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Dual-Intuitionistic Logic
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Abstract The sequent systebrDJ is formulated using the same connectives

as Gentzen’s intuitionistic sequent systed but is dual in the following sense:

(i) wheread_J is singular in the consequemtPJ is singular in the antecedent;

(i) whereasL J has the same sentential counter-theorems as clagdfchlut

not the same theoremksPJ has the same sentential theoremd &sbut not

the same counter-theorems. In particulaJ does not reject all contradic-
tions and is accordingly paraconsistent. To obtain a more precise mapping, both
LJ andL DJ are extended by adding a “pseudo-difference” operat@rhich

is the dual of intuitionistic implication. Cut-elimination and decidability are
proved for the extended systemnd™ andLDJ™, and a simply consistent but
w-inconsistent Set Theory with Unrestricted Comprehension Schema based on
LDJ is sketched.

1 Introduction Intuitionistic logic differs from classical logic most notably in not
affirming every instance oA v — A, the classical Law of Excluded Middle. It has ac-
cordingly been advanced as more appropriate for reasonimgamplete situations,

where for some sentenck neither A nor its negation-A holds. The intuitionistic
sequent systerinJ of Gentzen[f] is obtained by restricting sequents of the classical
sequent systerhK to being (at most) singular in the consequent. It follows from a
well-known result of Glivenkd4] thatL J andL K share the same sentential counter-
theorems, i.e., sentenc@siot containing quantifiers such that the sequeht (with

empty consequent) is derivable; they do not, of course, share the same sentential the-
orems.

It is possible to obtain @ual-intuitionistic sequent system by restricting se-
guents oL K instead to being (at most) singular in the antecedent. The resulting logic
then has the dual property of sharing all sentential theorerm¥oivhile not shar-
ing all counter-theorems. In particular, not every contradichoR —A is rejected,
which indicates that such a logic should be more appropriate than either classical or
intuitionistic logic for reasoning imnconsistent situations, where for some sentence
Aboth Aand its negatior- A hold. Moreover, since the sequeh& — A+ Bis also
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rejected, dual-intuitionistic logic can be used as the basis for nontrivial inconsistent
theories and is therefore paraconsistent.

Such sequent systems have been constructed in CzdBinakd Goodmarf].
The former takes a purely proof-theoretic approach, whereas the latter proceeds by
considering Brouwerian algebras (the algebraic duals of intuitionistic Heyting alge-
bras) and moves on to a similarly proof-theoretic treatment. Although both offer se-
guent systems which are (at most) singular in the antecedent, neither uses exactly
Gentzen’s original connectives &;,, O, and—, and quantifier and3. Czermak’s
system lacks rules fap and3; Goodman’s uses &y, V, and3, as well as a connec-
tive = representing “pseudo-difference” and a sentential con3taionsequently,
it is not immediately clear in what exact sense each is dual to intuitionistiaVe
begin by presenting a sequent systeJ which is singular in the antecedent and
which employs exactly Gentzen'’s connectives and quantifiers.

2 ThesystemLDJ The systeniDJ has the following components:

Basic Sequents: al sequents of the fornA - A

A 'HA

Structural Rules A a (1NH) FEa A (FThin
B reony  LERABS iy
' ?,l_AA’gl— ® (Cut)

Connective Rules: ﬁ &r) ﬁ (& F)
% EV % (Fv)
l_AAD’ g I—BA|,_G()9 oF)

% (=2) % (+2)
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Fak A I'HA Fa

Quantifier Rules. VxFxF A V) ' A, VXFx (=)
FakF A ' A, Fa

IXFXE A EF) '~ A, 3IxFx =3

Restrictionson variables. In the rules(- V) and (3 ), the object variabla
must not occur in the lower sequents (i.e.JinA, or Fx).

Most of the rules of. DJ require no comment, as they are simply the result of restrict-
ing the rules of Gentzen'’s classical sequent sydt&nrto being (at most) singular in
the antecedent. The only exception is the pair of rghes). Intheir place, Gentzen’s
LK employs a single rule, the restricted version of which would be:

AF-A,B ,
A, A5B ()
The essential difference betweén>) and(->') is that in the latter rule both con-
stituentsA and B of the principal formulaA > B are explicit in the upper sequent,
whereas in each of the former pair of rules only one constituent is explicit. Follow-
ing Curry [1], we will call connective rules such &s2’) “Ketonen rules” and those
such ag+>) “non-Ketonen rules.”

