F and π, we define three sequences by induction that are used to

define the bijection G:

1. D1, . . . , Dk, a subsequence of C1, . . . , Cm;
2. σ1, . . . , σk, a sequence of restrictions σi ⊆ δi, where Di = ∧ δi, and ρσ1, . . . , σi

∈ Mn;
3. π1, . . . , πk, a partition of π, where each πi, i < k, satisfies the conditions (a)

πi ∈ M(V (σi)) and (b) the restriction ρπ1, . . . , πi labels a path in TreeS�ρ
(F�ρ) ending in a boundary node.

Suppose that the sequences have been defined as far as πi−1, Di−1, σi−1, that
π1, . . . , πi−1 and σ1, . . . , σi−1 satisfy the stated conditions and that π1, . . . , πi−1 	= π.
Since ρπ1, . . . , πi−1 labels a path ending in a boundary node, it follows that there
must be a term D in F so that D�ρπ1, . . . , πi−1 	≡ 1, D�ρπ1, . . . , πi−1 	≡ 0, for oth-
erwise the path labeled by π would end at that node. Define Di to be the first such
term in F.
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Define σ′
i to be the unique minimal matching so that

Di�ρπ1, . . . , πi−1σ
′
i ≡ 1,

and let πi be the set of pairs in π that covers vertices in V(σ′
i ). In defining σi two

cases arise.

Case 1: π1, . . . , πi 	= π. Define σi to be σ′
i . In this case, both σi and πi label paths in

the full matching tree for V (σi) over S�σρ1, . . . , πi−1, showing that πi ∈ M(V (σi))

and that π1, . . . , πi labels a path in TreeS�ρ(F�ρ) ending in a boundary node. Since
the boundary node is not a leaf of the tree, it follows that πi 	= σi, so

Di�ρπ1, . . . , πi ≡ 0.

Case 2: π1, . . . , πi = π, so that πi = πk. Let p1, . . . , pt be the pairs constituting πk,
listed in the order they appear on the path. Each p j contains a vertex v j that is the first
vertex in V (σ′

i ) not in p1 ∪ · · · ∪ p j−1. Define q j to be the pair in V(σ′
i ) containing

v j, and let σi = {q1, . . . , qt}. In this second case, it is not guaranteed that

Dk�ρπ1, . . . , πk−1σk ≡ 1,

but only
Dk�ρπ1, . . . , πk−1σk 	≡ 0.

We need to verify that ρσ1, . . . , σi ∈ Mn. By assumption, ρσ1, . . . , σi−1 ∈ Mn. Let
us assume in addition that ρσ1, . . . , σi 	∈ Mn, so that there are a, b, c ∈ S, b 	= c where
{a, b} ∈ ρσ1, . . . , σi−1, {a, c} ∈ σi. Since Di�ρ 	≡ 0, {a, b} 	∈ ρ, so that {a, b} ∈ σ j

for some j < i. Since by assumption π j ∈ M(V(σ j)), and Di�ρπ1, . . . , πi−1 	≡ 0,
it follows that {a, b} ∈ π j. This contradicts the assumption that a ∈ V (σi), showing
that ρσ1, . . . , σi ∈ Mn.

We note here a fact used later in proving that G is a bijection: for any i ≤ k, the
set of pairs ρπ1, . . . , πi−1σi, . . . , σk is in Mn. If the set is not in Mn, then because
ρπ1, . . . , πk, ρσ1, . . . , σk ∈ Mn, there must be p, q where 1 ≤ p ≤ i − 1 < q ≤ k so
that for some a, b, c, b 	= c, {a, b} ∈ πp and {a, c} ∈ σq. However, if {a, b} ∈ πp then
a 	∈ S�ρπ1, . . . , πi−1, contradicting {a, c} ∈ σq.

Before defining the map G it is convenient to introduce a special ordering of
the 2l + 1 vertices unset by the restriction ρ. The new ordering is determined by the
original ordering of the vertices and the sequence of restrictions σ1, . . . , σk. Let σ =
σ1, . . . , σk. To avoid confusion between the original ordering and the new ordering,
we shall refer to the original order as ordering by size, and the new order as ordering
by index and we shall refer to the position of an element in the new ordering as its
index. The index ordering is defined as follows: order the 2l + 1 vertices unset by ρ

so that the vertices set by σ are listed first according to the order V (σ1) < · · · < V (σk),
then by size within each set V(σi); next, the remaining vertices unset by ρσ are listed
by size, in the index positions 2 j + 1, . . . , 2l + 1, where j = |σ|.

