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Dual-Intuitionistic Logic

IGOR URBAS

Abstract The sequent systemLDJ is formulated using the same connectives
as Gentzen’s intuitionistic sequent systemLJ, but is dual in the following sense:
(i) whereasLJ is singular in the consequent,LDJ is singular in the antecedent;
(ii) whereasLJ has the same sentential counter-theorems as classicalLK but
not the same theorems,LDJ has the same sentential theorems asLK but not
the same counter-theorems. In particular,LDJ does not reject all contradic-
tions and is accordingly paraconsistent. To obtain a more precise mapping, both
LJ andLDJ are extended by adding a “pseudo-difference” operator.− which
is the dual of intuitionistic implication. Cut-elimination and decidability are
proved for the extended systemsLJ

.− andLDJ
.−, and a simply consistent but

ω-inconsistent Set Theory with Unrestricted Comprehension Schema based on
LDJ is sketched.

1 Introduction Intuitionistic logic differs from classical logic most notably in not
affirming every instance ofA ∨¬A, the classical Law of Excluded Middle. It has ac-
cordingly been advanced as more appropriate for reasoning inincomplete situations,
where for some sentenceA neitherA nor its negation¬A holds. The intuitionistic
sequent systemLJ of Gentzen [3] isobtained by restricting sequents of the classical
sequent systemLK to being (at most) singular in the consequent. It follows from a
well-known result of Glivenko [4] thatLJ andLK share the same sentential counter-
theorems, i.e., sentencesA not containing quantifiers such that the sequentA � (with
empty consequent) is derivable; they do not, of course, share the same sentential the-
orems.

It is possible to obtain adual-intuitionistic sequent system by restricting se-
quents ofLK instead to being (at most) singular in the antecedent. The resulting logic
then has the dual property of sharing all sentential theorems ofLK while not shar-
ing all counter-theorems. In particular, not every contradictionA & ¬A is rejected,
which indicates that such a logic should be more appropriate than either classical or
intuitionistic logic for reasoning ininconsistent situations, where for some sentence
A both A and its negation¬A hold. Moreover, since the sequentA & ¬A � B is also
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rejected, dual-intuitionistic logic can be used as the basis for nontrivial inconsistent
theories and is therefore paraconsistent.

Such sequent systems have been constructed in Czermak [2] and Goodman [5].
The former takes a purely proof-theoretic approach, whereas the latter proceeds by
considering Brouwerian algebras (the algebraic duals of intuitionistic Heyting alge-
bras) and moves on to a similarly proof-theoretic treatment. Although both offer se-
quent systems which are (at most) singular in the antecedent, neither uses exactly
Gentzen’s original connectives &,∨, ⊃, and¬, and quantifiers∀ and∃. Czermak’s
system lacks rules for⊃ and∃; Goodman’s uses &,∨, ∀, and∃, as well as a connec-
tive .− representing “pseudo-difference” and a sentential constantT . Consequently,
it is not immediately clear in what exact sense each is dual to intuitionisticLJ. We
begin by presenting a sequent systemLDJ which is singular in the antecedent and
which employs exactly Gentzen’s connectives and quantifiers.

2 The system LDJ The systemLDJ has the following components:

Basic Sequents: all sequents of the formA � A

Structural Rules:
� �

A � �
(Thin �)

� � �

� � �, A
(� Thin)

� � �, A, A
� � �, A

(� Cont)
� � �, A, B,�

� � �, B, A,�
(� Int)

� � �, A A � �

� � �,�
(Cut)

Connective Rules:
A � �

A & B � �
(& �)

B � �
A & B � �

(& �)

� � �, A � � �, B
� � �, A & B

(� & )

A � � B � �
A ∨ B � �

(∨ �)

� � �, A
� � �, A ∨ B

(� ∨)
� � �, B
� � �, A ∨ B

(� ∨)

� �, A B � �

A ⊃ B � �,�
(⊃�)

A � �

� �, A ⊃ B
(�⊃)

� � �, B
� � �, A ⊃ B

(�⊃)

� �, A
¬A � �

(¬ �)
A � �

� �,¬A
(� ¬)
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Quantifier Rules:
Fa � �

∀xFx � �
(∀ �)

� � �, Fa
� � �,∀xFx

(� ∀)

Fa � �
∃xFx � �

(∃ �)
� � �, Fa
� � �,∃xFx

(� ∃)

Restrictions on variables: In the rules(� ∀) and(∃ �), the object variablea
must not occur in the lower sequents (i.e., in�, �, or Fx).