Classical logic can be formulated indifferently using the Ketonen or non-Keto-
nen rules for introducing & into antecedent sequencesvand > into consequent
sequences. The difference becomes crucial only when restrictions to singularity are
considered. For example, the Ketonen rulevfeintroduction in the consequent is:

'HA,A B ,
rEa Ave V)
(InLK the sequencE may of course be multiple). Although- v) and(~ V') are in-
terderivable in.K and inLDJ using the structural rules, only the non-Ketonen rules
(V) can be restricted to singularity in the consequent. Accordingly, Gentzen for-
mulatedLK using (- V) so as to be able to obtaln] by imposing this restriction.
Similarly, only the non-Ketonen rulgg +) can be retricted to singularity in the an-
tecedent as ibh DJ; happily, Gentzen also used these rules in formulatiKg

The case ob-introduction in the consequent is somewhat different, as both the
Ketonen and non-Ketonen rules for this introduction can be retricted to singularity in
the antecedent and the consequent. However, the deductive strength of the systems
so obtained varies according to the rules employed.Jirwhich is formulated using
the singular-in-the-consequent versior(leH’), the correspondin¢->) can also be
derived; but(>") could not be similarly derived i J were formulated using->)
instead. Dually(~2) is easily derived fron{~>) in LDJ, but (->) would not be
derivable ifL DJ were formulated using—->") instead.

Exactly such a formulation, obtained by simply restrictirg to singularity in
the antecedent, was considered by Czerfahkf view of the preceding remarks, it
is not surprising that it proved to be somewhat weaker thiag, notably lacking such
classical implicational theorems #> (B > A). Asthe dual to Glivenko's result
could therefore not be established for this formulation, Czermak instead considered
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the &v-—-V fragment, for which it does hold. (The formulation of Goodnialglso
lacks the connective.) So a first test to distinguidhDJ as a better formulation of
dual-intuitionistic logic is to deliver the dual to Glivenko’s result.

Theorem 2.1 (dual-Glivenko) LDJ hasthe same sentential theoremsas LK.

Proof: That all of the sentential theoremslobJ are theorems df K is obvious,

since the former is a subsystem of the latter. To establish the converse, it suffices to
derive the axioms and rules of any Hilbert-style formulation of classical sentential
logic in LDJ. This is made easier by first derivirigD’) in this system.

AFA,B

AFA AOSB EB;
FAASBASB oo
FALADB

The derivation of classical axioms is then straightforward. We illustrate with
(BD A).
AEA
AEFBDA
FAD(BDA)

The sole rule of a standard Hilbert axiomaticexus ponens, from- Aand- AD
Bto+ B. This is derived ir.DJ simply as follows:

(2)
(ol

(oss) (ass.)

ass. LA B- B

- AS B ASBL B DHCt
B (Cuy

O

Thus,LDJ has the same sentential theorem$. s In order to determine whether
this result also holds for theorems involving quantifiers, we next consider an exten-
sion of bothL DJ andL J which will allow an isomorphic mapping between the result-
ing systems. This extension involves the connectiwehich figures in the formula-

tion of dual-intuitionistic logic presented ik]] Goodman suggests interpreting this
“pseudo-difference” operator as “but not.” However, this is somewhat misleading,
as it suggests an equivalence betwéenB and A & —B. Such an equivalence will
prove to hold in the extended systénd™, but not inLDJ™. We prefer to address

the question of interpretation later, and proceed instead to introduce the connective
—~ operationally. (It will become clear why a Ketonen rule is used in one extension
while non-Ketonen rules are used in the other).

3 ThesystemLDJ™ The systeni. DJ™ is obtained by adding the following rules
toLDJ:

A+ A, B , THA, A BFO©
(=) (=)

A-BF A '-A,0,A-B

The systenlL.J™ is obtained by adding the following rules tq:
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ATEA r'+B
A=B,TF A A=B, T+

)
'EA B,AF

raras 7

The mapping (which builds upon one described IR is defined as follows.