The map G(ρ) = 〈G1(ρ), G2(ρ), G3(ρ)〉 is now defined as follows.

1. G1(ρ) = ρσ.
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2. For i = 1, . . . , k, let βi be the vector of length r so that:

βi( j) =
{ ↑ if σi sets the jth variable in Di

∗ otherwise.

Then G2(ρ) is defined as the sequence 〈β1, . . . , βk〉.
3. G3(ρ) ∈ [2l + 1]s is defined as follows.

(a) List the elements of π according to the index ordering, where for each
pair in π the element with the lower index determines the position of the
pair.

(b) From the ordered list of the pairs in π, create a new list by recording for
each pair the index of the element in the pair with the higher index. This
new list is G3(ρ).

Let j = |ρ|. We need to show that G(ρ) ∈ Ml− j
n × Code(r, j) × [2l + 1]s,

where s/2 ≤ j ≤ s. The fact that ρσ ∈ Ml− j
n was proved above. The definition of

σi ensures that G2(ρ) ∈ Code(r, j), and G3(ρ) ∈ [2l + 1]s by definition. For i < k,
πi ∈ M(V (σi)), so that |σi| ≤ |πi| ≤ 2|σi|, while for i = k, |σi| = |πi| holds by con-
struction. Thus |π|/2 ≤ |σ| ≤ |π|, that is, s/2 ≤ j ≤ s.

It remains to show that G is a bijection. We prove this by showing how to re-
construct the restriction ρ from G(ρ) by successively recovering the elements of the
three sequences used in defining G(ρ).

At the beginning of the reconstruction process, we are given only the triple G(ρ)

and the r-disjunction F. From G1(ρ) we can find the set of vertices unset by ρσ, and
hence the indices of these vertices.

Let us suppose that the reconstruction process has been carried out as far as
stage i − 1; at this stage we have found the terms D1, . . . , Di−1, the restrictions
σ1, . . . , σi−1, π1, . . . , πi−1 and ρπ1, . . . , πi−1σi, . . . , σk. In addition, we have found
the indices of all the vertices in V(σ1) ∪ · · · ∪ V (σi−1).

We now describe stage i of the reconstruction process. If C j is a term in F that
occurs earlier in F than Di, then

C j�ρπ1, . . . , πi−1 ≡ 0,

hence
C j�ρπ1, . . . , πi−1σi, . . . , σk ≡ 0.

On the other hand, if i < k then

Di�ρπ1, . . . , πi−1σi ≡ 1,

while
Di�ρπ1, . . . , πk−1σk 	≡ 0.

Thus in either case,
Di�ρπ1, . . . , πi−1σi, . . . , σk 	≡ 0,

so that Di can be found as the first term in F not set to 0 by the restriction ρπ1, . . . ,

πi−1 σi, . . . , σk. Having found Di, we can consult the entry βi in the sequence
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G2(ρ) = 〈β1, . . . , βk〉 to find the variables in Di that are set by σi, and hence find
σi itself. We can now find the indices of the vertices in V (σi) by extending the list of
indices already compiled for σ1, . . . , σi−1. It remains to reconstruct πi using G3(ρ).
Every pair in πi must contain at least one vertex in V (σi), hence for every such pair
we can find the vertex in the pair with lower index. The other vertex in the pair (with
the higher index) must either be in V (σi) or in the set of vertices unset by ρσ. In ei-
ther case, we can find the other vertex in the pair by consulting appropriate entries in
G3(ρ)—these entries follow immediately after the entries corresponding to pairs in
π1, . . . , πi−1. Thus we can reconstruct πi. Lastly, by replacing σi by πi, we can find
the restriction ρπ1, . . . , πi−1πiσi+1, . . . , σk.

Finally, having found all of σ1, . . . , σk, we can find ρ by removing all of the pairs
in σ1, . . . , σk from ρσ1, . . . , σk. This completes the proof that G is a bijection. �

Example 6.3 To illustrate the definitions in the above proof, we continue Exam-
ple 4.6. Given D, R, S, F, ρ as in that example, and setting s = 3, we have: π =
{{2, 8}, {3, 7}, {5, 9}}, D1 = (P16 ∧ P27), σ1 = {{2, 7}}, π1 = {{2, 8}, {3, 7}}, D2 =
(P16 ∧ P59), σ2 = {{5, 9}}, π2 = {{5, 9}}. Hence, G1(ρ) = {{1, 6}, {2, 7}, {5, 9}},
G2(ρ) = 〈↑ ∗,↑ ∗〉, G3(ρ) = 〈g, e, d〉, where the index ordering is 〈2, 7, 5, 9, 3, 4, 8〉,
with the corresponding indices a, b, c, d, e, f, g.