Most of the rules ofLDJ require no comment, as they are simply the result of restrict-
ing the rules of Gentzen’s classical sequent systemLK to being (at most) singular in
the antecedent. The only exception is the pair of rules(�⊃). In their place, Gentzen’s
LK employs a single rule, the restricted version of which would be:

A � �, B
� �, A ⊃ B

(�⊃′)

The essential difference between(�⊃) and(�⊃′) is that in the latter rule both con-
stituentsA and B of the principal formulaA ⊃ B are explicit in the upper sequent,
whereas in each of the former pair of rules only one constituent is explicit. Follow-
ing Curry [1], we will call connective rules such as(�⊃′) “Ketonen rules” and those
such as(�⊃) “non-Ketonen rules.”

Classical logic can be formulated indifferently using the Ketonen or non-Keto-
nen rules for introducing & into antecedent sequences and∨ or ⊃ into consequent
sequences. The difference becomes crucial only when restrictions to singularity are
considered. For example, the Ketonen rule for∨-introduction in the consequent is:

� � �, A, B
� � �, A ∨ B

(� ∨′)

(In LK the sequence� may of course be multiple). Although(� ∨) and(� ∨′) are in-
terderivable inLK and inLDJ using the structural rules, only the non-Ketonen rules
(� ∨) can be restricted to singularity in the consequent. Accordingly, Gentzen for-
mulatedLK using(� ∨) so as to be able to obtainLJ by imposing this restriction.
Similarly, only the non-Ketonen rules(& �) can be retricted to singularity in the an-
tecedent as inLDJ; happily, Gentzen also used these rules in formulatingLK.

The case of⊃-introduction in the consequent is somewhat different, as both the
Ketonen and non-Ketonen rules for this introduction can be retricted to singularity in
the antecedent and the consequent. However, the deductive strength of the systems
so obtained varies according to the rules employed. InLJ, which is formulated using
the singular-in-the-consequent version of(�⊃′), the corresponding(�⊃) can also be
derived; but(�⊃′) could not be similarly derived ifLJ were formulated using(�⊃)

instead. Dually,(�⊃′) is easily derived from(�⊃) in LDJ, but (�⊃) would not be
derivable ifLDJ were formulated using(�⊃′) instead.

Exactly such a formulation, obtained by simply restrictingLK to singularity in
the antecedent, was considered by Czermak [2]. In view of the preceding remarks, it
is not surprising that it proved to be somewhat weaker thanLDJ, notably lacking such
classical implicational theorems asA ⊃ (B ⊃ A). As the dual to Glivenko’s result
could therefore not be established for this formulation, Czermak instead considered
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the &-∨-¬-∀ fragment, for which it does hold. (The formulation of Goodman [5] also
lacks the connective⊃.) So a first test to distinguishLDJ as a better formulation of
dual-intuitionistic logic is to deliver the dual to Glivenko’s result.

Theorem 2.1 (dual-Glivenko) LDJ has the same sentential theorems as LK.

Proof: That all of the sentential theorems ofLDJ are theorems ofLK is obvious,
since the former is a subsystem of the latter. To establish the converse, it suffices to
derive the axioms and rules of any Hilbert-style formulation of classical sentential
logic in LDJ. This is made easier by first deriving(�⊃′) in this system.

A � �, B
A � �, A ⊃ B

(�⊃)

� �, A ⊃ B, A ⊃ B
(�⊃)

� �, A ⊃ B
(� Cont)

The derivation of classical axioms is then straightforward. We illustrate withA ⊃
(B ⊃ A).