Formulas: p* = pforatomicp
(—A)" = A
(A& B = B'VA
(AVB)* = B*& A
(ADB) = B-=A
(A-B)* = B*'D A"
(YXFx)* = 3IX(Fx)*

@AxFx)* = Vx(Fx)*
Sequences:. if T is the sequencd,, ... Ay(n > 0), then
I =AD", ... (A)"

Sequents. (I'F A =A*FT*

Rules: if Ris a rule of the form% (n > 2), whereS,, ... S, are se-
quents, then
r_ S (S
(S)*

Theorem 3.1  The mapping = isan isomorphism such that Sisa derivable sequent
inLDJ™ ifand only if St isderivablein LJ™. Moreover, x isaninvolution: S* = S,

Proof. Itis easy to verify thak is an isomorphic mapping from the basic sequents
and rules ofLDJ™ to, respectively, basic sequents and rulek &f. For example,
Cut in LDJ™ is mapped to:

O FA  AAET
O, A*FT*

which is just an instance @ut in LJ™. Similarly, the Ketonen rul¢— ") of LDJ™

is mapped to the Ketonen rule-2’) of LJ™, and the non-Ketonen rulgs->) of
LDJ™ are mapped to the non-Ketonen ru{est) of LJ™. Thus, applyingto every
sequent occurring in a derivation 8fin LDJ™ produces a derivation &' in LJ™.
Conversely, ifS" is derivable inLJ™, thenS*™ is derivable inLDJ™. It remains only

to verify thatx is an involution on sequent§&™ = S. This follows straightforwardly
from the fact thak is an involution on formulas, which can be proved by induction
on the number of connectives occurring in a formAla

Base Case: In this case A is an atomic formulg. But p** = p* = p.
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Inductive Sep: Assume thaAis oftheformB& C. Then(B& C)** = (C*v B*)* =
B** & C** = B & C (on inductive hypothesis). All other cases are dealt with simi-

larly. O

The mappinge provides a more precise way of establishing the correspondences be-
tween intuitionistic and dual-intuitionistic logics and their fragments. For example,
using the subscript to denote fragments not involving the connectivgit is clear
thatLDJ is in fact a definitional extension &fDJ 5, with A © B defined as-A v B.

The rules corresponding {@+) and(+>) are derived in the latter fragment as fol-
lows, where the double lines represent necessary applications of Structural Rules:

AL A
“AFa P B©®
—AF A, 0 BFO,A
~AVBLA.© vH)
AF A
A —A ?; ;; I'A.B =)
FA,—-AVv B '-A,—-AvB

Similarly, LDJ~ is a definitional extension dfDJ; whereas dually,.J~ andL J

are respectively definitional extensionslaf andL J s, with — defined asA & —B.

The total picture that emerges is as follows, with unbroken lines representing proper
extensions, broken lines representing definitional extensions, and horizontal lines of
*S representing duals according to thenapping:

LD xxxx*xx LI

LDJ x x x % % % %x LI
~ s
g
e
e
g

7
LDJs %% % % xk%x LI

Thus, it turns out that the exact dual of Gentzdnkis, according to the-
mapping,L DJ7 rather tharL DJ. However, the latter is easily extendedlt®J~,
which is itself a definitional extension &fDJ. Both LDJ andLDJ™ are dual to
LJin the sense that they are singular in the antecedent rather than in the consequent;
moreoverL DJ has the dual-Glivenko property of sharing sentential theorems but not
counter-theorems with K while being formulated with the same connectives. For
the remainder of our investigation, we will concentrate on the maximally expressive
systemL DJ™; though the results obtained will apply directly or with obvious modi-
fications to the remaining dual-intuitionistic systems.

We now prove &Cut-elimination Theorem fok J™, from which will follow Cut-
elimination and decidability fo DJ™ via thex-mapping. Afterwards, we illustrate
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the deductive features of the dual-intuitionistic systems with some derivable and un-
derivable sequents, and we return to the question of whether the dual-Glivenko result
can be extended to theorems involving quantifiers. Finally, we investigate the para-
consistent nature of the dual-intuitionistic systems and sketch a dual-intuitionistic set
theory with Unrestricted Comprehension Schema which is nonetheless simply con-
sistent (thouglw-inconsistent).