In the next lemma we use the notation am for the falling factorial power a(a −
1), . . . , (a − m + 1).

Lemma 6.4 (The switching lemma) Let F be an r-disjunction over D ∪ R, |D| =
n + 1, |R| = n. Let l ≥ 10, and set p = l/n. If r ≤ l and p4n3 ≤ 1/10 then

|Badl
n(F, 2s)|
|Ml

n|
≤ (11p4n3r)s.

Proof: By Lemma 6.2, it is sufficient to bound the ratio∣∣∣⋃s≤ j≤2s Ml− j
n × Code(r, j) × [2l + 1]2s

∣∣∣
|Ml

n|
. (1)

We begin by estimating the ratio |Ml− j
n |/|Ml

n|. A restriction in Ml
n is determined by

the following process: pick l elements in R, then for each of the n − l remaining ver-
tices in R in turn choose the element of D with which it is matched. Thus

|Ml
n| =

(
n
l

)
(n + 1)n−l

= nl (n + 1)n−l

l!
. (2)

Using (2) and the recursion equation am+n = am (a − m)n, we estimate

|Ml− j
n |

|Ml
n|

= nl− j (n + 1)n−l+ j l!
(l − j)! nl (n + 1)n−l

= (l + 1) j l!

(l − j)! (n − l + j) j
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= (l + 1) j l j

(n − l + j) j

≤
(

l(l + 1)

(n − l)

) j

. (3)

Hence, using (3) and the estimate of |Code(r, j)| from Lemma 6.1 we can bound the
ratio (1) from above by the sum

∑
s≤ j≤2s

(
l(l + 1)

n − l

) j

(2r) j(2l + 1)2s

= (2l + 1)2s
∑

s≤ j≤2s

(
2l(l + 1)r
(n − l)

) j

. (4)

To bound this last sum, we begin by estimating

2l(l + 1)r
(n − l)

≤ 2l2(l + 1)

(n − l)

= l3

n
· 2(1 + 1/ l)

(1 − p)

≤ p4n3

l
· 2.2

0.9999
< 0.0221, (5)

using the inequalities r ≤ l, p4n3 ≤ 1/10 and l ≥ 10. Hence the sum in (4) is bounded
by the sum of a geometric series with ratio < 0.0221, so that it is less than 1.03 times
its largest term. This provides us with the estimate

|Badl
n(F, 2s)|
|Ml

n|
≤ 1.03(2l + 1)2s

(
2l(l + 1)r
(n − l)

)s

= 1.03

(
2(2l + 1)2l(l + 1)r

(n − l)

)s

. (6)

To put this inequality in more usable form, we bound the ratio in the RHS.

2(2l + 1)2l(l + 1)r
(n − l)

≤ 8(l + 1)3lr
(n − l)

≤ l4r
n

· 8(1 + 1/ l)3

(1 − p)

≤ 10.65 l4r
n

. (7)

This last inequality together with (6) yields the bound

|Badl
n(F, 2s)|
|Ml

n|
≤ 1.03(10.65p4n3r)s

< (11p4n3r)s, (8)

completing the proof of the lemma. �
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7 Lower bounds for pigeonhole formulas In this section, we prove a lemma show-
ing that if a set of bounded depth formulas of Ln is subjected to a random restriction,
then, provided the set is not too large, the set of restricted formulas has associated
decision trees of small depth. From this result the lower bound on the size of propo-
sitional proofs follows by earlier lemmas.

Lemma 7.1 Let d be an integer, 0 < ε < 1/5, 0 < δ < εd and � a set of formulas of
Ln of depth ≤ d, closed under subformulas. If |�| < 2nδ

, q = �nεd� and n is sufficiently
large, then there exists ρ ∈ Mq

n so that there is a 2nδ-evaluation of ��ρ.

Proof: The proof is by induction on d. For d = 0, the only formulas in � are propo-
sitional variables and constants. For any such formula A, |TreeS(A)| ≤ 2, so that we
can set ρ = ∅.