A � A
A � B ⊃ A

(�⊃)

� A ⊃ (B ⊃ A)
(�⊃′)

The sole rule of a standard Hilbert axiomatics ismodus ponens, from� A and� A ⊃
B to � B. This is derived inLDJ simply as follows:

(ass.)
� A ⊃ B

(ass.)
� A B � B

A ⊃ B � B
(⊃�)

� B
(Cut)

�
Thus,LDJ has the same sentential theorems asLK. In order to determine whether
this result also holds for theorems involving quantifiers, we next consider an exten-
sion of bothLDJ andLJ which will allow an isomorphic mapping between the result-
ing systems. This extension involves the connective.− which figures in the formula-
tion of dual-intuitionistic logic presented in [5]. Goodman suggests interpreting this
“pseudo-difference” operator as “but not.” However, this is somewhat misleading,
as it suggests an equivalence betweenA .−B and A & ¬B. Such an equivalence will
prove to hold in the extended systemLJ

.−, but not inLDJ
.−. We prefer to address

the question of interpretation later, and proceed instead to introduce the connective
.− operationally. (It will become clear why a Ketonen rule is used in one extension
while non-Ketonen rules are used in the other).

3 The system LDJ
.− The systemLDJ

.− is obtained by adding the following rules
to LDJ:

A � �, B
A .−B � �

( .− �′)
� � �, A B � �

� � �,�, A .−B
(� .−)

The systemLJ
.− is obtained by adding the following rules toLJ:
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A, � � �

A .−B, � � �
( .− �)

� � B
A .−B, � � ( .− �)

� � A B,� �
�,� � A .−B

(� .−)

The mapping� (which builds upon one described in [2]) is defined as follows.

Formulas: p� = p for atomic p

(¬A)� = ¬A�

(A & B)� = B� ∨ A�

(A ∨ B)� = B� & A�

(A ⊃ B)� = B� .−A�

(A .−B)� = B� ⊃ A�

(∀xFx)� = ∃x(Fx)�

(∃xFx)� = ∀x(Fx)�

Sequences: if � is the sequenceA1, . . . An(n ≥ 0), then

�� = (An)
�, . . . (A1)

�

Sequents: (� � �)� = �� � ��

Rules: if R is a rule of the form
S1 . . . Sn−1

Sn
(n ≥ 2), whereS1, . . . Sn are se-

quents, then

R� = (Sn−1)
� . . . (S1)

�

(Sn)�

Theorem 3.1 The mapping � is an isomorphism such that S is a derivable sequent
in LDJ

.− if and only if S� is derivable in LJ
.−. Moreover, � is an involution: S�� = S.

Proof: It is easy to verify that� is an isomorphic mapping from the basic sequents
and rules ofLDJ

.− to, respectively, basic sequents and rules ofLJ
.−. For example,

Cut in LDJ
.− is mapped to:

�� � A� A�,�� � ��

��,�� � ��

which is just an instance ofCut in LJ
.−. Similarly, the Ketonen rule( .− �′) of LDJ

.−

is mapped to the Ketonen rule(�⊃′) of LJ
.−, and the non-Ketonen rules(�⊃) of

LDJ
.− are mapped to the non-Ketonen rules( .− �) of LJ

.−. Thus, applying� to every
sequent occurring in a derivation ofS in LDJ

.− produces a derivation ofS� in LJ
.−.

Conversely, ifS� is derivable inLJ
.−, thenS�� is derivable inLDJ

.−. It remains only
to verify that� is an involution on sequents:S�� = S. This follows straightforwardly
from the fact that� is an involution on formulas, which can be proved by induction
on the number of connectives occurring in a formulaA.

Base Case: In this case,A is an atomic formulap. But p�� = p� = p.
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Inductive Step: Assume thatA is of the formB & C. Then (B & C)�� = (C� ∨ B�)� =
B�� & C�� = B & C (on inductive hypothesis). All other cases are dealt with simi-
larly. �
The mapping� provides a more precise way of establishing the correspondences be-
tween intuitionistic and dual-intuitionistic logics and their fragments. For example,
using the subscript�⊃ to denote fragments not involving the connective⊃, it is clear
thatLDJ is in fact a definitional extension ofLDJ �⊃, with A ⊃ B defined as¬A ∨ B.
The rules corresponding to(⊃�) and(�⊃) are derived in the latter fragment as fol-
lows, where the double lines represent necessary applications of Structural Rules:

� �, A
¬A � �

(¬ �)

¬A � �,�

B � �

B � �,�

¬A ∨ B � �,�
(∨ �)

A � �

� �,¬A
(� ¬)

� �,¬A ∨ B
(� ∨)

� � �, B
� � �,¬A ∨ B

(� ∨)

Similarly, LDJ
.− is a definitional extension ofLDJ

.−
�⊃ ; whereas dually,LJ

.− andLJ
.−
�⊃

are respectively definitional extensions ofLJ andLJ �⊃, with .− defined asA & ¬B.
The total picture that emerges is as follows, with unbroken lines representing proper
extensions, broken lines representing definitional extensions, and horizontal lines of
�s representing duals according to the�-mapping:

LDJ
.− � � � � � � � LJ

.−

LDJ
.−
�⊃ � � � � � � �� LJ LDJ � � � � � � �� LJ

.−
�⊃

LDJ �⊃ � � � � � � �� LJ �⊃

Thus, it turns out that the exact dual of Gentzen’sLJ is, according to the�-
mapping,LDJ

.−
�⊃ rather thanLDJ. However, the latter is easily extended toLDJ

.−,
which is itself a definitional extension ofLDJ

.−
�⊃ . Both LDJ andLDJ

.− are dual to
LJ in the sense that they are singular in the antecedent rather than in the consequent;
moreover,LDJ has the dual-Glivenko property of sharing sentential theorems but not
counter-theorems withLK while being formulated with the same connectives. For
the remainder of our investigation, we will concentrate on the maximally expressive
systemLDJ

.−; though the results obtained will apply directly or with obvious modi-
fications to the remaining dual-intuitionistic systems.

Wenow prove aCut-elimination Theorem forLJ
.−, from which will follow Cut-

elimination and decidability forLDJ
.− via the�-mapping. Afterwards, we illustrate
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the deductive features of the dual-intuitionistic systems with some derivable and un-
derivable sequents, and we return to the question of whether the dual-Glivenko result
can be extended to theorems involving quantifiers. Finally, we investigate the para-
consistent nature of the dual-intuitionistic systems and sketch a dual-intuitionistic set
theory with Unrestricted Comprehension Schema which is nonetheless simply con-
sistent (thoughω-inconsistent).

4 Cut-elimination and decidability

Theorem 4.1 (Cut-elimination) The rule Cutis eliminable from LJ
.−; that is, every

sequent which is derivable in this system has a derivation in which Cutdoes not figure.

Proof: It suffices to add to theCut-elimination proof forLJ of Gentzen [3] the fol-
lowing sections dealing with.−. (Note that the symbol * occurring in these sections
is Gentzen’s notation and has nothing to do with the�-mapping).

3.113.37. Suppose the terminal symbol of theMix-formula M is .−. Then the end of
the derivation has one of the following forms:

� � A B,� �
�,� � A .−B

(� .−)
A,� � �

A .−B,� � �
( .− �)

�,�,� � �
(Mix )

� � A B,� �
�,� � A .−B

(� .−)
� � B

A .−B,� � ( .− �)

�,�,� � �
(Mix )

These are respectively transformed into:

� � A A,� � �

�,�∗ � �
(Mix ),

�,�,� � �

� � B B,� �
�,�∗ � (Mix )

�,�,� �
where the double lines represent possible applications of Structural Rules excluding
Cut/Mix. In both cases, theMix-formula of the remainingMix is of lower degree.
TheseMixes can therefore be eliminated on the inductive hypothesis.

3.121.22. This section applies without modification to( .− �).

Weadd the following sections to 3.121.23 to deal with(� .−).

3.121.234. Suppose theMix occurs after a(� .−). Then the end of the derivation is
of the form:

� � M
� � A B,� �

�,� � A .−B
(� .−)

�,�∗,�∗ � A .−B
(Mix )
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TheMix-formula M must occur in� or in � or in both. We distinguish these three
cases.