4 Cut-elimination and decidability

Theorem 4.1 (Cut-elimination) TheruleCutiseliminablefromLJ™; thatis, every
sequent whichisderivableinthissystemhasa derivationinwhich Cutdoesnot figure.

Proof: It suffices to add to th€ut-elimination proof for J of Gentzen[§] the fol-
lowing sections dealing with-. (Note that the symbol * occurring in these sections
is Gentzen'’s notation and has nothing to do withthmapping).

3.113.37. Suppose the terminal symbol of tMix-formulaM is —. Then the end of
the derivation has one of the following forms:

A B,A _ AOFA |

LA+ A-B =) A-B,OF A El\_/li;))
LA, OF A

A B, A+ _ OB

LA+ A-B (=) A=B,O El\_m:))
ILA,OF A

These are respectively transformed into:

A ABFA

.o FA Mix),
T AOFA
®FB B.AF .
O.A - (Mix)
T AOL

where the double lines represent possible applications of Structural Rules excluding
Cut/Mix. In both cases, th#lix-formula of the remainingMix is of lower degree.
TheseMixes can therefore be eliminated on the inductive hypothesis.

3.121.22. This section applies without modification ¢ +).
We add the following sections to 3.121.23 to deal with—-).

3.121.234. Suppose thdlix occurs after g ~). Then the end of the derivation is

of the form:
A B, A

OF M T AFA-B (Mé;;)
©.I". A" A-B
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The Mix-formula M must occur inl" or in A or in both. We distinguish these three
cases.

3.121.234.1. SupposeM occurs inl” but not inA. Then the end of the derivation is
transformed into:

OFM TEA ..
o.rFAa (MY
O A A-B

®OFM

(=)

SinceM does not occur i\, it follows thatA* is just A, and the lower sequent is

the same as the lower sequent of the original derivation. Moreover, since the new
derivation is of lower rank th®lix occurring in it may be eliminated on the inductive
hypothesis.

3.121.234.2. SupposeM occurs inA but not inI". This is dealt with as in case
3.121.234.1.

3.121.234.3. SupposeM occurs in botH™ andA. Then the end of the derivation is
transformed initially into:

OFM FFA(MiX) OFM B, A
0,I'"FA O, B, A*

(Mix)

Here B* represents eithdB or nothing depending on whethBris different fromM
or the same. IB* is B, the derivation continues as follows.

[©, B, A* -]
[0, - A] B,O,A'F
O,I*,0, A" A-B
O,T*, A"F A-B

(Intsk)
(=)

where the double lines again represent possible applications of Structural Rules ex-
cluding Cut/Mix. If B* is nothing, then the derivation continues as follows:

[©, B*, A* -]
[©,T*F Al B,O®,A"F
0,T*,0,A  A-B
O,T", A" A-B

(Thin )
(=)

In both cases, the new derivation is of lower rank. Miges occurring therein can
therefore be eliminated on inductive hypothesis.

3.122. This section does not apply te- —) and requires no modification to apply to
(= ).
All other sections remain exactly as in Gentzen [3]. O

Theorem 4.2 Therule (Cut)iseliminable fromLDJ™.
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Proof: Let Sbe a derivable sequent bDJ*. By Theoreni3.1] $ is derivable in
LJ". By Theoren#f1] S has aCut-free derivation ir.J™. Applying the mapping
to every sequent occurring in this derivation produc€siafree derivation il.DJ™
of S, which, again by Theoref@.1]isjust S. O

As in [B], a derivation has the Subformula Property if every formula occurring in it is
a subformula of some formula occurring in the final sequent of the derivation. Since
Cut is the only rule of the sentential fragmentlobJ™ which does not preserve this
property, Theorer.2lhas the following consequence.

Corollary 4.3 Every derivable sequent of the sentential fragment of LDJ™ hasa
(Cut-free) derivation with the Subformula Property.

As for Gentzen’d. J, this fact can be used to establish that the sentential fragment of
LDJ™ is decidable.

Corollary 4.4 Sentential LDJ™ isdecidable.