Assume that the Lemma holds for d. Let � be a set of formulas of depth d +
1, closed under subformulas, |�| < 2nδ

, where 0 < δ < εd+1. Let � be the set of
formulas in � of depth ≤ d. Since 0 < δ < εd+1 < εd, by the induction hypothesis,
there is ρ ∈ Mq

n , q = �nεd�, for which there is a 2nδ-evaluation T of ��ρ.
Let A be a disjunction in � of depth d + 1, and

∨
i∈I Ai its merged form. Let

q′ be �nεd+1�. In Lemma 6.4, set D −→ D�ρ, R −→ R�ρ, n −→ �nεd� = q, l −→
�nεd+1� = q′, r −→ �2nδ�, s −→ nδ. For n sufficiently large, p4�nεd�3 < n−εd/5 ≤
1/10, where p = l/n, and �2nδ� ≤ �nεd+1� since δ < εd+1. Thus the conditions for
Lemma 6.4 hold, so that the ratio

|Badq′
q (

∨
i∈I Disj(T (Ai�ρ)), 2nδ)|

|Mq′
q |

is bounded by (11n−εd/5�2nδ�)nδ

. Since δ < εd+1 < εd/5, for n sufficiently large,
11n−εd/5�2nδ� < 1/2, so that the above ratio is bounded by 2−nδ

. It follows that there
is a restriction ρ′ ∈ Mq′

q so that for every disjunction A ∈ � of depth d + 1,

|TreeS�ρρ′ (
∨
i∈I

Disj(T (Ai�ρ))�ρ′)| < 2nδ.

Set ρ′′ = ρρ′; by construction, ρ′′ ∈ Mq′
n . We wish to show that there is a 2nδ-

evaluation T ′′ of ��ρ′′. By Lemma 5.5, T ′ = T�ρ′ is a 2nδ-evaluation of ��ρ′′; we
define T ′′ by extending T ′ to formulas of depth d + 1. For A a negated formula of
depth d + 1, set T ′′(A�ρ′′) = (T ′(A�ρ′′))c. If A is a disjunction of depth d + 1, and∨

i∈I Ai its merged form of A, then set

T ′′(A�ρ′′) = TreeS�ρ′′ (
∨
i∈I

Disj(T(Ai�ρ))�ρ′),

where
∨

i∈I Ai is the merged form of A. By definition, T ′′(A�ρ′′) represents
∨

i∈I
Disj(T(Ai�ρ))�ρ′. By Lemma 4.8 and the definition of T ′′,∨

i∈I

Disj(T(Ai�ρ))�ρ′ ≡
∨
i∈I

Disj(T ′′(Ai)),

so that T ′′(A) represents
∨

i∈I Disj(T ′′(Ai)). This completes the proof that T ′′ is a
2nδ-evaluation of ��ρ′′. �
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Theorem 7.2 Let F be a Frege system and d > 4. Then for sufficiently large n
every depth d proof in F of PH Pn must have size at least 2nδ

, for δ < (1/5)d.

Proof: Let the rules of F have size bounded by f , 0 < δ < (1/5)d, and let
A1, . . . , At be a proof in F of depth d and size ≤ 2nδ

.
Choose ε so that ε < 1/5, δ < εd. By Lemma 7.1, there exists ρ ∈ Mq

n , q =
�nεd�, and a 2nδ-evaluation T of ��ρ, where � is the set of subformulas in the proof
A1, . . . , At. Then A1�ρ, . . . , At�ρ is a proof in F in the language L(D�ρ, R�ρ).

Since δ < εd and n is sufficiently large, 2nδ ≤ nεd
/ f , so by Lemma 5.3, for ev-

ery step Ak in the proof, T (Ak�ρ) has all its leaves labeled 1. On the other hand,
PH Pn�ρ ≡ PH P(D�ρ, R�ρ), so by Lemma 5.4, if PH Pn were the last line At of
the proof, all the leaves of T(PH Pn�ρ) would be labeled 0. It follows that A1, . . . , At

cannot be a proof of PH Pn. Hence, any proof in F of PH Pn must have size at least
2nδ

. �
The lower bound originally proved by Ajtai [1] is superpolynomial rather than expo-
nential. The essential difference between Ajtai’s original proof and the proof given
here is as follows. The original proof has essentially the same structure as the present
proof, but makes use of a more restricted class of complete decision trees. The class
of trees appropriate to the original proof is the class of all full matching trees over
a small set (with an appropriate sense of “small”). With this more restricted class of
matching trees, it is not possible to prove exponential lower bounds. (For a proof, see
the concluding section of [4].)

8 Lower bounds for graph formulas The techniques used in the proof of the main
theorem above can be used for several other classes of formulas, for example, for
classes of formulas based on other matching principles. In the present section, we
illustrate this by sketching a proof of a lower bound for the case of tautologies based
on a graphical construction; this class of tautologies was first defined by Tseitin [15].