3.121.234.1. SupposeM occurs in� but not in�. Then the end of the derivation is
transformed into:

� � M � � A
�,�∗ � A

(Mix )
� � M

�,�∗,�∗ � A .−B
(� .−)

SinceM does not occur in�, it follows that�∗ is just�, and the lower sequent is
the same as the lower sequent of the original derivation. Moreover, since the new
derivation is of lower rank theMix occurring in it may be eliminated on the inductive
hypothesis.

3.121.234.2. SupposeM occurs in� but not in�. This is dealt with as in case
3.121.234.1.

3.121.234.3. SupposeM occurs in both� and�. Then the end of the derivation is
transformed initially into:

� � M � � A
�,�∗ � A

(Mix )
� � M B,� �

�, B∗,�∗ � (Mix )

HereB∗ represents eitherB or nothing depending on whetherB is different fromM
or the same. IfB∗ is B, the derivation continues as follows.

[�,�∗ � A]
[�, B∗,�∗ � ]

B,�,�∗ � (Ints�)

�,�∗,�,�∗ � A .−B
(� .−)

�,�∗,�∗ � A .−B

where the double lines again represent possible applications of Structural Rules ex-
cludingCut/Mix. If B∗ is nothing, then the derivation continues as follows:

[�,�∗ � A]
[�, B∗,�∗ � ]

B,�,�∗ � (Thin �)

�,�∗,�,�∗ � A .−B
(� .−)

�,�∗,�∗ � A .−B

In both cases, the new derivation is of lower rank. TheMixes occurring therein can
therefore be eliminated on inductive hypothesis.

3.122. This section does not apply to(� .−) and requires no modification to apply to
( .− �).
All other sections remain exactly as in Gentzen [3]. �

Theorem 4.2 The rule (Cut) is eliminable from LDJ
.−.
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Proof: Let S be a derivable sequent ofLDJ
.−. By Theorem3.1, S� is derivable in

LJ
.−. By Theorem4.1, S� has aCut-free derivation inLJ

.−. Applying the mapping�
to every sequent occurring in this derivation produces aCut-free derivation inLDJ

.−

of S��, which, again by Theorem3.1, is just S. �

As in [3], a derivation has the Subformula Property if every formula occurring in it is
a subformula of some formula occurring in the final sequent of the derivation. Since
Cut is the only rule of the sentential fragment ofLDJ

.− which does not preserve this
property, Theorem4.2has the following consequence.

Corollary 4.3 Every derivable sequent of the sentential fragment of LDJ
.− has a

(Cut-free) derivation with the Subformula Property.

As for Gentzen’sLJ, this fact can be used to establish that the sentential fragment of
LDJ

.− is decidable.

Corollary 4.4 Sentential LDJ
.− is decidable.

Moreover, since every derivable sequent of sententialLDJ
.− not involving the con-

nective .− thus has a derivation in which the rules( .− �′) and(� .−) do not figure,
it follows that sententialLDJ

.− is a conservative extension of sententialLDJ. And
sinceLDJ

.− andLDJ share the same quantifier rules, this result can be generalized
to the full systems.

Corollary 4.5 LDJ
.− is a conservative extension of LDJ.

All of these results, with obvious modifications, hold for all of the remaining dual-
intuitionistic systems. We now proceed to contrast some of those sequents which are
derivable in these systems with some of those that are not, and we return to the ques-
tion of whether the dual-Glivenko result can be extended beyond the sentential level.

5 Derivable sequents and theorems

Theorem 5.1 The following sequents are derivable in LDJ (and in LDJ
.−); those

not involving the connective ⊃ are also derivable in LDJ �⊃ (and in LDJ
.−
�⊃ ):

A � A A ⊃ B � ¬A ∨ B ∀xFx � ∃xFx
A � B ⊃ A ¬A ∨ B � A ⊃ B ¬∀xFx � ∃x¬Fx

A & B � A ¬A ∨ ¬B � ¬(A & B) ¬∀x¬Fx � ∃xFx
A � A ∨ B ¬(A ∨ B) � ¬A & ¬B ¬∃xFx � ∀x¬Fx

¬¬A � A A ⊃ ¬B � B ⊃ ¬A ¬∃x¬Fx � ∀xFx
¬A � A ⊃ B ¬A ⊃ ¬B � B ⊃ A � (∃xFx) ∨ (∃x¬Fx).