Moreover, since every derivable sequent of sentehtia)™ not involving the con-
nective—- thus has a derivation in which the rulés ') and (-~ =) do not figure,

it follows that sententialL DJ™ is a conservative extension of sententi@J. And
sinceLDJ™ andL DJ share the same quantifier rules, this result can be generalized
to the full systems.

Corollary 45 LDJ™ isaconservative extension of LDJ.

All of these results, with obvious modifications, hold for all of the remaining dual-
intuitionistic systems. We now proceed to contrast some of those sequents which are
derivable in these systems with some of those that are not, and we return to the ques-
tion of whether the dual-Glivenko result can be extended beyond the sentential level.

5 Derivable sequents and theorems

Theorem 5.1  The following sequents are derivablein LDJ (and in LDJ™); those
not involving the connective > are also derivablein LDJ; (and in LDJ5):

AEF A ADBHF+F —-AVB VXFx F 3axFx
AFBDA -AvBF ADB =VXFX F 3Ix—Fx
A&BHF A -Av-B + -(A& B) —Vx—=Fx F 3xFx
AF AVvB -(AvB) - -A& —B —3IXFX F VX=FX
-—AF A AD-BF BD>-A —3Ix—=Fx + VXFx
-AF ADB -AD-B+F BDA F (AxFx) v (3x=FXx).

In addition, the following sequentsinvolving the connective + are derivablein LDJ™
(andinLDJ3):

A=A -A-B F —-B=-A A-B -+ A& —-B
A-A+HB —-A-—BF B-A A+ B, A-B.

Theorem 5.2  The following sequents are not derivable in any of the systems of
Theorem[51]
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A ——A A& —-A+ —B VXFX F —3x=Fx
A-—-ADB AvB F =(=A& —B) Vx—=Fx F —3xFx
A& (ADB) - B A& B + —=(=Av-B) AXFX = —=VXx=FX

A& (-AvB) - B —-A&-BF —=(AvB) IX—Fx F =VxFX
A& —A ADBF —-BD>—-A IX(Fx & —Fx)+
A& —-AF B -A>DBHF —-BDA F—-3ax(Fx & —Fx).

The following sequents involving the connective - are also not derivable in any of
the systems of Theorem 5:

A=——Al A-B+ —-B=—A A& —B+ A-B
A& (B=A)F  A=—B F B=—A (A& —A)=~BF.

The last sequent involving the existential quantifidisted in Theorerh.2Js partic-
ularly noteworthy, as the formuladax(Fx & —FXx) is in fact a theorem of classical
logic LK. This answers the question of whether Theokefithe dual-Glivenko re-
sult) can be extended beyond the sentential level.

Theorem 5.3 The dual-intuitionistic systems of Theorem[5.1]lack some theorems
which involve the quantifier 3.

In fact, the dual-Glivenko result can be extended to theorems involving the quanti-
fier v but not3, as is done for the systerhDJ in [2]. The latter remarks on, but
does not demonstrate, the failure of this result to extend to theorems invaying
Goodman[E]makes a similar observation, also givingx(Fx & —Fx) as a counter-
example (even though is not a primitive connective in Goodman’s formulation).

Theorem$&.2landB.3clarify the extent to which the dual-intuitionistic systems
are suitable for paraconsistent purposes. In rejecting the seguent A + B, they
can evidently support theories which are inconsistent but not trivial (that is, which
contain some sentend®together with its negatiom A but not every sentencB).
Moreover, the absence bf-3x(Fx & —FXx) allows theories based on these systems
to contain a sentence of the forrtx(Fx & —Fx) without thereby being inconsis-
tent, notwithstanding that every instance-gfFx & —Fx) is a theorem. Such theo-
ries thus exhibit a variant of the property known@nconsistency, which does not
in general amount to simple inconsistency.

For example, Goodmal] describes a dual-intuitionistic set theory which incor-
porates an unrestricted Comprehension Schemgvx(x € y = Fx), wherey is not
free in Fx and A = B abbreviateg A > B) & (B > A). Russell's Paradox is repro-
ducible in this set theory, with the result that it contains the sequém{x € x & x ¢
X), butis nonetheless simply consistent. The same holds for similar set theories based
onLDJ andLDJ™, possibly augmented by postulates for equality = and an Axiom
of Extensionality— VxVy(Vz(ze x =z € y) D x =Yy). We note that Curry’s Para-
dox cannot be reproduced in these set theories as the sefjuetA > B)- AD B
corresponding to Contraction, but not the sequ&idt (A O B) - B corresponding
to modus ponens, is derivable in the underlying logics.