Let G be a finite undirected graph, in which the vertices are labeled with 0 or 1,
and the edges with distinct literals. Then a set of clauses Clauses(G) associated with
G is defined as follows. For each vertex v ∈ G, let Clauses(v) be the set of clauses
constituting the conjunctive normal form of the modulo 2 equation p1 ⊕· · ·⊕ pk = c,
where p1, . . . , pk are the literals labeling the edges attached to v, and c is the label on
v. Then Clauses(G) is the union of all the clause sets Clauses(v) for v a vertex in
G. If the sum of the vertex labels of G is odd, then Clauses(G) is inconsistent. (This
follows from the fact that if we add the left-hand sides of all the modulo 2 equations
associated with the vertices of G, the sum is zero, because each literal appears twice
in the sum.)

The size of Clauses(v) is exponential in the degree of v, so that if the graph
G is of large degree, the size of Clauses(G) can be exponential in the size of G.
In the present section, we shall use sets of clauses associated with complete graphs.
Cook [6] proposed a way to reduce the size of the associated sets of clauses by intro-
ducing extra variables. Let Kn be the complete graph on n = 2m + 1 vertices. Let the
vertex set X of Kn be {0, 1, . . . , n − 1} and each edge {i, j} be labeled with a variable
Pij. We introduce a set of extra variables {Qi

0, Qi
1, . . . , Qi

n−3} for each vertex i ∈ X
as follows: we let Qi

0 ≡ Pi,i+1 ⊕ Pi,i+2 and Qi
j ≡ Qi

j−1 ⊕ Pi,i+ j+2 (1 ≤ j ≤ n − 3)
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where + is modulo n addition. We define Cl(i) to be the set of clauses comprising the
conjunctive normal form of the set of above equations together with Qi

n−3 ≡ 1 which
expresses the fact that the label on vertex i is 1. For any assignment of truth values to
Pi,i+1, . . . , Pi,i+n−1 satisfying Cl(i), Qi

j has the same value as Pi,i+1 ⊕· · ·⊕ Pi,i+ j+2.
Let Cln be the union of all the sets Cl(i) for i ∈ X a vertex in Kn. Since n is odd, then
Cln is contradictory. Finally, let Graphn be the tautology that results by negating all
the clauses in Cln and then forming their disjunction; we will use Graphn in the form∨

i∈X

(¬(Qi
0 ∨ Pi,i+1 ∨ ¬Pi,i+2) ∨ ¬(Qi

0 ∨ ¬Pi,i+1 ∨ Pi,i+2)∨
¬(¬Qi

0 ∨ Pi,i+1 ∨ Pi,i+2) ∨ ¬(¬Qi
0 ∨ ¬Pi,i+1 ∨ ¬Pi,i+2))∨∨

i∈X

n−3∨
j=1

¬(Qi
j ∨ Qi

j−1 ∨ ¬Pi,i+ j+2) ∨ ¬(Qi
j ∨ ¬Qi

j−1 ∨ Pi,i+ j+2)∨

¬(¬Qi
j ∨ Qi

j−1 ∨ Pi,i+ j+2) ∨ ¬(¬Qi
j ∨ ¬Qi

j−1 ∨ ¬Pi,i+ j+2)) ∨
∨
i∈X

¬Qi
n−3

where
∨

denotes repeated binary ∨. Graphn has size O(n2) and depth 4.
The restrictions used in the case of the graph clauses are determined by match-

ings, just as in the case of the pigeonhole formulas. The definitions of §3 above can
be taken over with essentially no change; the only alteration required is that the def-
initions are to be taken as referring to the graph Kn rather than the complete bipar-
tite graph K(n + 1, n). In particular, the concepts of matching terms and matching
disjunction are defined just as in §3. The basic definitions and lemmas on matching
decision trees in §4 can also be used here without alteration, except that the space of
mappings is based on Kn rather than K(n + 1, n).

The definition of k-evaluation in §5 can be used as given, with added evaluations
for the extension variables Qi

j. We let T(Qi
j) be the full matching tree for {i}, with a

leaf l labeled 1 if π(l) is {i, i + 	 + 2} for −1 ≤ 	 ≤ j, otherwise l is labeled 0. The
proof of Lemma 5.3 goes through exactly as before. The Lemma corresponding to
Lemma 5.4 can be stated as follows.

Lemma 8.1 Let n = 2m + 1. If T is a k-evaluation for a set of formulas closed un-
der subformulas and containing Graphn, and k < m, then all the leaves of
T (Graphn) are labeled 0.