In addition, the following sequents involving the connective .− are derivable in LDJ
.−

(and in LDJ
.−
�⊃ ):

A .−A � ¬A .−B � ¬B .−A A .−B � A & ¬B
A .−A � B ¬A .−¬B � B .−A A � B, A .−B.

Theorem 5.2 The following sequents are not derivable in any of the systems of
Theorem 5.1:
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A � ¬¬A A & ¬A � ¬B ∀xFx � ¬∃x¬Fx
A � ¬A ⊃ B A ∨ B � ¬(¬A & ¬B) ∀x¬Fx � ¬∃xFx
A & (A ⊃ B) � B A & B � ¬(¬A ∨ ¬B) ∃xFx � ¬∀x¬Fx

A & (¬A ∨ B) � B ¬A & ¬B � ¬(A ∨ B) ∃x¬Fx � ¬∀xFx
A & ¬A � A ⊃ B � ¬B ⊃ ¬A ∃x(Fx & ¬Fx) �
A & ¬A � B ¬A ⊃ B � ¬B ⊃ A � ¬∃x(Fx & ¬Fx).

The following sequents involving the connective .− are also not derivable in any of
the systems of Theorem 5:

A .−¬¬A � A .−B � ¬B .−¬A A & ¬B � A .−B
A & (B .−A) � A .−¬B � B .−¬A (A & ¬A) .−B �.

The last sequent involving the existential quantifier∃ listed in Theorem5.2is partic-
ularly noteworthy, as the formula¬∃x(Fx & ¬Fx) is in fact a theorem of classical
logic LK. This answers the question of whether Theorem2.1(the dual-Glivenko re-
sult) can be extended beyond the sentential level.

Theorem 5.3 The dual-intuitionistic systems of Theorem 5.1 lack some theorems
which involve the quantifier ∃.

In fact, the dual-Glivenko result can be extended to theorems involving the quanti-
fier ∀ but not∃, as is done for the systemLDJ �⊃ in [2]. The latter remarks on, but
does not demonstrate, the failure of this result to extend to theorems involving∃;
Goodman [5] makes a similar observation, also giving¬∃x(Fx & ¬Fx) as a counter-
example (even though¬ is not a primitive connective in Goodman’s formulation).

Theorems5.2and5.3clarify the extent to which the dual-intuitionistic systems
are suitable for paraconsistent purposes. In rejecting the sequentA & ¬A � B, they
can evidently support theories which are inconsistent but not trivial (that is, which
contain some sentenceA together with its negation¬A but not every sentenceB).
Moreover, the absence of� ¬∃x(Fx & ¬Fx) allows theories based on these systems
to contain a sentence of the form¬∃x(Fx & ¬Fx) without thereby being inconsis-
tent, notwithstanding that every instance of¬(Fx & ¬Fx) is a theorem. Such theo-
ries thus exhibit a variant of the property known asω-inconsistency, which does not
in general amount to simple inconsistency.

For example, Goodman [5] describes a dual-intuitionistic set theory which incor-
porates an unrestricted Comprehension Schema� ∃y∀x(x ∈ y ≡ Fx), wherey is not
free in Fx and A ≡ B abbreviates(A ⊃ B) & (B ⊃ A). Russell’s Paradox is repro-
ducible in this set theory, with the result that it contains the sequent� ∃x(x ∈ x & x �∈
x), but is nonetheless simply consistent. The same holds for similar set theories based
on LDJ andLDJ

.−, possibly augmented by postulates for equality = and an Axiom
of Extensionality� ∀x∀y(∀z(z ∈ x ≡ z ∈ y) ⊃ x = y). We note that Curry’s Para-
dox cannot be reproduced in these set theories as the sequentA ⊃ (A ⊃ B) � A ⊃ B
corresponding to Contraction, but not the sequentA & (A ⊃ B) � B corresponding
to modus ponens, is derivable in the underlying logics.