Evidently, then, our dual-intuitionistic systems bear out their motivation as log-
ics appropriate for reasoning in inconsistentqeinconsistent) situations. It may be,
however, that they do so only at the expense of otherwise desirable systemic proper-
ties. For example, an argument 6} Ehows that these systems lack a definable im-
plication connective that is the analogue of deducibility. Cleaxlyhich serves this
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purpose in classical and intuitionistic logic, fails to do sa.idJ andLDJ™, where
there are theorems of the for&> B such thatA - B is not derivable. Essentially,
this amounts to a failure of the rule afodus ponens for O in these systems. Al-
though the theorematic form of this rule, framA and~ A > Bto+ B, is deivable
(as in the Proof of Theoref 1), the absence of & (A O B) - B as a derivable
sequent ensures that a senteBceannot be derived from premisésand A > B
in general. Thus, though the sets of theoremk Bfl andLDJ™ are closed under
modus ponens, theories based on these systems are in general not. Indeed, this fail-
ure is essential to the paraconsistent character of these systems, given the derivability
of - (A& —A) D B.

The failure ofmodus ponensfor dual-intuitionistico argues against interpreting
this connective as a kind of implication. (It might also be said that the conformity of
classical, intuitionistic, and dual-intuitionistioc to the non-Ketonen rule§->) ar-
gues against interpreting this connective as implication in any of these logics.) More-
over, no connective definable inDJ or LDJ™ fares any better as an implicational
analogue of deducibility.

Theorem 5.4 Thereisno connective @ definableinLDJ or LDJ™ suchthat A+ B
isa derivable sequent if and only if A& B isatheorem.

Proof: The following is a syntactic version of Goodman'’s algebraic argument. If
there were such a connectigg it would likewise be definable in classidaK . Since

A Ais derivable inLDJ andLDJ™, A® Awould be a theorem of these systems,
and therefore also dfK. But the result of substituting=— A for any occurrence of

a entenceA in any theorem of_K is also a theorem; thu#A & —— A would also

be a classical theorem. By Theor@ni] A & —— A would then also be a theorem of

L DJ and therefore of DJ™, but thenA - —— Awould be derivable in these systems,
contrary to Theoref.2] O

TheorentE.4khows that there can be no standard axiomatics for our dual-intuitionistic
systems, in the (strong) sense tigft B is a derivable rule in the axiomatics if and
only if A+ Bis derivable in the sequent system. It does not quite establish, however,
that there is absolutely no syntactic analogue of deducibilityd andLDJ™; in

the latter system at least there is such a connective, though it is clearly not a kind of
implication.

Theorem55 A B is a derivable sequent in LDJ™ if and only if A~B is a
counter-theorem; that is, the sequent A~B  isderivable. Generally, A+ A, Bis
derivablein LDJ™ if and only if A~B - A isalso derivable.

Proof: If A~ A, Bis derivable inLDJ™, thenA=B I A follows by (= ). The
converse derivation is as follows.

AEA _ BEB .,
AF B, A-B A~BF A
AF B, A

AF A, B

(Cut
(F Ints)
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Theorent.5ls the best we can do for an analogue of the (Strong) Deduction Theorem
for LDJ™. Inview of the central role of the connectiveboth as the-correlate o
and as the syntactic correlate of deducibilityLiBJ ™, we close with some remarks
on its interpretation. The suggestion of GoodmarEinthat A= B be interpreted as
“ A but notB” i s not quite satisfactory as it suggests an equivalence #igh —B.
This equivalence holds classically (foK) and intuitionistically (fo. J™ andL J7),
but it fails for LDJ™. Instead, we suggest that-B be interpreted asA excludes
B.” This is the natural dual of logical implication: whereAsmplies B just in case
the logical content oA must include that oB, dually A excludesB just in case the
logical content ofA cannot include that oB. Thus,LDJ™ turns out to be a very
liberal sort of logic—it allowsB to be deduced fronA just in case it is absurd (a
counter-theorem) foA to excludeB.
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