Proof: The merged form of Graphn is a disjunction of the negations of the formulas
of following forms.

1. Qi
0 ∨ Pi,i+1 ∨ ¬Pi,i+2, for i ∈ X.

2. Qi
0 ∨ ¬Pi,i+1 ∨ Pi,i+2, for i ∈ X.

3. ¬Qi
0 ∨ Pi,i+1 ∨ Pi,i+2, for i ∈ X.

4. ¬Qi
0 ∨ ¬Pi,i+1 ∨ ¬Pi,i+2, for i ∈ X.

5. ¬Qi
j ∨ ¬Qi

j−1 ∨ ¬Pi,i+ j+2, where 1 ≤ j ≤ n − 3, i ∈ X.

6. Qi
j ∨ Qi

j−1 ∨ ¬Pi,i+ j+2, where 1 ≤ j ≤ n − 3, i ∈ X.

7. Qi
j ∨ ¬Qi

j−1 ∨ Pi,i+ j+2, where 1 ≤ j ≤ n − 3, i ∈ X.

8. ¬Qi
j ∨ Qi

j−1 ∨ Pi,i+ j+2, where 1 ≤ j ≤ n − 3, i ∈ X.

9. Qi
n−3, for i ∈ X.
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By the definition of k-evaluation and Lemma 4.4, it is sufficient to prove for any for-
mula A in the above list that the leaves of T(A) are all labeled with 1.

For a formula of the first kind, by Definition 5.1 and the evaluations for the exten-
sion variables, T(Qi

0 ∨ Pi,i+1 ∨ ¬Pi,i+2) represents Disj(T(Qi
0)) ∨ Disj(T(Pi,i+1))

∨Disj(T(¬Pi,i+2)). By definition, Disj(T(Qi
0))= Pi,i+1∨ Pi,i+2, Disj(T(Pi,i+1))=

Pi,i+1 and Disj(T(Pi,i+2)) = Pi,i+2. Hence

Disj(T(¬Pi,i+2)) =
∨

{(Pik ∧ Pl,i+2) : k 	= l; k, l 	∈ {i, i + 2}}.

Thus T(Qi
0 ∨ Pi,i+1 ∨ ¬Pi,i+2) represents the matching disjunction

Pi,i+1 ∨ Pi,i+2 ∨ Pi,i+1 ∨
∨

{(Pik ∧ Pl,i+2) : k 	= l; k, l 	∈ {i, i + 2}}.

If l is a leaf of T(Qi
0 ∨ Pi,i+1 ∨ ¬Pi,i+2), then |π(l)| < m, so there is a restriction

extending π(l) that sets one of these terms to 1. It follows that π(l) must set the dis-
junction to 1, so that l bears the label 1. The proof for formulas of the kinds from the
second to the fourth proceeds similarly.

For a formula of the fifth kind, T (¬Qi
j ∨ ¬Qi

j−1 ∨ ¬Pi,i+ j+2) represents

Disj(T(¬Qi
j)) ∨ Disj(T (¬Qi

j−1)) ∨ Disj(T(¬Pi,i+ j+2)). Since Disj(T(Qi
j)) =

Pi,i+1 ∨ · · · ∨ Pi,i+ j+2, Disj(T (¬Qi
j)) = Pi,i+ j+3 ∨ · · · ∨ Pi,i+n−1. For similar rea-

sons, Disj(T (¬Qi
j−1)) = Pi,i+ j+2 ∨ · · · ∨ Pi,i+n−1. Hence T (¬Qi

j ∨ ¬Qi
j−1 ∨

¬Pi,i+ j+2) represents the matching disjunction

Pi,i+ j+2 ∨ · · · ∨ Pi,i+n−1 ∨
∨

{(Pik ∧ Pl,i+ j+2) : k 	= l; k, l 	∈ {i, i + j + 2}}.

Since |π(l)| < m for l a leaf of T(¬Qi
j ∨ ¬Qi

j−1 ∨ ¬Pi,i+ j+2), there is a restriction
extending π(l) that sets one of these terms to 1. It follows that π(l) must set the dis-
junction to 1, so that l bears the label 1. The cases from the sixth kind to the eighth
kind follow by exactly similar arguments.

For a formula of the ninth kind, it is true by the definition of the evaluation. �

Let Mn be the set of all partial 1-to-1 maps from X to X where X is the vertex set of
the complete graph Kn, for n = 2m + 1. Let V (h) = dom(h) ∪ rng(h) for h ∈ Mn.
For l ≤ m define

Ml
n = {ρ ∈ Mn : V (ρ) = 2(m − l)}.