Evidently, then, our dual-intuitionistic systems bear out their motivation as log-
ics appropriate for reasoning in inconsistent (orω-inconsistent) situations. It may be,
however, that they do so only at the expense of otherwise desirable systemic proper-
ties. For example, an argument of [5] shows that these systems lack a definable im-
plication connective that is the analogue of deducibility. Clearly⊃, which serves this
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purpose in classical and intuitionistic logic, fails to do so inLDJ andLDJ
.−, where

there are theorems of the formA ⊃ B such thatA � B is not derivable. Essentially,
this amounts to a failure of the rule ofmodus ponens for ⊃ in these systems. Al-
though the theorematic form of this rule, from� A and� A ⊃ B to � B, is derivable
(as in the Proof of Theorem2.1), the absence ofA & (A ⊃ B) � B as a derivable
sequent ensures that a sentenceB cannot be derived from premisesA and A ⊃ B
in general. Thus, though the sets of theorems ofLDJ andLDJ

.− are closed under
modus ponens, theories based on these systems are in general not. Indeed, this fail-
ure is essential to the paraconsistent character of these systems, given the derivability
of � (A & ¬A) ⊃ B.

The failure ofmodus ponens for dual-intuitionistic⊃ argues against interpreting
this connective as a kind of implication. (It might also be said that the conformity of
classical, intuitionistic, and dual-intuitionistic⊃ to the non-Ketonen rules(�⊃) ar-
gues against interpreting this connective as implication in any of these logics.) More-
over, no connective definable inLDJ or LDJ

.− fares any better as an implicational
analogue of deducibility.

Theorem 5.4 There is no connective ⊕ definable in LDJ or LDJ
.− such that A � B

is a derivable sequent if and only if A ⊕ B is a theorem.

Proof: The following is a syntactic version of Goodman’s algebraic argument. If
there were such a connective⊕, it would likewise be definable in classicalLK. Since
A � A is derivable inLDJ andLDJ

.−, A ⊕ A would be a theorem of these systems,
and therefore also ofLK. But the result of substituting¬¬A for any occurrence of
a sentenceA in any theorem ofLK is also a theorem; thus,A ⊕ ¬¬A would also
be a classical theorem. By Theorem2.1, A ⊕ ¬¬A would then also be a theorem of
LDJ and therefore ofLDJ

.−, but thenA � ¬¬A would be derivable in these systems,
contrary to Theorem5.2. �

Theorem5.4shows that there can be no standard axiomatics for our dual-intuitionistic
systems, in the (strong) sense thatA / B is a derivable rule in the axiomatics if and
only if A � B is derivable in the sequent system. It does not quite establish, however,
that there is absolutely no syntactic analogue of deducibility inLDJ andLDJ

.−; in
the latter system at least there is such a connective, though it is clearly not a kind of
implication.

Theorem 5.5 A � B is a derivable sequent in LDJ
.− if and only if A .−B is a

counter-theorem; that is, the sequent A .−B � is derivable. Generally, A � �, B is
derivable in LDJ

.− if and only if A .−B � � is also derivable.

Proof: If A � �, B is derivable inLDJ
.−, then A .−B � � follows by ( .− �′). The

converse derivation is as follows.

A � A B � B
A � B, A .−B

(� .−)
A .−B � �

A � B,�
(Cut)

A � �, B
( � Ints)

�
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Theorem5.5is the best we can do for an analogue of the (Strong) Deduction Theorem
for LDJ

.−. In view of the central role of the connective.− both as the�-correlate of⊃
and as the syntactic correlate of deducibility inLDJ

.−, we close with some remarks
on its interpretation. The suggestion of Goodman in [5] that A .−B be interpreted as
“ A but not B” i s not quite satisfactory as it suggests an equivalence withA & ¬B.
This equivalence holds classically (forLK) and intuitionistically (forLJ

.− andLJ
.−
�⊃ ),

but it fails for LDJ
.−. Instead, we suggest thatA .−B be interpreted as “A excludes

B.” This is the natural dual of logical implication: whereasA implies B just in case
the logical content ofA must include that ofB, dually A excludesB just in case the
logical content ofA cannot include that ofB. Thus,LDJ

.− turns out to be a very
liberal sort of logic—it allowsB to be deduced fromA just in case it is absurd (a
counter-theorem) forA to excludeB.
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