The lemmas corresponding to the first two lemmas of §6 above carry through to the
case of the graph formulas, with the single change that the lemma corresponding to
Lemma 6.2 must be rephrased to refer to the new space of matchings. We can then
state the switching lemma as follows.

Lemma 8.2 Let F = C1 ∨ · · · ∨ CH be an r-disjunction over X. Then there is a 1-1
map from Badl

n(F, s) into

⋃
s/2≤ j≤s

Ml− j
n × Code(r, j) × [2l + 1]s.
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Proof: The proof is similar to the proof of Lemma 6.2. We sketch the proof here.
Let ρ ∈ Badl

n(F, s) and let π be the map determined by the leftmost path originating
in the root of TreeS�ρ(F�ρ) that has length s. We will construct the image of ρ by
defining a partition π1, π2, . . . , πk of π.

Suppose that π1, π2, . . . , πi−1 ⊆ π have already been defined and π1, π2, . . . ,

πi−1 	= π. Then by the definition of TreeS�ρ(F�ρ) there is a term C ∈ {C1, C2, . . . ,

CH} such that C�π1π2, . . . , πi−1ρ 	≡ 0. Then we let Cνi be the first such term. Let
Ki = V (Cνi�π1π2, . . . , πi−1ρ) and let σi be the unique map that satisfies Cνi�π1π2,

. . . , πi−1ρ. Let πi be the portion of π that touches Ki. Then two cases arise.

Case 1: If π1π2, . . . , πi 	= π then by the construction of TreeS�ρ(F�ρ), π1π2, . . . ,

πi touches all the vertices touched by σi. Thus Cνi�π1π2, . . . , πiρ ≡ 0.

Case 2: If π1π2, . . . , πi = π, i = k. Then let p1, . . . , pt be the pairs constituting πk,
listed in the order they appear on the path. Each p j contains a vertex v j that is the first
vertex in V (σ′

i ) not in p1 ∪ · · · ∪ p j−1. Define q j to be the pair in V(σ′
i ) containing

v j, and let σi = {q1, . . . , qt}.
For each σi we define a corresponding string βi based on the fixed ordering of the
variables in term Cνi by letting the jth component of βi be ↑ if and only if the jth
variable in Cνi is set by σi. Since Cνi is not empty, there is at least one ↑ in βi. Thus
(β1, . . . , βk) ∈ Code(r, j). Clearly ρσ1, . . . , σk ∈ M	− j

n . We let the image of ρ be
〈ρσ1, . . . , σk, (β1, . . . , βk), δ〉 where δ ∈ [2	+ 1]s encoding the relationship between
σi and πi. We number the 2 j vertices in V (σ) with 1, . . . , 2 j in the order V (σ1) <

V (σ2) < · · · < V(σk) and the vertices unset by ρσ with 2 j + 1, . . . , 2	 + 1. Then we
list the pairs in πi in the order of their smallest numbered elements in V (σi). Thus
we use the vector δ to store the numbers of the other vertices of the pairs in π.

Now we show the map is 1-1 by recovering ρ from its image. We do this by
induction on i. Assume that we have already recovered π1, π2, . . . , πi−1, σ1, σ2, . . . ,

σi−1. Then we know ρπ1, . . . , πi−1σi, . . . , σk. We can recover νi as the index of the
first term of F that is not set to 0, since for i < k, Cνi�ρπ1π2, . . . , πi−1σi ≡ 1, for
i = k, Cνi�ρπ1π2, . . . , πk−1σk 	≡ 0 and C j�ρπ1π2, . . . , πi−1σi ≡ 0 for all j < νi.
This is also true when σi+1, . . . , σk is appended to the restriction. Once we obtain νi,
we recover σi by checking Cνi and βi. Then by examining the entries of δ associated
with each of the vertices in V(σi) we obtain πi. After obtaining all the σi, we can
recover ρ. �

Lemma 8.3 (The matching switching lemma) Let F be an r-disjunction over X,
|X| = 2m + 1. If r ≤ l, p4n3 ≤ 1/10 and l ≥ 10, then

|Badl
n(F, 2s)|
|Ml

n|
≤ (21p4m3r)s.

Proof: By Lemma 8.2, it is sufficient to bound the ratio

∣∣∣⋃s≤ j≤2s Ml− j
n × Code(r, j) × [2l + 1]2s

∣∣∣
|Ml

n|
. (9)
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We begin by estimating the ratio |Ml− j
n |/|Ml

n|. A restriction in Ml
n is determined by

the following process: choose 2(m − l) elements from X, then choose a matching
that matches these 2(m − l) elements. Thus

|Ml
n| =

(
2m + 1

2(m − l)

)
(2(m − l))!
(m − l)!2m−l

= (2m + 1)!
(m − l)!(2l + 1)!2m−l

. (10)

Using (10) we estimate

|Ml− j
n |

|Ml
n|

= (2l + 1)2 j

(m − l + j) j2 j
≤

(
(2l + 1)2

2(m − l)

) j

. (11)

Hence, using (11) and the estimate of |Code(r, j)| from Lemma 6.1 we can bound the
ratio (9) from above by the sum

∑
s≤ j≤2s

(
(2l + 1)2

2(m − l)

) j

(2r) j(2l + 1)2s

= (4l2(1 + 1/2l)2)s
∑

s≤ j≤2s

(
4l2(1 + 1/2l)2r

m − l

) j

≤ (4l2e1/ l )s
∑

s≤ j≤2s

(
4l2e1/ lr
m − l

) j

. (12)

Since r ≤ l, p4n3 ≤ 1/10 and l ≥ 10, for p = l/m we have

4l2e1/ lr
m − l

≤
(

4e1/10

1 − p

)(
l3

m

)
< 4.421

(
p4m3

m

)
≤ 0.0421.

Hence the sum in (12) is bounded by the sum of a geometric series with ratio < 0.0421
so that it is less than 1.05 times its largest term. This provides us with the estimate

|Badl
n(F, 2s)|
|Ml

n|
≤ 1.05(4l2e1/10)s

(
4l2e1/10r

m − l

)s

=
(

16.8e1/5 p4m3r
1 − p

)s

< (21p4m3r)s,

and completes the proof of the lemma. �

Lemma 8.4 Let d be an integer, 0 < ε < 1/5, 0 < δ < εd and � a set of formu-
las of Ln of depth ≤ d, closed under subformulas. If |�| < 2mδ

, q = �mεd� and m is
sufficiently large, then there exists ρ ∈ Mq

n so that there is a 2mδ-evaluation of ��ρ.

Proof: The proof of the lemma is similar to that of Lemma 7.1; there is only a slight
difference of the probability in the switching lemma. �
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Theorem 8.5 Let F be a Frege system and d > 4. Then for sufficiently large m
every depth d proof in F of Graphn must have size at least 2mδ

, for δ < (1/5)d.

Proof: The proof follows the same argument as in the proof of Theorem 7.2. �

9 Open problems The techniques used to prove lower bounds expounded in the
earlier sections of this paper are quite powerful, but there appear to be difficulties in
extending them to more general situations. In this final section, a few open problems
are stated that seem to require extensions of the methods used here.

In Urquhart [16], it is shown that there is a family {Gn} of bipartite expander
graphs of bounded degree so that the sets of clauses Clauses(Gn) require exponen-
tially long refutations in the resolution proof system. Let Taut(Gn) be the corre-
sponding tautologies formed by negating all the clauses in Clauses(Gn) and then
forming their disjunction.

Problem 9.1 Do the tautologies Taut(Gn) require proofs of superpolynomial size
in a bounded depth Frege system?

The problem in adapting the current methods to the case of the tautologies based on
the graphs Gn lies in the fact that the application of a restriction to a graph in general
simplifies the graph considerably. By contrast, in the case of the graphs Kn+1,n and
Kn, the application of a restriction results in a graph of the same type on a smaller
vertex set.

In [5], Chvátal and Szemerédi generalized the argument of [16] to show that a
random set of clauses, provided it is not too large, is both unsatisfiable and requires
exponentially large resolution refutations. To be precise, Chvátal and Szemerédi de-
fine the random family of m clauses of size k over n variables to be a family of clauses
defined by picking m samples with replacement from the family of all clauses of size
k in n variables. Their theorem is then as follows.

Theorem 9.1 For every choice of positive integers c and k such that k ≥ 3 and
c2−k ≥ 0.7, there is a positive number ε such that, with probability tending to 1 as n
tends to infinity, the random family of cn clauses of size k over n variables is unsat-
isfiable and its resolution complexity is at least (1 + ε)n.

It seems likely that progress with the first problem would also allow a generalization
similar to the preceding theorem.

Problem 9.2 Can the theorem of Chvátal and Szemerédi be generalized to
bounded depth Frege systems?
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